Rapid Design Space Exploration of Heterogeneous
Embedded Systems using Symbolic Search and
Multi-Granular Simulation’

S. Mohanty, V. K. Prasanna
Department of EE-Systems
University of Southern California
Los Angeles, CA 90089
[smohanty, prasanna]@usc.edu

ABSTRACT

In addition to integrating different Intellectual Property cores,
heterogeneous embedded systems provide several architec-
ture knobs such as voltage, operating frequency, configu-
ration, etc. that can be varied to optimize performance.
Such flexibilities results in a large design space making sys-
tem optimization a very challenging task. Moreover, such
systems operate in mobile and other power constrained en-
vironments. Therefore, in addition to rapid exploration of a
large design space a designer has to optimize both time and
energy performance. To address these issues, we propose
a hierarchical design space exploration methodology. Our
methodology initially uses symbolic constraint satisfaction
to rapidly prune the design space. This pruning process is
followed by a system wide performance estimation to fur-
ther reduce the number of candidate designs. Finally, de-
tailed simulation using low-level simulators are performed
to select an appropriate design. Our methodology is imple-
mented by integrating two tools, DESERT and HiPerE, into
the Model based Integrated simuLAtioN (MILAN)' frame-
work. DESERT uses Ordered Binary Decision Diagrams
based symbolic search to rapidly explore a large design space
and identifies candidate designs that meet the user specified
performance constraints. HiPerE provides rapid estimation
of system wide energy and latency based on component level
simulations and also facilitates energy optimization. MI-
LAN provides the required modeling support for these tools
and also facilitates component specific multi-granular simu-
lations through seamless integration of various simulators.

*This work is supported by the DARPA Power Aware
Computing and Communication Program under contract
F33615-C-00-1633 monitored by Wright Patterson Air Force
Base.

'milan (Hindi): unification, bringing together

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

LCTES’02-SCOPES’02, June 19-21, 2002, Berlin, Germany.

Copyright 2002 ACM 1-58113-527-0/02/0006 ...$5.00.

S. Neema, J. Davis

Institute for Software Integrated Systems

Vanderbilt University
Nashville, TN 37235
[sandeep.k.neema, james.r.davis]
@vanderbilt.edu

Categories and Subject Descriptors

1.6.0 [Simulation and Modeling]: Design Space Explo-
ration - constraint based design exploration, multi-granular
simulation, rapid performance estimation

General Terms

Performance, Design

Keywords

Design Space, Performance Estimation, Binary Decision Di-
agram, Symbolic Search, Modeling, Model Integrated Com-
puting, Multi-granular Simulation

1. INTRODUCTION

Design space exploration is the process of analyzing sev-
eral “functionally equivalent” implementation alternatives
to identify an optimal solution. In the traditional design
process the designer often starts with an informal specifica-
tion and develops a reference executable in some high-level
language such as VHDL, Verilog, or C, typically referred
to as the reference model. This model is then verified for
functional correctness according to the system specification
and is used to get rough estimates of its performance re-
quirements. This initial step is followed by manual or semi-
automatic generation of several alternative designs which
are subjected to a series of time-consuming and typically ad
hoc evaluations. Finally the most suitable design is chosen
based on various performance metrics such as performance,
cost, power, reliability, and flexibility.

Embedded applications consisting of stream-based data
processing of various types (e.g., text, speech, image, mu-
sic, video) are widely used in portable devices such as wire-
less phones, personal digital assistants, laptops, etc. High
throughput and stringent real time requirements are espe-
cially important in such data-intensive tasks demanding high
processing power. On the other hand, energy efficiency is as
important as throughput for portable devices as they oper-
ate in power constrained environments (batteries, and so-
lar power, etc.). Therefore, a balanced architecture which
consumes minimum energy and provides the required per-
formance (or throughput) is the most desirable.

System-on-Chip (SoC) architectures are complex chips that

Implementations
Complex

Applications Memory

Knobs Size ‘oltage

Flexible
Architectectures

ion of
Expmﬁmn
dosign P2

Precision

|
I L E

Design Space
Reduction

e

[
[
[
|
o
! i
! I
! I
! I
! i
I System-wide ! I

: performance : Detailed !
| estimation |Simulation:

Symbaolic-search
I based exploration

Figure 1: Hierarchical Design Space Exploration

integrate all major functional elements of a complete end
product onto a single chip. Such functional elements are
realized on a SoC as intellectual property (IP) blocks. IP

blocks include general purpose processors, memories, application-

specific processors, and customized logic, among others. Xil-
inx Virtex II Pro, Chameleon Systems Reconfigurable Com-
munication Processor, and Trimedia VLIW Processors from
Trimedia Technologies are some such architectures. For ex-
ample, the Virtex II Pro embeds up to four Power PC pro-
cessors within a reconfigurable fabric. These state-of-the-art
architectures provide several novel features such as variable
operating voltage and frequency, reconfigurability, different
operational states, variable number of active memory banks,
etc. Such flexibility and a wide choice of processing elements
make SoC architectures a suitable platform for implement-
ing complex embedded systems. However, the design space,
that must be explored to arrive at a suitable design, has
grown enormously due to large number of architecture knobs
(Figure 1).

The drawback of the traditional design process becomes
obvious as it is applied to these state-of-the-art architec-
tures. For example, suppose that an application of size n
tasks is to be mapped onto an architecture with k£ processing
elements. The number of possible mappings can be com-
puted using Stirling’s number of the second kind, S(n,m),
which denotes the number of ways to partition the set of n
elements into m non-empty sets [3] where,

m—1

st~ & 5 (7)o

Let us assume that each of the k processing modules can
have on average p number of different states (settings of
architecture knobs). For example, if the StrongARM pro-
cessor can be operated at four different frequencies, it has
four different states. Further, it is possible to use “some” or
“all” of the computing element available on a heterogeneous
system for an implementation. Thus the number of possible
solutions (ways an application can be mapped) is given by:

k
Ninapping (n, k, p) = szS(n,)
=1

Applying this formula, a design with 4 tasks on an archi-
tecture with 3 processing modules and each having 4 possible
configurations can result in 500 designs. This can prove to
be a very large number even for the most efficient simulator

if one is to use system simulation to evaluate all possible
designs.

