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Abstract. 

Over the past few years, there has been an immense thrust in the field of geolocation, surveillance, tracking and 
location-aware systems and services. The advent of compact, low power, high-processing power DSPs  have 
made possible several tasks which were infeasible just a few years ago. TDOA estimates on such energy and 
resource constrained platforms suffers from the lack of a coherent sampling clock. We present two related 
techniques of Doppler-frequency and time shift correction. The techniques are formally developed, analyzed. 
They are then compared from an implementation and performance perspective. 

 
 
1.   Introduction 
 
Over the past few years, there has been an immense 
thrust in the field of geolocation, surveillance, tracking 
and location-aware systems and services. The advent of 
compact, low power, high-processing power digital 
signal processors have made possible several tasks 
which were considered infeasible just a few years ago. 
The applications abound in utilitarian (E911, product-
customized services, in-building tracking, etc.) and 
military sectors (surveillance, un-manned 
reconnaissance, target location etc.) [1-4].  
 
Traditional TDOA / TOA systems used for geolocation 
depend heavily on fixed array based processing and 
typically employ high precision, costly components. 
Such systems also have long stand off ranges, making it 
difficult to closely track and follow the movements of 
targets with low power signals and in congested areas 
[5]. Proximity to target and mobility of the tracking 
devices gathers greater relevance in urban 
environments. 
 
Unmanned aerial vehicles (UAVs) and organic aerial 
vehicles (OAVs) equipped with geolocation electronics 
can counter the problems with long-standoff systems.  
They can afford safety, security and stealth for the 
reconnaissance mission. However, they pose interesting 
technical constraints. Robustness and reliability under 
military use conditions demand that the devices be 
compact, rugged and mechanically stable. Stealth in 
reconnaissance implies a small, silent design (i.e. 
limited communication bandwidth) while, endurance 
and usability demand an extensive operating life (i.e. 
low power). These UAVs are imagined as a fleet of 
dispensable mobile devices, implying a relatively 

strong constraint on the manufacturing and operating 
cost.  
 
These real-world constraints manifest themselves in the 
algorithmic and signal processing domain as well. 
Physically distinct, passive RF and mobile units imply 
the lack of a common clock, thus obviating array based 
processing. Stealth prevents the UAVs from 
synchronizing on a regular basis to maintain a common 
clock, complicating accurate TOA estimates. Also, a 
reduced communication bandwidth between the devices 
negates the usual techniques of correlating received 
signals for TDOA estimates.  
 
These constraints suggest a technique where much of 
the detection, identification and TOA are done locally 
and the actual target locus computation is relegated to a 
remote base station with bandwidth-constrained inputs 
from the individual UAV sensors.  Specifically, each 
UAV must compute absolute TOA using a-priori 
information such as a signal template, (known signal 
features, synchronization sequences, etc).  TOA 
processing must then compensate for relatively low 
precision GPS clocks and unique (possibly varying) 
sample rates at the sensors.  
 
This paper‡ describes two techniques for correcting the 
errors in TOA/TDOA estimates due to incongruent 
sampling frequencies of the received and template 
signals. Section II introduces and models the effects of 
disparate sampling frequencies as a relative time 
companding (RTC) problem mathematically. Section 
III introduces the Doppler shift correction technique for 
narrow band signals. Section IV explains the motivation 
for a time domain correction. Section V develops the 
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time-shift correction technique. Section VI compares 
and contrasts the two techniques with respect to 
performance characteristics and computational 
efficiency with field data.  
 
2.   Mathematical preliminaries 
 
A signal emanating from a remote source and 
monitored in the presence of noise at two spatially 
separate sensors may be mathematically modeled as:  
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where f(t), n1(t) and n2(t) are real, jointly stationary 
random processes. The signal f(t) is assumed to be 
uncorrelated with noise n1(t) and n2(t). D is the delay 
between the two received signals. 
 
