VANDERBILT UNIVERSITY

7 7 7/ 7

Institute for Software Integrated Systems
Vanderbilt University
Nashville TN 37235

7

Z Z Z Z

INSTITUTE FOR SOFTWARE
INTEGRATED SYSTEMS

TECHNICAL REPORT

TR #: ISIS-01-204
Title: Analysis of Matlab® Simulink® and Stateflow® Data Model
Author: Sandeep Neema

Copyright © Vanderbilt University, 2001

Abstract

This report presents an analysis of the data models of Matlab Simulink and Stateflow. The data
model presented here captures the main classes of objects, their attributes, and their relationships
that may occur in a Simulink or Stateflow model. The classes and relationships are captured in a
UML class diagram. This study is motivated by the requirements of a framework that will be
capable of generating automatic semantic translators, given the data model of the source and
destination tools, and the translation/mapping specifications.

KEYWORDS
UML, Simulink, Stateflow, Block Diagrams.

ACKNOWLEDGMENTS
This work was sponsored by the Defense Advanced Research Projects Agency, Information
Technology Office, under contract #F30602-00-1-0580.

Introduction

MATLAB is a high-performance language for technical computing from The MathWorks®. It
integrates computation, visualization, and programming in an easy-tO-use environment where
problems and solutions are expressed in familiar mathematical notation. Simulink is a companion
program to MATLAB. It is a graphical modeling tool for modeling and simulating nonlinear
dynamic systems. It can work with linear, nonlinear, continuous-time, discrete-time,
multivariable, and multirate systems. Stateflow is another companion tool to MATLAB. Itis a
graphical design and development tool for complex control and supervisory logic problems.
Stateflow allows visual modeling and simulation of complex reactive systems based on finite
state machine theory. Stateflow models can be included in a Simulink model as a subsystem.
The complete tool suite serves as a powerful design and development environment capable of
modeling and simulating complex dynamical systems composed of heterogeneous subsystems.

Simulink, Stateflow and MATLAB together provide excellent modeling and simulation
capability; however, often there is a need to subject the models (developed in Simulink) to a more
complex, rigorous, and domain-specific analysis. Remodeling the system in the analysis tool’s
modeling language while possible requires a lot of manual effort. Additionally, maintaining
consistency between the Simulink/Stateflow models and the analysis tool’s models is error-prone
and difficult in the absence of tool support. The popularity of MATLAB, Simulink, and
Stateflow implies that significant efforts have already been invested in creating a large model-
base in Simulink/Stateflow. It is desirable that application developers take advantage of this
effort without foregoing the capabilities of their own analysis and synthesis tools. Owing to these
factors a strong need has been expressed for automated semantic translators that can interface
with and translate the Simulink/Stateflow models into the models of different analysis and
synthesis tools. This study is motivated by the requirements of a framework that will be capable
of generating automatic semantic translators, given the data model of the source and destination
tools, and the translation/mapping specifications. In this report we describe the data model of
Simulink and Stateflow as a UML class diagram. The information provided below is derived
from the Simulink documentation as well as by “reverse engineering” a large set of
Simulink/Stateflow models.

In order to avoid any ambiguity a complete model of a system in Simulink will be referred to as a
Simulink project. A Simulink project is stored in an ASCII text file in a specific format referred
to as Model File Format in the Simulink documentation. The Simulink project files are suffixed
with “.mdl” and therefore occasionally we may refer to a Simulink project file as an mdl file.
There is a clear decoupling between the Simulink and the Stateflow models. When a Simulink
projects contain Stateflow models, the Stateflow models are stored in a separate section in the
mdl file. We consider the two independently and present their data model in separate sections. It
must be remarked that the data models presented here capture only the information that is being
exposed by Simulink in the mdl file. A lot of semantic information that is sometimes required for
effective understanding of the Simulink models is hidden in the MATLAB simulation engine, or
in Simulink’s primitive library database.

Simulink Data Model

Simulink models dynamical systems as block diagram, consisting of blocks that represent an
elementary dynamic subsystem, and lines that represent connection between block inputs and
block outputs. Each block is a black box in the classical sense with a set of inputs, outputs, and a
set of states that are internal to the block. Intrinsic to the block are a set of mathematical
functions that specify the time-dependent relationships among its inputs, internal states, and
outputs. The exact nature of this mathematical relationship is not available in an mdl file,
however, a unique block type in the mdl file serves as a reference. Key properties of most
standard blocks are parameterized. The parameter values are either constants or MATLAB
expressions. The parameters for all the blocks are available as name-value pairs in the mdl file.
Simulink allows hierarchical composition of complex systems from subsystems, each of which is
composed as a block diagram.

1 n Model .