A common approach in traditional design techniques is to
use detailed simulation for design space exploration. While
several component specific simulators are available, it is not
easy to integrate these simulators to develop a detailed sys-
tem level simulator for a typical multi-component hetero-
geneous embedded system. Moreover, it is impractical to
use these simulators to evaluate a large number of design
choices (even in the order of 10s) due to prohibitively high
simulation time.

Thus the exponential growth in the design space, increas-
ing complexity of applications, and lack of rapid system
level evaluation tool demand a novel methodology to address
these issues. This methodology should be able to rapidly
analyze a large number designs and evaluate system wide
performance in terms of energy and time performance at
multiple levels of abstraction. Our approach (Figure 1) to
this end can be summarized as follows:

o (step S) apply various user specified design and per-
formance constraints to rapidly eliminate the designs
that do not meet the given constraints

e (step I) eliminate sub-optimal designs (from the re-
maining) based on system wide latency and energy es-
timates

o (if required) iterate through above two steps by updat-
ing component specific performance estimates through
more accurate simulations

e (step E) perform low-level simulations on the remain-
ing designs to identify the design that meets all the
performance constraints

In this paper, we present integration of two design tools
DESERT and HiPerE into the MILAN? framework which
in conjunction with the integrated simulators provide the
necessary environment for efficient design space exploration.

DEsign Space ExploRation Tool (DESERT) is a domain-
independent constraint-based rapid design space exploration
tool, developed in prior research efforts at ISIS, Vanderbilt
University [6]. It uses symbolic methods based on Ordered
Binary Decision Diagrams (OBDDs) for constraint satisfac-
tion [9]. The highlight of the symbolic constraint satisfaction
method is the ability to apply constraints to the entire space

http://milan.usc.edu

without enumerating point solutions, whereas an exhaustive
search by enumeration through the space generally exhibits
exponential time complexity. Symbolic analysis methods
represent the problem domain implicitly as mathematical
formulae and the operations over the domain are performed
by symbolic manipulation of mathematical formulae.

High-level Performance Estimator (HiPerE) is a rapid
high-level performance estimation tool which, given a map-
ping, schedule of execution, and component specific perfor-
mance for computation, communication, and storage ele-
ments evaluates the system wide performance values taking
into account available parallelism, idle time energy dissi-
pation, and state transition and and reconfiguration over-
heads. HiPerE also facilitates energy optimization by ex-
ploiting various low-power operating states available in the
various components of a heterogeneous architecture. Details
of HiPerE can be found in [17].

Per our prior analysis using Sterling’s number, even a
high-level performance estimator will be unable to analyze
the large number of design spaces (which can go up to the
order of 10", where n > 10) efficiently. Thus the combina-
tion of symbolic search and a high-level performance estima-
tor provides an advantage. While the symbolic search tool
rapidly applies constraints to eliminate invalid designs, the
HiPerE tool evaluates the remaining designs based on the
system wide time and energy performance. HiPerE can also
be used along with any optimization mechanism or tool to
verify the system wide effects of various optimizations.

The work described in this paper is part of the MILAN
project. MILAN is a Model based Integrated simuL AtioN
framework for embedded system design and optimization
through integration of various simulators into a unified en-
vironment [1]. The designer formally models the target
application, underlying hardware, and constraints (latency,
throughput, energy dissipation, etc.) through a graphical
interface provided by MILAN. The models are stored in
a model database. The model information is translated
through model interpreters into suitable input formats re-
quired by the integrated simulators. MILAN adopts Model
Integrated Computing (MIC) as the core design technol-
ogy [25]. The Generic Modeling Environment (GME) is a
configurable graphical tool suite supporting MIC [11]. GME
allows the designer to create domain-specific models at the
required level of abstraction [14]. A metamodel (modeling
paradigm) is a formal description of model construction se-
mantics. Once the metamodel is specified by the user, it
can be used to configure GME itself to present a modeling
environment specific to the problem domain. Every target
system is specified in MILAN as a model. Model interpreters
are the software components that translate the information
captured in models as per the requirement of the MILAN
execution environment. Both DESERT and HiPerE are do-
main independent tools. The target system is described us-
ing domain specific modeling paradigm and are translated
into inputs specific to each tool through model interpreters.

The paper is organized as follows. Next section discusses
some of the related efforts. Various MILAN models are de-
scribed in Section 3. An overview of the design space ex-
ploration and brief descriptions of the DESERT and HiPerE
tool are provided in Section 4. The MILAN framework and
its ability to integrate various simulators and tools is dis-
cussed in Section 5. We conclude in Section 6.

2. RELATED WORK

Several research efforts have addressed the issue of design
space exploration and performance analysis of the embedded
systems. The CODEF tool allows design space exploration
based on a complete specification of partitioning/scheduling
and interconnection synthesis [2]. The focus is on time and
area constraints, and primarily targets the design of dedi-
cated systems. Baghdadi et al. proposed a design space ex-
ploration framework based on a fast and accurate estimation
approach primarily targeted towards homogeneous multi-
processors with fixed architecture [3]. This effort makes use
of a novel idea of being able to perform a few cycle-accurate
simulations to extracts all timing constraints necessary for
all possible implementations. All these efforts target specific
non-programmable architectures and focus only on time op-
timization. Thus they may not be suitable for energy op-
timal application implementation using the state-of-the-art
programmable heterogeneous architectures.

