DESSERT: A Meta-Programmable Tool for Constraint-based Pruning and Exploration of Large Design Spaces

Summary of Features

DESSERT is a meta-programmable tool for navigation and pruning of large design spaces using constraints. It provides a generic structured representation of design-spaces based on the concept of alternatives and parameters. DESSERT has been used to represent design spaces in a rich variety of problem domains – product-line architectures, hardware-software co-design, automated model-compilation among others. An expressive constraint language based on a subset of OCL allows expression of compositional, resources, and performance (time, energy, size, weight, cost) constraints. Internally, DESSERT employs a powerful and highly scalable symbolic representation based on Ordered Binary Decision Diagrams, that allows for rapid, and efficient manipulation of very large design spaces with constraints. In order to solve constraints that involve complex mathematical operations, DESSERT interfaces with Mozart, a powerful environment for constraint logic programming based on the Oz constraint language. An XML based input and output interfaces accompanied with a programmatic API, allows easy and semantically correct integration of DESSERT with custom Domain-Specific Modeling Languages.

A tool-chain implementing an Automated Model Compiler, utilizing DESSERT is illustrated below:

Automated Model Compiler based on DESSERT

1. Matlab/Simulink and Component Repository: The repository contains simulation model for various automotive subsystems.
2. Design-Space Modeling Environment (GME): Design space models capture the hierarchical composition of vehicle systems and capture design alternatives for subsystems.
3. Design-Space Abstraction (DSME2DESERT and DB2DSME): DESSERT uses a domain-independent meta-model, which separates its internal algorithms from domain-specific constructs. The Design-Space Abstraction component of the AMC tool-chain provides two-way model translation between the Design-Space Models and the DESSERT's abstract design-space models.
4. De-abstraction and Assembly (DSME2SL and SL2M): This component of the AMC tool-chain elaborates the abstract high-level architectural model with Simulink model details and constructs the assembly model.

Contact point: Sandeep Neema, sandeep.neema@vanderbilt.edu, (615) 343-7472, ISIS, PO Box 1829B, Vanderbilt University, Nashville, TN 37235.

1Original research and development was supported by DARPA/IXO MOBIES program through USAFRL.