

i

Table of Contents
List of Figures .. iv

List of Tables ... vi

1.0 Job Manager and Remote Execution .. 1

1.1. Summary ... 1

1.2. Objective ... 1

1.3. Architecture/Data flow .. 2

1.4. Detailed Description ... 2

1.5. Future Enhancements .. 6

1.6. AVM Involvement .. 6

1.7. Conclusions ... 6

2.0 Project Analyzer/Dashboard ... 6

2.1 Summary ... 6

2.2 Objective ... 7

2.3 Architecture ... 8

2.4 Data flow ... 9

2.5 Detailed Description ... 9

2.6 Future Enhancements .. 12

2.7 AVM Involvement .. 12

2.8 Conclusions ... 13

3.0 Parametric Tool Exploration ... 13

3.1 Summary ... 13

3.2 Objective ... 14

3.3 Architecture ... 14

3.4 Data flow ... 14

3.5 Detailed Description ... 15

3.6 Validation .. 19

3.7 Future Enhancements .. 20

ii

3.8 User Guides ... 20

3.9 AVM Involvement and Conclusion .. 20

4.0 External Analysis Tool Integration ... 21

4.1 Objective ... 21

4.2 Architecture ... 22

4.3 Data Flow .. 23

4.4 Detailed Description ... 23

4.5 Future Enhancements .. 25

4.6 AVM Involvement .. 25

4.7 Conclusion .. 25

5.0 Performance Optimization and User Interaction Enhancement .. 25

5.1 Summary ... 25

5.2 Objective ... 26

5.3 Detailed Description ... 28

5.4 Validation .. 31

5.5 AVM Involvement .. 31

5.6 Conclusions ... 31

6.0 WebGME Development .. 32

6.1 Summary ... 32

6.2 Objective ... 33

6.3 Architecture ... 35

6.4 Data flow ... 37

6.5 Detailed Technical Description ... 38

6.5.1 AVM Component Model .. 39

6.5.2 AVM Design Model.. 42

6.5.3 AVM Test Bench Model ... 47

6.5.4 Domain Specific User Interface .. 50

6.6 Future Enhancements .. 54

6.7 AVM Involvement .. 54

iii

6.8 Conclusions ... 55

v

vi

List of Tables

Table 1: Integrated analysis tools.. 25

2

then they can use the remote execution service to perform the analysis on a remote
machine, which has all the required tools. Since FANG-1 competitors and beta/gamma
testers used the VehicleFORGE platform for collaboration, our solution was implemented
to support the VehicleFORGE authentication, job posting, deleting, monitoring, artifact
uploading, and artifact downloading APIs.

1.3. Architecture/Data flow

Figure 1: Job Manager - architecture

Users invoke the Master Interpreter on an AVM Test Bench model, an AVM Suite of
Test Benches model, or an AVM Parametric Exploration model. The Master Interpreter
prepares the temporary results directories on the local file system, opens the Job Manager
(if it is not already running), and then posts the analysis jobs by using the Job Manager
API. When the Job Manager opens, the user is prompted to choose either a local
execution pool or a remote cloud-based execution pool running on VehicleFORGE. If the
local pool is chosen then the Job Manager executes all jobs locally and writes the results
directly back to the local file system. If the Job Manager is configured for remote
execution, after successful authentication, the temporary result directories are uploaded to
VehicleFORGE and the statuses of the jobs are updated through the VehicleFORGE API.
When the remote jobs are completed the results are downloaded to the local file system
by the Job Manager (see Figure 1).

1.4. Detailed Description

The Job Manager is a Windows-based application implemented to facilitate the
allocation, execution, and monitoring of jobs such as CyPhy Test Benches, Parametric
Exploration models, and Suite of Test Benches (see Figure 2). Each job is an execution
job and has a set of properties, listed below:

- Id: Unique identifier of the job
- Title: Description of the analysis

11

Figure 7: Response Surface for Power Take Off Module Temperature w.r.t. Grade and Coefficient of Rolling

Resistance

The Project Analyzer report, prepared by Georgia Tech, contains in-depth details about
the application and its widgets, features, accessibility matrix, extensibility, and how other
applications can be built to leverage this framework.