Other system level design frameworks such as PMOSS and
COSMYA target uniprocessor systems [10, 12]. PMOSS tar-
gets evaluation of speed-up due to a coprocessor. COSMYA
calculates separate metrics for software, hardware, and com-
munication based on profiling and low-level simulation to
analyze performance. POLIS combines high-level and low-
level simulation but targets only a specific architecture of
one microprocessor accompanied by several custom copro-
cessors [5]. These efforts target certain class of embedded
systems such as Application Specific Integrated Circuits and
micro-controllers. The MILAN projects is an effort to com-
bine some of the techniques developed in the above men-
tioned researches into one framework targeted towards de-
sign and optimization using heterogeneous embedded sys-
tems. Energy and time are the primary consideration during
optimal application design using MILAN [4].

The Artemis project and related SPADE methodology ad-
dress the issue of evaluation of embedded system architec-
tures at multiple abstraction levels [15, 21]. However, there
are some key differences. Artemis project proposes applica-
tion modeling based on Kahn Process Network and a large
library of architecture models at different granularity, which
can be used to exploit time versus accuracy tradeoff. De-
sign space exploration in the context of ARTEMIS means to
be able to quickly evaluate a large number of designs using
coarse-level architecture models and moving towards more
accurate modeling as the number of designs reduces. While
our approach has a similar concept, we draw a clear bound-
ary between rapid analytical search and multi-level perfor-
mance estimation. During analytical search we do not eval-
uate system wide performance per se, but rather eliminate
designs based on explicit user level performance constraints.
The multi-granular simulation follows this step. Further,
due to MIC based design, a user can easily add new appli-
cation and architecture modeling paradigms, thus making
MILAN a more generic solution. MILAN also supports a
plug-n-play environment that facilitates integration of any
design tools such as DESERT or HiPerE (discussed in Sec-
tion 5).

3. MODELING THE DESIGN SPACE

MILAN uses a representation method that partitions the
system into three distinct classes of models: application
models, resource models, and constraints. Application mod-

&

Human in the loop feedback

Resource
) Candidate Smaller Set of
Design Space Designs CandidateDesigns Final Designs

g - -
2 2 Low-level
< 23 ’ ow-level
8 %_—y == DESERT f=ep - HiPerE —> Simulation ™=
g 7
(] Phase - | Phase - Il

n>>10 k=2,3 k=1
Application

Figure 2: Three phase Design Space Exploration in MILAN

els describe the task to be performed while the resource mod-
els describe the available physical hardware. Constraints
specify performance and power requirements the system must
meet. In addition, a mapping model facilitates mapping be-
tween application tasks and the processing elements within
resource models to represent the possible resource assign-
ment choices.

Application models are currently constructed using en-
hanced data flow diagrams. Some of the key extensions to
the typical data flow diagrams include:

e hierarchy to help handle system complexity,

e both asynchronous and synchronous data flow,
as well as their composition,

e strongly typed data flow,

e modeling application functionality that is to be imple-
mented in configurable hardware, and

e explicit design and implementation alternatives to
capture the design space of the application as opposed
to a point solution.

While the designer can model an application exploiting
the hierarchical nature of our data flow models, the source
code scripts are provided only at the lowest levels of the hier-
archy. This allows higher level functionalities to be described
by composing algorithms using lower level components.

Asynchronous data flow components are written to a spe-
cific run time kernel. Currently, MILAN supports a Java
real time kernel and the Active kernel [7]. Synchronous
data flow components are not written to a specific inter-
face - the model interpreters generates a static schedule for
synchronous data flow components. It is also possible to
generate a functional description of the application in high-
level languages such as C, Java, or MATLAB using model
interpreters associated with MILAN. In some cases, the sys-
tem may require a mixture of asynchronous and synchronous
data flow models. While these cases are handled, their dis-
cussion is beyond the scope of this paper.

The MILAN application model also isolated simulation.
This feature refers to the ability to simulate a single appli-
cation task on a specific hardware component to perform a
component specific simulation and update the performance
estimates used by DESERT and HiPerE. The user can pro-
vide a high level script for a data flow model that enables
simulators, during isolated simulations, to make use of the
high level script instead of the detailed composition of all
the components. These high-level scripts are associated with

the predecessors and the successors of the task that needs to
be simulated. Further details regarding isolated simulations
can be found in [16].

Another important data flow extension involves the use
of alternatives. Alternatives are used to represent different
solutions to the same problem. Depending on other sys-
tem details, one solution may be better than others. Using
alternatives allows the user to specify the design space of
their application. This design space encapsulates the differ-
ent design decisions for each application task that must be
evaluated to identify the best design.

Design constraints capture system requirements such as
timing, performance, power, cost, etc. Moreover, resource
constraints and other information also need to be specified
as part of the models. Resource constraints specify the rules
for resource composition out of hardware building blocks.
The Object Constraint Language (OCL) is used to specify
constraints in a formal manner. These constraints are speci-
fied in the application models and are used by the DESERT
tool in evaluating which system instances meet the system
specifications. Using OCL ensures we make use of standard
languages whenever possible in MILAN. This helps keep the
modeling language as natural for the end user as possible.

Resource models capture the details of the hardware com-
ponents in the target system. The modeling language is
based on a hierarchical classification of the hardware com-
ponents typically found in the embedded systems. Resource
model has two aspects, structural and parametric. The
structural aspect describes the composition of an architec-
ture through modeling entities representing the class of com-
ponents. At the highest level of abstraction they are divided
into computational, storage, and communication elements.
Several specialized classes of components are also defined
within each of these categories [1].

The parametric aspect captures programmable/variable
architecture parameters such as operating voltage, frequency,
cache structure, number of memory banks, input and out-
put ports, etc. Further, the various operation states possi-
ble for a component is also captured in the resource model.
Other information related to operation states such as state-

transition cost, idle-stage energy dissipation, expected through-

put, etc, are also part of the resource modeling paradigm.
These information are used by HiPerE during system wide
performance estimation and energy optimization.