The traditional technique of detecting a signal of 
interest (template) buried in a data stream corrupted by 
additive Gaussian random noise is to use a matched 
filter or a generalized cross correlator (GCC) [6]. Since 
the GCC approach may be viewed as pre-filtering the 
two signals with whitening filters before a usual cross-
correlation, we focus on the correlation technique for 
simplicity. The correlation function may be written as 
[7]: 
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The value of τ that maximizes (2) provides an estimate 
of the delay D.  
 
2.1.   Scaling due to disparate sampling frequencies 
  
Since the signal processing components on the UAVs 
are subjected to a wide gamut of operating conditions, 
the operating clock and sampling frequencies are 
seldom the same as those in the test environments. In 
particular, the frequency at which the template was 
constructed is generally different from the frequency at 
which the incoming signal is sampled. [8] and [9] 
provide a good discussion of the effects of RTC on the 
cross-correlation operation. [10] extends the argument 
to quadratic delays. 
 
Fig. 1 illustrates the effects of different sampling 
frequencies. The signal with a nominal Fourier 
transform is sampled at two sampling frequencies, fs1 
and fs2, with fs1 < fs2. The sampled signal has different 
normalized bandwidths given by (3) where ωsi = 2πfsi. 
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Figure 1 different sampling frequencies lead to 
frequency companding 

Clearly the higher sampling frequency produces a 
smaller normalized bandwidth, i.e., ωb2 < ωb1. When 
viewed in the time domain, the differing relative 
bandwidths manifest themselves as time scaling 
artifacts.  
 
3.   Time scaling and Doppler shift  
 
The disparate sampling frequencies of the template and 
the UAVs produce correlation artifacts, leading to 
erroneous time delay and TOA estimates. For relatively 
narrow-band signals and fairly similar sampling 
frequencies, it is now shown that the RTC between the 
template and received signal may be approximated by 
Doppler shifts. Weiss [11] gives a good explanation of 
the narrow band criterion. The signals under 
consideration fall well within the domain of narrow 
band representation.   
 
Let the template be represented by f(t) and the received 
signal by g(t). Both signals are considered to be real 
and continuous as this eases analysis.  
 
Let the received signal suffer both a scaling, given by 
the scale parameter s, and a time delay, τ: 
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Taking the Fourier transform on both sides, we have, 
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Let s = 1– a, then 
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For narrow band signals,   
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where ω0 is the center radian frequency and ωb is the 
bandwidth of the signal. Hence the above expression 
for G(ω) may be approximated by: 
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Noting that both a and τ are small, so that the second 
exponential maybe approximated by unity, we get,  
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Taking the inverse Fourier transform, we obtain,  
 

)()()( τωτ −−−≈ tj detftg  (12) 
where ωd = aωo = (1-s) ωo (13) 
 
The above expression indicates that for small scale 
factors, a Doppler shift can approximate the effect of 
scaling.  
 
3.1   Compensating for RTC with Doppler shifts 
 
Observe that the form of the companded narrow band 
signal closely resembles the kernel of the cross-
ambiguity function. Hence, the cross-ambiguity 
function is well suited to correct for the “shift” 
introduced due to relative companding. [8, 12] present 
several techniques of using cross-ambiguity functions 
(CAFs) for determining the relevant delay and scale 
parameters.  
 
For our case, the ratio of the sampling frequencies of 
the two signals, s, is always known: the sampling 
frequency of the template is known a priori, and can in 
fact be accurately controlled through correct 
construction. The instantaneous sampling frequency for 
the data obtained at a sensor may be estimated using 
several introspection algorithms. Also, the center 
frequency of the transmitted signal may be known a 
priori by construction. For arbitrary signals, it may also 
be estimated as the mean frequency as defined in [12, 
13] by  
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To estimate the TOA, a generalized cross correlator 
(GCC) may be used on the RTC compensated signals. 
As before, if f(t) represents the template and g(t) the 
received signal, then we create a new signal, f1(t) which 
is a frequency shifted version of the template to 

compensate for the current operating frequency of the 
sensor. 
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Signals f1(t) and g(t) are then fed through matched filter 
to obtain an estimate for the time delay, τ.  
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The above expression may be viewed as a cross-
ambiguity function evaluated at a given shift ωd. This 
circumvents the need to compute several CAFs for 
differing values of scale and delay. 
 