The Project Analyzer aims to assist with data visualization across multiple and bigger
data sets, hence it is not designed and has no functionality to visualize detailed simulation
data (e.g., plots of variables over simulation time). For dynamics simulation result
visualization a web-based application was developed called SimViz. SimViz is used to
load dynamics simulation results generated by a Modelica simulation tool (e.g., Dymola,
OpenModelica). This application allows users to plot a particular simulation variable (vs.
time) for many design points, which helps comparing both design and architecture
alternatives at the lowest level. For metrics and limit checks the time series of data are
automatically saved in the results directory and referenced from the Test Bench manifest
file. Thus, the Project Analyzer can load these plots; an example of such a plot is shown
in Figure 8 below.

https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2FOpenMDAO-Plugins%2Fneural_net&sa=D&sntz=1&usg=AFQjCNFlEe-Mdv-J_14F7QN9jOVPjF1YTg

19

- Domain specific implementation for running initial Test Bench execution,
updating parameters and executing the Test Bench.

- driver.py
- OpenMDAO Assembly defining the Optimizer, Parameter Study or

Probabilistic Certificate of Correctness experiment.

Additionally, save_results.py, surrogate_model.py and SurrogateModelValidation.py are
generated for Parameter Studies. The latter two are generated when a surrogate model is
defined.

- surrogate_model.py
- OpenMDAO Assembly defining the surrogate model (for the Test Bench).

- SurrogateModelValidation.py
- Does an evaluation of the generated surrogate model.

After all files are successfully generated, the MasterInterpreter creates a new job entry in
the Job Manager and requests the execution of each job (one job is generated per point-
design). The results directory contains analysis artifacts after the automated execution of
the OpenMDAO experiment. The generated artifacts are as follows:

- Optimization
- No artifacts are generated.

- Parameter Study
- meta_model_info.p - pickle file (serialized object) containing the

surrogate model (when such is chosen in the experiment definition). It is
loaded during the surrogate model evaluation and can be used in further
experiments.

- output.csv - list of inputs and outputs for each iteration.
- model_perf.json - summary of the surrogate model evaluation.

- Probabilistic Certificate of Correctness
- parameters.csv - list of inputs and outputs for each iteration.

Since the results are stored in a unified way within the Test Bench Manifest file, the
Project Analyzer can parse the outputs of the OpenMDAO experiment and can visualize
all analysis results. Parametric Study results are visualized as 3D surface plots, surrogate
models, and an interactive prediction profiler. Probabilistic Certificate of Correctness
results are visualized as distribution functions and heat maps across the design space and
across all the different Test Benches. See the Project Analyzer section for further
visualization details.

3.6 Validation

20

The OpenMDAO environment includes several examples, for instance the optimization
problem of a paraboloid. As we developed the CyPhyPET model transformation tool, we
used some of their examples, including the optimization problem of a paraboloid, to
validate our Python source code generator. The execution results of the generated source
code were continuously compared to the results that the built-in examples provided. This
validation process ensured that the OpenMDAO components are accurately generated
from the CyPhy models.

3.7 Future Enhancements

The current version of the OpenMETA toolchain (14.12) uses the 0.8.1 version of
OpenMDAO. To enable the latest OpenMDAO drivers and features, the OpenMETA
tools should be updated to use OpenMDAO version 0.10.3.2. Additional drivers and
plugins can be installed or implemented to provide more flexibility in terms of analysis
capabilities. Support for unit conversion (between the driver and the Test Bench) and
non-linear value flow expressions (between parameters) would be a valuable
improvement.

3.8 User Guides

The end user documentation is published on VehicleFORGE and comes with the
OpenMETA toolchain installer. Once the tools are installed the documents are available
in the Public Documents directory.

3.9 AVM Involvement and Conclusion

The Parametric Exploration Tool was used extensively in the AVM program, both as a
design tool for FANG users and in the C2M2L curation project as a component model
verification tool. CyPhyPET supports and was used in both dynamics and 3D geometric
analyses, including automated parametric analysis of Lumped Parameter Dynamics (i.e.,
Modelica) models and Finite Element Analysis experiments using Creo and Abaqus. In
the FANG competition and in beta/gamma testing, CyPhyPET provided the users with
sensitivity analysis, optimization, and design of experiment capabilities, all of which
contribute to a high level of confidence in the final design selection. It provides the
ability to compose and compile a single system model, and to rapidly execute many
simulations under similar conditions with minimal user interaction. Users may select
from different drivers, and for PCC, they may choose from different analysis methods. In
the case of PCC, the estimated number of executions (based on the method and number
of inputs/outputs) will be shown on the GME console, giving users an idea of how much
time the analysis will take to complete.