Finally, the user must model which data flow components
can be implemented on which available resources. MILAN
provides a mapping model to associate data flow compo-
nents with the resources. A single data flow component can

be mapped to several resources to represent various choice
of implementation. That is, the selected data flow compo-
nent can be implemented on any of the resources, but only
one of the resources for an instance of the system. Addi-
tionally, performance and power estimates are also provided
in the mapping model. These attributes represent the per-
formance and power characteristics of the data flow compo-
nent executing on the mapped resource. This information is
also used by DESERT in determining which candidate de-
signs meet the system performance constraints and HiPerE
to evaluate system performance. Mapping model also deter-
mines the communication channel to be used for the data
flow between different task components. The communica-
tion channel determines the latency and energy associated
with data transfer.

The separation of application, resource, and mapping mod-
els separates the analysis of the functional behavior and per-
formance behavior of a system. The functional behavior of a
system is captured in the application models and is indepen-
dent of the underlying hardware. Therefore, only applica-
tion model is enough to verify correctness through functional
simulation using high-level languages such as MATLAB, C,
and Java. Functional simulation can also be used to iden-
tify the schedule of execution (specifically for asynchronous
data flow graphs), details of data flow between the compo-
nents, etc. that are used during the high-level estimation
using HiPerE (Section 4). Further, this separation allows
independent composition and modification of the resource
and application models. Also, once the schedule is known,
analysis of performance can be accomplished without fur-
ther evaluation of the functional behavior.

During simulations the resource model is used to drive the
simulators while the application models provide the neces-
sary high-level programs. For example, for simulations using
SimpleScalar the resource model provides the MIPS archi-
tecture details such as cache configuration, pipeline details,
etc. while the application model provides the ”C” code.

The various models in the MILAN framework capture the
information necessary to drive DESERT, HiPerE, and the
low-level simulators. In the following section we discuss how
these information are utilized to perform design space explo-
ration using MILAN.

4. DESIGN SPACE EXPLORATION (DSE)

Design space exploration is performed in three phases in
MILAN (Figure 2). The first phase is based on analytical
techniques. This phase does not use estimation or simula-
tion, rather uses mathematical formulation to rapidly eval-
uate an extremely large design space. The second phase is
based on various estimation techniques based on simulation
models at various abstraction levels. The third phase uses
low-level detailed simulations. The models of any system in
the MILAN framework capture the complete design space
in terms of alternate implementations and range of values
for architecture parameters. During modeling phase indi-
vidual designs are not identified. The tool performing the
first level DSE analyzes a design space and identifies a set
of designs for the next phase. A design is a mapping of each
application task onto a processing elements with specified
values for each architecture parameter associated with that
processing element. The second phase of DSE analyzes this
set of designs through rapid system wide performance esti-
mations. This phase does not deal with design space rather

analyzes individual designs. However, one can perform fur-
ther optimizations to any of these design based on the results
provided by the second phase. The final phase uses low-level
simulation tools to verify performance estimates and choose
a single design if a set of design candidates are identified at
the end of the second phase.

The three phase process described above facilitates a hier-
archical design space exploration and exploits the speed ver-
sus accuracy tradeoff to gradually reduce the design space
to arrive at an appropriate design. In the following, we ex-
plain how such an hierarchical DSE is realized by integrating
DESERT, HiPerE, and various simulators into the MILAN
framework.

4.1 DSE using DESERT and HiPerE

DESERT performs the Phase-I DSE and HiPerE per-
forms the Phase-1I DSE. Phase-I is design space exploration
through constraint satisfaction. This phase identifies all
of the potential designs that meet the system performance
specifications while eliminating those designs that do not
meet the constraints. Typically the constraints are tuned
(relaxed or tightened) so that at the end of Phase I the de-
signer should be left with ~ 100 designs. The number of
designs is chosen so that the rest of the process can be com-
pleted in “reasonable” time. The set of designs selected by
Phase-I are evaluated based on system wide performance es-
timation in Phase-II. The key components in this phase are
HiPerE and a set of component specific simulators. Finally
the designs chosen by Phase-II are subjected to low-level
simulations to identify the optimal design in Phase-III. This
design process is shown in Figure 2.

More Accurate /ﬁ A
Component Specific Values from
MILAN Performance Numbers Vendor Library
- Algorithmic Analysis §
Drives sS[— “oovermna 113 3
ks urve Fitting 3 8
A4 ESF—— — — — — — - &g <
g g | Probabilistic Estimation & :3:5
DESERT S —— — — — — c 5
S5 | Abstract Executable £ W
' g2 dels S c
Set of Candidate EQ 5 9
Designs o — — — — — — 8 s
9 w Cycle-Accurate < 2
Simulation 3
. High Accuracy s~ —— — —
HiPerE |~ Simulation Synthesizable RT
level simulation
i Output of Phase-II AN 4 v

Figure 3: DSE using component specific simulation
at multiple abstraction

Both DESERT and HiPerE use component specific per-
formance estimates to perform design space exploration and
system wide performance estimation respectively. Various
choices to obtain component specific performance numbers
is the key differentiator between different accuracy levels
of design space exploration or performance evaluation (Fig-
ure 3). Perhaps the fastest way to obtain performance num-
ber is back-of-the-envelope calculation based on algorithm
analysis. On the other hand the slowest but perhaps the
most accurate result can be obtained using a simulator based
on register-transfer level model of a computational element.
MILAN framework supports isolated simulation so that a
user can identify a single task and obtain a high-level code

which has source and sink script along with the script for
the task under evaluation [16]. This can be executed on a
detailed simulator to obtain performance values that can be
used as a “better” input to HiPerE. Various other techniques
which fall in between these two methods are curve fitting,
probabilistic estimation, cycle accurate simulation, etc. (see
Figure 3).

The design space exploration in both the phases exploit
the availability of simulations or estimations at different lev-
els of accuracy (Figure 3). Initially, both DESERT and
HiPerE use the rough estimates of time and energy per-
formance provided in the mapping model. Following the
selection of a set of candidate designs in the second phase
the designer can choose to run both DESERT and HiPerE
again with more accurate estimates for some mappings ob-
tained through component specific simulations. With every
iteration the accuracy level of the component specific simu-
lation is increased (or a new set of simulations are performed
for a different set of mappings) and the number of designs to
be evaluated is decreased by applying “more” strict perfor-
mance constraints. Eventually the designer terminates the
exploration if a pre-determined number of candidates are
identified for final selection using low-level simulations.