4.  Implementation issues in Doppler RTC 
correction 

 
The Doppler shift technique compensates for RTC by 
modulating the template signal with a complex 
exponential as shown in (15). Usually, the complex 
exponential is computed using Euler’s expansion:  
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For a discrete time system, the above evaluation must 
be performed for each sampling instant. Given a 
template of length N, this produces an N x 1 vector of 
samples of the modulating complex exponential 
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where, skk ω/][ =t is the vector of sampling instants, 
with Ζ∈≤≤ kNk ,0  and sampling frequency ωs. 
Computing the elements of this complex exponential in 
terms of trigonometric functions is both 
computationally and temporally intensive. Furthermore, 
once the vector has been computed, its application to 
the real template vector requires N complex 
multiplications. Examining the structure and nature of 
this calculation and applying a few engineering 
assumptions, we can significantly reduce this burden.  
 
For values of s fairly close to 1, or equivalently, when a 
is fairly small and when the period over which the 
Doppler correction must be employed is limited (If it is 
large, then the time-bandwidth product condition for 
narrow band signals is violated, making the Doppler 
shift assumption invalid), the product ωdt is fairly 
small. Thus, we can make the following approximations 
 1)cos( ≈θ  and θθ ≈)sin(  (20) 
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Expressing this as a vector of discrete samples, we have  
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This computation represents enormous savings in 
creating the correction vector, e. The structure of each 
e[k] also enables us to apply the correction efficiently. 
The Doppler shifting of the template may be 
accomplished in a single pass, leading to an O(N) 
computation routine. 
 
5.   Alternative time shift based correction 

 
The Doppler correction method compensates for 
relative companding by approximating the frequency 
scaling by a frequency shift: the modulation of the 
template sequence by a complex exponential shifts the 
spectrum of the template is to approximately line up 
with that of the scaled signal.  
 
The Doppler correction has the advantage of offering a 
very intuitive and simple technique of compensating for 
the different sampling frequency between the nodes and 
the templates. While it also obviates the need to 
evaluate the passive ambiguity function for a large 
number of scales and shifts, it still suffers from a 
computational perspective.  
 
As explained earlier, the sensor nodes are constrained 
in memory and computational power. In particular, the 
TI C67x DSPs used to provide the signal processing 
capabilities have a limited internal cache. When 
implementing computationally and temporally intensive 
operations such as a GCC, it is imperative that the 
memory access requirements be controlled to meet hard 
real-time constraints. Ensuring that the data and result 
vectors fit in the fast internal memory is a proven and 
routinely employed technique [14].  
 
Both the Doppler correction and approximation 
techniques suffer in this regard because they convert 
normally real data vectors into complex vectors, 
doubling the initial memory requirement and causing 
performance to degrade. For e.g., an 8K point real-FFT 
takes a significantly lesser time than a complex-FFT of 
the same length.  
 
The performance loss accrued over several iterations 
can mean the failure of a real-time constraint. Such a 
situation can occur in the computation of the cross 
spectral density (CSD) [15] of the received signal with 
the template. 
 

Let us examine the relative companding problem again. 
As before, let  
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where, g(t), f(t) are, respectively, the received and 
template signals, s is the scaling factor and τ is the time 
delay introduced.  
 
The equations below recall the matched filtering 
operation.  
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when s = 1, a value of t = τ maximizes Rgf. For the 
present case (s~1, and narrow band signals), the value 
of t over a period (T1, T2) that maximizes R is given by,  
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Notice that this delay τm(T1, T2 ,t) is not fixed as in the 
previous case, but is “smeared” in time.  
 
We wish to approximate this time varying delay 
τm(T1,T2 ,t) by a constant τd(T1, T2) chosen according to 
a least squared error criterion. Let the sum of the 
squared errors, ∈(τ), be given by  
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where (T1, T2) is the interval over which the two 
sequences are compared. Using the Leibniz integral rule 
[16], we have 
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For τdo, the desired optimal value, the LHS of (28) 
vanishes.  
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Over a given interval [T1, T2], the effects of relative 
companding between f(t) and g(t) may be minimized in 
the least squares sense by constructing a time-shifted 
version of f(t), denoted , as )(~ tf
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In the discrete domain, the above equation may be 
expressed as  
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where ωs is the angular sampling frequency of f.  
 