23

4.3 Data Flow

Each AVM/CyPhy Test Bench model contains a workflow reference that defines a Task.
The Task in the workflow object specifies a CyPhy Analysis Interpreter, which
creates/exports some artifacts from the CyPhy model. Users are prompted to select the
analysis tool from a list; when the Default option is selected the CyPhy Analysis
Interpreter generates all default execution artifacts and an entry point for the default
analysis. If the analysis tool is specified, for example AnalysisToolExample, then the
execution files are copied into a temporary output (i.e., result) directory by the Analysis
Interpreter. The generated result package is posted to the Job Manager; and the Job
Manager executes the analysis job and saves the analysis results. See Figure 13 for an
depiction of the analysis tool interpretation flow.

Figure 13: Analysis tool data flow

4.4 Detailed Description

Many analysis tools are integrated with the OpenMETA toolchain as shown in Table 1.
The analysis tools can be implemented in any programming language as long as they
have an entry point that can be called from command line (on Windows or Linux). If the
analyses are executed remotely, then the remote slave computers must have the specific
analysis tools and all of their dependencies installed separately if they are not part of the
OpenMETA installer.

If an analysis tool is integrated into the OpenMETA toolchain, then the new tool can
leverage all OpenMETA capabilities, such as discrete design space exploration and
parallel execution of the analysis over a design space both locally and remotely (using the
Job Manager).

Analysis tool name Implemented by Used model Programming

24

tr ansformation
(Analysis Interpreter)

language

CFD Vanderbilt University CyPhy2CAD_CSharp Python

Closures Ricardo Inc. CyPhyCADAnalysis Python

Completeness PSU (iFAB) CyPhyCADAnalysis Python

Conceptual
manufacturing

PSU (iFAB) CyPhyCADAnalysis Python

Corrosion Ricardo Inc. CyPhy2CAD_CSharp Python

Detailed
manufacturing

PSU (iFAB) CyPhyCADAnalysis Python

Ergonomics Ricardo Inc. CyPhyCADAnalysis Python

Example Count
Components

Vanderbilt University CyPhyDesignExporter Python

Example Generate
Bill Of Materials

Vanderbilt University CyPhyDesignExporter Python

FAME Critical Fault
Count

PARC CyPhy2Modelica_v2 Python/Java

FAME Fault Count PARC CyPhy2Modelica_v2 Python/Java

Field of fire Ricardo Inc. CyPhyCADAnalysis Python

Field of view Ricardo Inc. CyPhyCADAnalysis Python

Freed Linkage
Assembler

Vanderbilt University CyPhy2CAD_CSharp Python/Java

HybridSal
(Formal Verification)

SRI CyPhy2Modelica_v2 Python/SAL

Ingress and egress Ricardo Inc. CyPhyCADAnalysis Python

Qualitative Reasoning
(QR) Module
(Formal Verification)

PARC CyPhy2Modelica_v2 Python/Lisp

RAMD PSU (iFAB) CyPhyCADAnalysis Python

27

became apparent as new analysis tools were integrated with OpenMETA, and could not
have been foreseen at the earliest stages of the tool development process. For instance,
structural and thermal finite element analysis (FEA) were added after the execution
infrastructure was somewhat mature. Some of these FEA Test Bench execution times
required several hours to complete for a single design point. Invariably, the growing size
of the design space coupled with the need to execute many time-consuming analyses on
each design point resulted in a bottleneck when executing the analyses. The overhead
involved in configuring complicated analyses and long execution times may be
acceptable on the scale of a few analyses per design iteration (i.e., the typical engineering
design flow); however, the OpenMETA design paradigm is was a fundamentally different
process, due largely to its utilization of full-fledged execution for a large set of potential
design candidates.

The first step was to identify the software components that were central to the bottlenecks
forming in the OpenMETA design flow. Next, we tried to quantify the performance and
generated overhead of these critical software components by pressing the limits of their
usage. This included constructing worst-case scenario models intended to cause problems
or failures and profiling the code to narrow the field of focus to the slowest and most-
used portions of the code base. These tests revealed a list of inefficient paths that could
aid developers in determining which paths deserved highest priority for performance
improvements.

Some of the inefficiency was present in 3rd-party analysis tools, and it was impossible to
address these issues, short of finding and integrating a new and more efficient tool to fill
each role. Some inefficiency was directly correlated with the number of objects (e.g.,
components and design points) in the CyPhy model, and the resulting improvements were
primarily user-interface related, such as adding progress bars to keep the user engaged,
using multi-threading to maintain some degree of functionality during execution, and
adding the option to cancel a long-running process prior to completion. We also
determined that three software components were candidates for a complete overhaul,
allowing us to re-implement the full functionality (with improvements) while including
optimization as a primary goal: the CyPhyElaboratorCS, the CyPhy2Modelica model
translator and the Master Interpreter. The Job Manager received several usability
enhancements driven by the longer execution runtimes introduced later in the program.
Additionally, the Modelica Importer and Parameter Editor features were created to
improve productivity.