4.2 OBDD based Design Space Exploration

This section elaborates upon Phase I of design-space ex-
ploration. The phase I uses DESERT, an interactive sym-
bolic constraint satisfaction tool. DESERT treats the con-
straint satisfaction problem as a finite set manipulation prob-
lem, where the design space is a finite set and constraints
specify relations within this set. Two key problems neces-
sary for solving this finite set manipulation problem have
been addressed: (a) symbolic representation of the space,
and (b) symbolic representation of the constraints. We de-
scribe each one in brief below.

4.2.1 Symbolic Representation of the Design space

The key to exploiting the power of symbolic Boolean ma-
nipulation is to express a problem in a form where all of
the objects are represented as Boolean functions [9]. By
introducing a binary encoding of the elements in a finite
set all operations involving the set and its subsets can be
represented as Boolean functions. In order to represent the
design space symbolically, the elements of the design space
have to be encoded as binary vectors. The choice of en-
coding scheme has a strong impact on the scalability of the
symbolic manipulation algorithms. An encoding scheme has
been developed after a careful analysis of the problem do-
main, taking into consideration the hierarchical structure
of the solution space [19]. The design space captures feasi-
ble configurations for implementing the system functional-
ity, and is represented as a hierarchical data flow graph with
alternatives, as described earlier. This representation can
modularly define a very large space. The encoding scheme
assigns encoding values to each node in the hierarchy such
that each configuration receives a unique encoding value.
Additionally, the encoding scheme must also encode the re-
source assignments of components along with performance
attributes such as latency, throughput, power, etc. The per-
formance attributes take numeric values from a continuous
finite domain. However, for the purpose of encoding the do-
mains of the attributes are discretized. The total number of
binary variables required to encode the operational space is

primarily dependent upon on the domain size and the quan-
tization levels in the domain. With this encoding the design
space is symbolically composed as a Boolean function from
the symbolic Boolean representation of components. After
deciding the variable ordering this Boolean representation
is mapped to an OBDD representation in a straightforward
manner.

4.2.2 Symbolic Representation of Constraints

The DESERT tool primarily addresses three basic cat-
egories of constraints. Symbolic representation of each of
these categories of constraints is summarized below.

e Compositional constraints - Compositional constraints
express logical relations between processing blocks in
the hierarchical data flow representation. Symbolically
the constraint can be represented as a logical relation
over the OBDD representation of the processing blocks
trivially.

e Resource constraints - Resource constraints relate pro-
cessing blocks to resources. Symbolic representation of
resource constraints is accomplished by expressing the
relation over the OBDD representation of the process-
ing block and resource.

e Performance constraints - Performance constraints are
more challenging to solve symbolically than the previ-
ously specified categories of constraints. There are two
primary drivers of the complexity: 1) A system level
property has to be composed from component-level
properties in a large design space, and 2) The property
being composed is numeric, and may admit a poten-
tially very large domain. Representing a large numeric
domain symbolically as a Boolean function and per-
forming arithmetic operations symbolically is a chal-
lenging problem with serious scalability concerns. In
general different performance attributes compose dif-
ferently. An approach for expressing constraints over
additive attribute symbolically has been detailed in
[19].

In addition to these basic categories of constraints, com-
plex constraints may be expressed by combining one or more
of these constraints with first order logic connectives. The
symbolic representation of the complex constraints can be
accomplished by composing the symbolic representation of
the basic constraints.

The prominent features of the design space exploration
tool include the ability to interactively and iteratively apply
constraints. The effect of various constraints upon the de-
sign space can be visualized in this tool. The tool maintains
multiple contexts and it is possible to revert to a previous
context. Whenever constraints are applied and the design
space is pruned a new context is created. The subsequent
pruning is performed in this new context. To “undo” an
applied constraint one can simply revert back to the pre-
vious context. The depth of the context stack is user pro-
grammable.

The scalability of the OBDD based design space explo-
ration can be investigated from two different perspectives:
a) the scalability of the symbolic representation, and b) the
scalability of symbolic constraint application. Experimental

results indicated that the symbolic representation, charac-
terized with the number of nodes in the OBDD representa-
tion of the design space is approximately O(log(design-space
size)), which is highly scalable. This scalability is attributed
to the density of the design space. While many encoding
variables are required to represent the design space symboli-
cally, owing to the density of the design space most are ‘don’t
cares’, resulting in a smaller compact representation. The
direct implication of this high scalability is that the sym-
bolic application of logical and relational constraints remains
highly scalable, while the design space is under-constrained.
The application of arithmetic, performance constraints on
the other hand depends on the structure of the design space.
Experimental results indicate that the symbolic application
of arithmetic constraints scales linearly with the size of in-
dividual designs in the design space, however, it has near
exponential growth with the number of designs in the de-
sign space. The scalability of the approach can be improved
by carefully determining the order of constraint application.
In practice good heuristics can be developed for choosing the
order of constraint application. Further details of scalability
studies can be found in [20].

The design space exploration tool has a multi-pane graph-
ical front-end. The first pane is a checklist box that is filled
up with all the constraints present in the model. There is a
check box in front of every constraint in the list. The user
can check the box to select the constraints to apply. More
than one constraint can be selected. The second pane of the
user interface shows the structural space as a tree. Different
icons are used to distinguish between a compound (AND)
node, a template (OR) node, and a primitive (LEAF) node.
A box at the bottom of the pane displays the size of the
structure space composed in the tree hierarchy. The third
pane of the user interface shows the behavioral (mode) space
also as a tree. The last pane of the user interface shows the
resources in the model. The menu of the user interface has
options for applying a selected set of constraint, applying
all constraints, or reverting to a previous context. Further
details about the DESERT tool can be found in [20].