The analog signal f(t) is usually not available to permit 
arbitrary time-shifting of the template signal. would 
then need to be evaluated by interpolating at “arbitrary” 
time instants. While this is achievable, the interpolation 
in the time domain usually comes with a 
computationally expensive price tag.  

f~

 
An easier alternative may be found by migrating to the 
frequency domain. Taking the Fourier transform of the 
preceding equation, we obtain 

ωτωω djeFF )()(~ =  (32) 

where is the Fourier transform 

of f(t). Also note that we have dropped the superscript 
of τ

dtetfF tjωω −
∞

∞−
∫= )()(

d in favor of brevity. As with the Doppler 
correction, it can be argued that the nature of τd and ω 
allow the correction factor e to be computed as an 
approximation  

ωτdj

ωτωτ
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The time-shift based approach has the following 
notable advantages 
 
1. Smaller memory foot print for )(ωF computation 
and reduced memory latency: For real signals, the 
Fourier transform exhibits Hermitian symmetry. This 
may be exploited to reduce the number of computations 
required to compute the entire FFT. It also means that 
the input vector to the FFT routine is a real-vector, 
requiring half as much memory as its complex 
counterpart, reducing memory access times. 
2. Ability to precompute )(ωF : since the template is 
known by design, )(ωF  may be computed offline. This 
obviates its computation at run-time entirely. This 
introduces huge savings in computation time. 
3. Facility to efficiently implement correction in the 
frequency domain: As with the Doppler shift correction, 
we can utilize the nature of the correction to devise an 
efficient method of applying the correction in the 
frequency domain. This has the added advantage of 
allowing an in situ computation, bringing further 
reduction in memory access latencies and computation 
time.  
 

6.   Experimental Results 
 
The figure 2 shows the schematic setup on which these 
algorithms were implemented and tested. The sensor 
nodes consisted of an FRS receiver connected to the 
relevant electronics. A “global” clock was derived 
using GPS signals one pulse per second (PPS) signals. 
The GPS signals were filtered and processed to reduce 
the effects of any timing jitters.  

CH 1 f(t)-- template

Base stationTOA1 TOA2TDOA + locus algorithms

CH 1

GPS receiver

sensor node 1

DSP
Detection, identification,
 RTC correction + TOA

CH 1

GPS receiver

sensor node 2

Detection, identification,
 RTC correction + TOA

DSP

 
Figure 2. Schematic test setup. A FRS radio transmits a 
pseudo random sequence containing the template. The 
two nodes find the template and send TOA estimates to 
the remote base station 

A 1-sec, 5 kHz band-limited pseudo-random sequence 
served as the template. A signal source placed at a 
controlled distance from both receivers transmitted a 
sequence containing the template. The sensor nodes had 
on-board a pre-manufactured version of the template. 
The detection and TOA operations were performed 
locally on the nodes and the TOA estimates were 
transferred to a PC (base-station) containing the TDOA 
location determining algorithms. The nominal sampling 
frequency at all the nodes was 480 kHz.  
 
We present the results of the various experiments in 
Figure 3-5 and Table 1.  
 
7.   Conclusion 
 
The availability of powerful low cost embedded DSPs 
with an impetus in wireless communications has led to 
a very large interest in developing self-contained 
distributed geolocation systems. On such systems, 
location estimates using TDOA techniques suffer due to 
inconsistencies in manufacturing and operating 
conditions. We have presented for low bandwidth, 
highly resource constrained real-time embedded 
systems, the related techniques of Doppler frequency 



and time shifting to compensate for the adverse effects 
of different sampling frequencies on TOA/TDOA 
estimates. While the Doppler shift correction is found 
to be more accurate, the time-shift technique is more 
lucrative from a performance perspective.  
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Figure 3 histogram of error in TDOA estimates without 
any correction applied 
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Figure 4 Histogram of errors in TDOA estimates with 
Doppler shift correction 
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