There is always room for optimization and usability improvements; if time were not an
issue, it may have been appropriate to re-write other sections of the OpenMETA code
base, targeting optimization throughout the process. However, this was not the case, and
will probably never be the case in the scope of a large-scale cutting-edge research project
like AVM, where goals and deliverables are constantly in flux based on changing needs
and trial-and-error. New tools and concepts are incorporated while they continue to

34

this limitation, despite the fact that building/editing models was required during only a
fraction of the work week; this limitation on collaborative model development would
have a much stronger effect on actual design teams who are end-users of the OpenMETA
tools. Indeed, this frustration was echoed by beta and gamma testers, who strongly
expressed the need for improvements in collaborative abilities.

As mentioned above, it is impossible to address these concerns by augmenting or adding
to the existing GME or OpenMETA tools. Due in part to the recent ubiquity of internet
access and the resulting improvements in web development frameworks/libraries, we
decided to pursue a web-based approach. In work unrelated to AVM, ISIS Vanderbilt
has been developing WebGME; it is functionally similar to GME, in that it supports
custom meta-model definition for domain-specific applications, domain-specific instance
model creation and editing, along with the ability to integrate existing external modeling
techniques and analysis tools. However, it also provides solutions to the limitations listed
above. It is cross-platform, in that it requires only a network connection and a web
browser to create and edit models. Models are stored in a persistent Mongo database,
which can be hosted locally (i.e., on the same machine as the WebGME server) or
remotely. Multiple databases can be associated with a single WebGME server, and
multiple WebGME servers can utilize a single database. A single Mongo database is
capable of storing and managing terabytes of model content, which exceeds the desktop
GME limitations by several orders of magnitude.

A single WebGME instance can serve multiple clients, allowing several users to access
and edit the same project simultaneously, and WebGME tracks of all changes in the
database. In terms of model analysis, we leverage the entire OpenMETA toolchain
capabilities on the server side, since it is a mature and well-tested application.

38

6.5 Detailed Technical Description

Figure 16: ADMEditor language concepts

The CyPhy language used by OpenMETA evolved significantly throughout the AVM
program as new domains and their analysis tools were integrated into the toolchain. The
end result is a complex meta-model, spanning multiple distinct domains and supporting a
wide range of design/analysis techniques, both domain-specific (e.g. dynamics models
targeting Modelica, and geometric models) and generic, i.e., domain independent (e.g.,
DESERT, PET). Because of this complexity, resource limitations prohibited a
comprehensive re-implementation of the CyPhy meta-model in WebGME. Furthermore,
the OpenMETA toolchain is a mature and well-tested software application which
supports the desired design/analysis techniques and a large degree of automation, along
with well-defined APIs. Consequently, we chose to implement a minimal meta-model
for collaborative design editing in WebGME, targeting the AVM interchange formats
(e.g., ACM8, ADM9), and leveraging the desktop OpenMETA tools as an execution
framework. Essentially, users can upload component and system design models to
WebGME, create/edit designs (multiple users working in the same project, with version

8 AVM Component Model, an XML file representation of a discrete component, describing its domain
models and interfaces
9 AVM Design Model, an XML file representation of a system design, describing internal design containers
(e.g., Alternative or Optional), component instances, and interfaces

40

Figure 17: A Component representing a Cross Drive in CyPhyML in GME

42

Figure 19: AVM Component Model in ADMEditor in WebGME

6.5.2 AVM Design Model

Designs are composed of AVM Component Models and can contain defined Properties,
Formulas, Connectors and a hierarchy of Containers, in addition to value-flows and
connections between components and subsystems. A Container in itself can be viewed as
an AVM Design Model for the subsystem it describes. An ADM can describe either a
single design point or a whole design space (see Figure 20). A single design point only
contains Compound Containers, whereas a design space also contains Alternative
Containers. In both cases, the description of an AVM Design Model is only complete
when all of its referred ACMs exist in the same Project or Workspace, since the ADM
contains only the ACM IDs and not the full ACM descriptions. The ADM Meta-model is
shown in Figure 21.

An AVM Design Model in CyPhy can be exported as an ADM using the Design Exporter
interpreter. During export, the interpreter ensures that violations of the format are either
automatically fixed (e.g. blank ID attributes are filled) or reported to the user as errors or
warnings. Conversely, importing AVM Design Models is done using the Design
Importer. For a successful import, all referenced AVM Component Models must be
available in the project.