4.3 Design Space Exploration using HiPerE

The designs that satisfy various constraints during the
Phase I exploration are further subjected to evaluation based
on system wide performance estimation using HiPerE. At
this stage the designer can also exploit different low-power
states of the processing elements and the storage devices to
optimize energy dissipation. Details of HiPerE architecture
and optimization techniques based on HiPerE can be found
in [17].

4.3.1 Estimation Using HiPerE

HiPerE implements coarse-level trace-driven simulation.
Trace-driven simulation is a popular technique used in sev-
eral research efforts [8, 21]. The information required for
trace-driven simulation are a trace-file, a mapping, resource
details, and estimated performance values.

Mapping is provided as part of each design given to HiPerE.

The details of the resource are obtained from the resource
models. Estimated performance values refer to the energy
and time estimates associated with each task mapped onto
a processing element. Data access and transfer cost per unit
data for each storage and routing element are also provided
to HiPerE.

Trace file contains an ordered list of communication and
computation operations. There are several techniques to
generate a trace file. We use source code annotation at task
level to generate the trace file. By task level, we mean that
we capture only the information that a task is executed and
certain amount of data is transfered from one task to an-
other. A task is represented by a node at the lowest level of
hierarchy in an application model. We annotate the source
code (C, MATLAB, or Java) using three functions:

e crecute: outputs the name of the task into the trace
file,

e read: outputs the amount data transferred from the
source task or storage element to destination task, and

e write: outputs the amount data transferred from the
source task to destination task or storage element.

For example, let matriz_mult be a task corresponding to a
100 x 100 matrix multiplication using 32 bit integer values.
Also, let the data sources be A and B and the data sink
be C. The annotations associated with this task will output
four lines to the trace file; a) read 400 bytes from A, b) read
400 bytes from B, c) execute matriz_mult, and d) store 400
bytes to C.

The trace-file is generated based on functional simula-
tion using the annotated source files. While functional sim-
ulation is needed for application represented using asyn-
chronous data flow models, for synchronous application, eval-
uation of partial order based on the application task graph
is employed as a short-cut to compute the application sched-
ule.

State & Data
Configuration Write
Transition Cost
Cost

Component
Specific

Performance
Values

Simulation

at Different

C Levels of
ompute
Task level Abstraction
i System-wide
|F::|a|£atli|§1lgm Performance
Value

Schedule

Figure 4: HiPerE Architecture

The estimation technique in HiPerE has two major stages;
(a) component specific performance evaluation, and (b) sys-
tem wide performance evaluation. The component specific
performance evaluation is further categorized into three types
of estimations: computation, storage, and communication
cost estimation. Several techniques can be used to perform
component level estimations. We primarily use existing an-
alytical models or simulators for this process.

HiPerE evaluates the system wide performance values for
energy and time based on the component specific values. It
also takes into account the available parallelism among the

tasks, idle state energy dissipation, state transition and re-
configuration overheads, etc. during the evaluation process
(Figure 4).

PE-1[E W) SE[MN BN BN W |

PE-2 [] EEE] Re (B W)

Figure 5: Activity Report

The system wide evaluation in HiPerE is based on the
communication and computation details captured in the trace
file. Based on the mapping information and performance
estimations, HiPerE generates an activity list for each hard-
ware element. An activity list provides the activity schedule
associated with each hardware. For processing elements, it
shows the duration of execution of different tasks mapped
onto it. For storage elements, it captures the schedule and
duration of each data access and for routing elements, it
captures the data transfer details. Such activities are shown
in shaded regions in Figure 5. The white areas in this figure
indicate idle cycles. System-wide energy estimation is fairly
straight forward. It is the sum of energy consumed by each
resource elements. However, the factor that has to be added
is the idle-time energy dissipation (white areas in Figure 5).
This information is derived based on the activity report for
each processing element. Detailed description of the tech-
nique employed by HiPerE to evaluate time and energy can
be found in [17].

4.3.2 DSE Using HiPerE

Annotated Application
Representation

Phase-l1 DSE

Functional
Simulation Designs
‘ Trace-file Mappings

Madified Activity
Report for each
element
s

HiPerE

Human-in-the-loop

System Level
Estimation
v Optimization
Activity Report for
each element

Figure 6: DSE and optimization using HiPerE

Add State
Transition

Figure 6 illustrates the design space exploration and op-
timization using HiPerE. The DSE process involves estima-
tion of system wide energy and time performance estimates
and use of these values to identify a set of designs as the
candidates for the next phase. However, the designer can
also perform optimizations by exploiting the information
provided in the activity report for each element. This opti-
mization process is a human-in-the-loop process. For exam-
ple, if there is slackness in a processing element after exe-
cution of certain task and there is no data dependency, the

designer can consider execution at a lower frequency. How-
ever, such modifications alter the activity report for each
element. Therefore, once the modifications are performed,
HiPerE is executed once again to generate an updated ac-
tivity report. Finally, using a pre-determined terminating
condition (e.g. number of iterations) system wide energy
and latency estimations are provided to the designer. This
process is repeated for all the designs provided to HiPerE to
identify a set of candidate designs for low-level simulations.

4.4 An Illustrative Example

In order to illustrate our methodology we consider a sig-
nal processing application that evaluates the azimuth and
elevation of an object within an image with respect to a
reference coordinate (Figure 7). This application is part
of a large radar-based application. The complete system is
being modeled and explored using MILAN. At the time of
this writing, we have modeled a subsystem shown in Fig-
ure 7. Also, in the simplified version considered here, tim-
ing constraints have been ignored. As shown in the figure
the application consists of two parallel activities “Azimuth”
and “Elevation”. Azimuth is further divided into 6 tasks.
Elevation also has a similar structure. This example also
demonstrate the hierarchical nature of our application mod-
eling paradigm.

BandPass
| Filter-9K H Threshald

Difference LowPass

BandP: Cperator Filtar
andPass

| Fitter-11K H Threshold o

]

Signal gassarsmmiennanrn

H i i

Generator : Display .

Figure 7: Azimuth elevation application task graph

We conducted experiments with three different architec-
tures, a MIPS processor operating at a frequency of 600
MHz, a StrongARM processor operating at 206 MHz, and
a heterogeneous dual processor architecture where both the
processors are present. For this dual processor architecture
we assumed a constant energy and time cost for data transfer
between processors (independent of the source and destina-
tion task) through an interconnect.

The application and the resources were modeled using the
MILAN modeling paradigms. Each application task was
associated with two alternatives and each alternative was
mapped to one of the processors. The rough estimates of
the time and energy performance of each mapping were cap-
tured in the mapping model. We applied DESERT to iden-
tify three different designs; a) lowest in terms of time, b)
lowest in terms of total energy dissipation, and ¢) minimum
interconnect energy with an (user specified) upper bound on
computation energy.

There are 13 different tasks in the application described
above. Further, any of the tasks can be implemented on any
of the processors. Therefore, based on the analysis described
in Section 1, the total number of possible solutions is 8196.

The three designs identified by DESERT were evaluated
based on system wide performance estimates provided by

HiPerE. We also demonstrate the accuracy of HiPerE esti-
mates by comparing HiPerE results with the results from
low-level simulation of the complete application.

HiPerE was given two sets of values. The “Rough Esti-
mates” are obtained through back-of-the-envelope calcula-
tions of energy and time performance of each module after
performing sample simulations using the low-level simula-
tors. These estimates are the ones used by DESERT as
well. The values in “Component Spec Sim” columns are
obtained through isolated simulation using low-level simu-
lators for each application task. These two sets of estimates
demonstrate the multi-granular nature of our design space
exploration. “Rough Estimates” are the result of estima-
tions with lower accuracy and does not require simulation
of all the tasks. For example, we only simulated one version
of band pass filter as all the four band pass filters in the
example are of similar complexity. On the other hand, for
the values in “Component Spec Sim” column we performed
component specific simulations for all the tasks.

The energy and latency estimation estimated using HiPerE
is compared against the complete application simulation us-
ing low-level simulators. For low-level simulation we used
SimpleScalar [22] and Wattch respectively for time and en-
ergy simulation for MIPS processor and JouleTrack [24] for
simulation of the SA-1100 (Strong ARM) processor.

Table 1: Performance results using HiPerE and low-
level simulations

Complete Using Using
Performance Low-level Rough Error Component Error
Metrics Simulations Estimates % Spec Sim %

MIPS Processor @ 600 MHz

Time (MS) 412 520 26 424 2.9
Energy (uj) 17820 22408 25 18354 3
StrongARM Processor @ 206 MHz
Time (MS) 18228 20247 11 19350 6.1
Energy (uj) 6432 6807 5.8 6868 6.7
Dual Processor Architecture
Time (MS) 6586 8247 25 6741 2.3
Energy (/l.]) 10039 11253 12 10270 2.3

Table 1 shows the performance when the application is
executed on all the three architectures. As expected, the
estimation using the component specific simulation results
in higher accuracy (average error < 3.9%). On the other
hand the average error is high (> 19%) when the estimates
based on rough calculations are used.

If we compare various designs for energy, latency, and
cost based on low-level simulations the MIPS architecture
is the most attractive with respect to latency. SA-1100 is
preferable if energy is the comparison metric and the dual
processor architecture provides tradeoff between energy and
time.

5. THE MILAN DESIGN FRAMEWORK
MILAN is built using Model Integrated Computing (MIC)

technology previously developed at Vanderbilt University [25].

MIC allows designers to create domain-specific models of
systems, validate these models, and perform various com-
putational transformations on the models. These formalized

models capture various aspects of the system’s desired be-
havior. Model interpreters are used to translate these mod-
els for use in the system’s execution environment. When
changes in the overall system require new application pro-
grams, the models are updated to reflect these changes and
the applications are regenerated automatically from the mod-
els.

Generic Modeling
Environment
(GME 2000)

. _
_1 Application q Constraints [
| Models | Mapping

Architecture
Models

= |

Functional
Simulators

e

Design Space Functional

Exploration Simulators.
Tools
High-level High-level
Power Performance
Estimators Estimators
Candidate
Cycle- Designs Cycle-

Accurate
Performance
Simulators

Accurate
Power
Simulators

RT-evel RT-evel
Power Generation and Performance

Simulators Synthesis Tools Simulators
Model interpreter Model interpreter
@ feeding-back results System ® driving simulatorsftools

Figure 8: MILAN Architecture

System

The MILAN architecture is shown in Figure 8. Using
the modeled application, resources, and constraints, MI-
LAN is able to perform several activities included design
space exploration, system generation, simulator configura-
tion. MILAN currently supports different classes of sim-
ulators. Functional simulators, such as MATLAB or Sys-
temC, verify the functionality of the application. The inte-
grated high-level simulator provides a rapid, reasonably ac-
curate estimate of different performance criteria of the sys-
tem. Lower-level power and performance simulators, such
as SimpleScalar or SimplePower, are also supported. While
they can be very accurate, their slow speed may prevent
the simulation of the whole system. MILAN supports the
simulation of user selectable parts of the system.

Using MIC allows MILAN to evolve as new simulators and
representation techniques become available. Using meta-
models to represent the design language allows the represen-
tation methodology to be extended and evolved to support
new advances in system representation [14]. Model inter-
preters can be written to interface new simulators into the
existing framework. For example, DESERT and HiPerE are
integrated into the MILAN framework using model inter-
preters. This also illustrates the plug-n-play nature of the
MILAN framework. We can replace either of the tools by
any tools performing similar functionality.

6. CONCLUDING REMARKS

This paper discussed design space exploration based on
constraint satisfaction and high-level performance estima-
tion in the context of application design on heterogeneous
embedded architectures. The integration of a design space
exploration tool (DESERT) and high level system wide la-

tency and energy estimation tool (HiPerE) makes the MI-
LAN framework suitable for rapid system design. Simulator
integration using the MILAN framework facilitates multi-
granular simulation and updation of performance estimates.
We are currently extending the MILAN framework for en-
ergy efficient data path synthesis using FPGAs and time and
energy performance analysis of wireless sensor networks [4,
18, 23].

Acknowledgments

We would like to thank Akos Ledeczi (ISIS), Amol Bakshi
(USC), Vaibhav Mathur (USC), and Aditya Agrawal (ISIS)
for their valuable inputs and feedback concerning the MI-
LAN architecture and design space exploration.

7. REFERENCES

[1] A. Agrawal, A. Bakshi, J. Davis, B. Eames, A.
Ledeczi, S. Mohanty, V. Mathur, S. Neema, G.
Nordstrom, V. Prasanna, C. Raghavendra, and M.
Singh, “MILAN: A Model Based Integrated
Simulation for Design of Embedded Systems,”
Language Compilers and Tools for Embedded
Systems, 2001.

[2] M. Auguin, L. Capella, F. Cuesta, and E. Gresset,
“CODEF: A System Level Design Space Exploration
Tool,” Intl. Conf. on Acoustics, Speech, and Signal
Processing, 2001.

[3] A. Baghdadi, N-E. Zergainoh, W. Cesario, T. Roudier,
and A. Jerraya, “Design Space Exploration for
Hardware/Software Codesign of Multiprocessor
Systems,” Intl. Workshop on Rapid System
Prototyping, 2000.

[4] A. Bakshi, J. Ou, and V. K. Prasanna “Power-Aware
Embedded System Design Using the MILAN
Framework,” Workshop on Integrated Management of
Power Aware Communications, Computing, and
Networking, May, 2002.

[5] F. Balarin, M. Chiodo, P. Giusto, H. Hsieh, A,
Jurecska, L. Lavagno, C. Passerone, A.
Sangiovanni-Vincentelli, E. Sentovich, K. Suzuki, and
B. Tabbara, “Hardware-Software Codesign of
Embedded Systems: The POLIS Approach,” Kluwer
Academic Publishers, Dordrecht, The Netherlands,
1997.

[6] T. Bapty, S. Neema, J. Scott, J. Sztipanovits, S.
Asaad, “Model-Integrated Tools for the Design of
Dynamically Reconfigurable Systems,” Technical
Report, ISIS, Vanderbilt University, 2000.

[7] T. Bapty and B. Abbott “Portable Kernel for
High-Level Synthesis of Complex DSP-Systems,” Intl.
Conf. on Signal Processing Applications and
Technology, 1995.

[8] K. Bondalapati and V. K. Prasanna, “DRIVE: An
Interpretive Simulation and Visualization
Environment for Dynamically Reconfigurable
Systems,” Intl. Workshop on Field Programmable
Logic and Applications, 1999.

[9] R. Bryant, “Symbolic Manipulation with Ordered
Binary Decision Diagrams,” School of Computer
Science, Carnegie Mellon University, Technical Report
CMU-CS-92-160, July 1992.

[10] H. J. Eikerling, W. Hardt, J. Gerlach, and W.
Rosenstiel, “A Methodology for Rapid Analysis and
Optimization of Embedded Systems,” Symposium on
Engineering of Computer Based Systems, 1996.

[11] Generic Modeling Environment, http://www.isis.
vanderbilt.edu/projects/gme/default.html.

[12] J. Henkel and R. Ernest, “High-Level Estimation
Techniques for Usage in Hardware/Software
Co-Design,” Asia South Pacific Design Automation
Conference, 1998.

[13] H. Hsien, F. Balarin, L. Lavagno, and A. S.
Vincentelli, “Efficient methods for embedded system
design space exploration,” Design Automation
Conference, 2000.

[14] Ledeczi A., Maroti M., A. Bakay, G. Karsai, J.
Garrett, C. Thomason, G. Nordstrom, J. Sprinkle, and
P. Volgyesi, “The Generic Modeling Environment,”
Workshop on Intelligent Signal Processing, 2001.

[15] P. Lieverse, P. van der Wolf, E. Deprettere, and K.
Vissers, “A Methodology for Architecture Exploration
of Heterogeneous Signal Processing Systems,”
Workshop on Signal Processing Systems, 1999.

[16] V. Mathur and V. K. Prasanna, “A Hierarchical
Simulation Framework for Application Development
on System-on-Chip Architectures,” IEEE Intl.
ASIC/SOC Conference, 2001.

[17] S. Mohanty and V. K. Prasanna, “Rapid System-Level
Performance Analysis and Optimization for
Heterogeneous SoC Architectures,” submitted to 15th
IEEE Intl. ASIC/SOC Conference, 2002.

[18] S. Mohanty, S. Choi, J. Jang, and V. K. Prasanna, “A
Model-based Methodology for Application Specific
Energy Efficient Datapath Design using FPGAs,” to
appear in Application-specific Systems Architectures
and Processors, 2002.

[19] S. Neema, “Design Space Representation and
Management for Model-Based Embedded System
Synthesis,” Technical Report ISIS-01-203, February
2001.

[20] S. Neema, “System Level Synthesis of Adaptive
Computing Systems”, Ph.D. Dissertation, Vanderbilt
University, Department of Electrical and Computer
Engineering, May 2001.

[21] A. Pimentel, L. Hertzbetger, P. Lieverse, P. van der
Wolf, and E. Deprettere, “Exploring
Embedded-systems Architectures with Artemis,”
IEEE Computer, November 2001.

[22] SimpleScalar Tool Set, http://www.simplescalar.org/.

[23] M. Singh and V. K. Prasanna “System Level Energy
Tradeoffs for Collaborative Computation in Wireless
Networks,” IEEE Workshop on Integrated
Management of Power Aware Communications,
Computing, and Networking, May, 2002.

[24] A. Sinha and A. P. Chandrakasan, “JouleTrack-A
Web Based Tool For Software Energy Profiling,”
Design Automation Conference, 2001.

[25] J. Sztipanovits and G. Karsai, “Model-Integrated
Computing,” IEEE Computer, April 1997.