E @-Name : String‘—‘

AnnotationDefaults LineDefaults 1 BlockDefaults

f [

Annotation

Block
——@-Name : Sting@———-Name : Sting@——
1 * 1
N
| | '
BranchedLine DirectLine
1k T 1 Subsystem Reference Primitive
1
Branch 1.
N
1

Port
Masked Normal
DirectBranch NestedBranch
1 -dstPort

InputPort OutputPort
-dstPort
1
1
' |
0.*
-srcPort 1
Parameter
-Name : String
Text Boolean Enumeration Integer Double Vector Type
-Value : String -Value : Boolean -Value : String -Value : Integer -Value : Double -Value : Variant -Value : Variant

Figure 1: UML class diagram of Simulink data model

The main classes in the Simulink Data Model and their relationship are shown above in Figure 1
as a UML class diagram. In the following paragraphs we briefly describe each of the classes and
their attributes. The attributes of each of the class below are described in details in Appendix I.

Model

The Model class is the root container in a Simulink project. Every Simulink project contains a
single instance of the Model class as the root object. The attributes of the Model class capture
global project wide options that include various visual preferences, printing preferences,
information about the project, simulation/solver options, code generator options, etc.

System

The System class encapsulates a system model in Simulink. It serves as a container for the block
diagram that models a dynamical system. It contains Block objects and connections (Line
objects) between the Block objects. Some of these Block objects may be Subsystem objects. A
Subsystem can be composed as a block diagram. The composition is indirect through a System
object i.e. every Subsystem object contains a single System object. This enables hierarchical
representation of a complex system. Every Model/Subsystem object contains a single System
object. A System object may also contain Annotation objects that are used to add documentary
information/user comments to the system models. The System class has a small set of attributes
that capture various visual preferences, printing preferences, and system information.

Block Class Hierarchy

Blocks are the main functional entities in a Simulink model. A block represents an elementary or
compound dynamic subsystem. Primarily the blocks can be categorized into three categories:

1. Primitives— Primitives are basic Simulink library blocks. Simulink provides a rich set of
basic building blocks that capture a wide range of mathematical functions. The intrinsic
of these blocks are proprietary to Simulink, and are not available in an mdl file.
However, documentary information about the intrinsic of the Simulink primitive blocks
may be obtained from the Simulink documentation.

2. References — References are link blocks that reference external library blocks. Simulink
allows for reuse of modeling efforts by creation of libraries of models, and referencing
them in other models. This also provides a way of introducing third-party IP in the
models. The library models are essentially subsystems that have been created using
Simulink primitives or other libraries. A large variety of advance mathematical
processing has been made available to the Simulink users by means of custom libraries or
toolboxes. The referencing is implemented as a named association i.e. the referrer stores
the library name, and the model name as an attribute.

3. Subsystems — Subsystems are compound blocks that contain a system composed as a
block diagram. Subsystems may be further refined into Masked Subsystems or Normal
Subsystems. Masked Subsystems are similar in structure to a Normal Subsystem,
however Simulink does not expose the internal structure of a Masked Subsystem. The
configurable parameters of the blocks within the masked subsystem are exposed via a
user-defined dialog box. Thus, a Masked Subsystem appears like a primitive block to a
user.

We recognize this categorization in the UML class diagram by turning Block into an abstract base
class and sub-classing it into concrete classes that correspond to the three categories.

Simulink blocks are parameterized. Different blocks have different set of parameters. The
Parameter class captures these parameters as name-value pairs. A Block can contain an arbitrary
number of Parameter objects.

Blocks contain Ports that may be Input Ports or Output Ports. These basically define the
interface of the block. The port hierarchy is described below. Simulink primitive library contains
two primitive blocks of type InputPort and OutputPort. These should not be confused with the
Port objects. When a subsystem contains InputPort block or OutputPort block there is an implicit
association between the Ports of the Subsystem object and the InputPort/OutputPort blocks
through the port numbers.

Within a system/subsystem blocks are connected to each other through a Line object, which
represents an association between the Port objects contained in the Block objects.

The primary attributes of the Block class include name, block type, priority, and tag. Each
Simulink primitive block has a unique type that serves as an unambiguous reference to the
functionality implemented by the block. Simulink orders blocks for execution when simulating
the block diagram. This ordering is done based on the data dependency. In the absence of data
dependencies, block priorities are used for ordering. The tag attribute is used to capture user
annotations. Simulink does not interpret tags. Other attributes of the block capture various visual
preferences, graphical information, Matlab interfacing information, etc. The Block class has been
derived from BlockDefaults (described later) to factor in a set of default attributes.

Parameters

Parameter objects are basically name-value pairs. A block may contain an arbitrary number of
Parameters. We define Parameter as a separate class instead of defining these as attributes of
block class. Different Primitive blocks have different set of attributes, and while there is a finite
set of Primitive Simulink blocks, there are too many of Primitives to be able to subclass and
enumerate them all. Additionally, the enumeration minimizes the flexibility of adding new
Primitive Simulink blocks.

Parameters can be categorized according to the type of the value they store. We recognize this in
the UML class diagram by sub-classing the Parameter class into different classes, each of which
holds a different value type.

Port Hierarchy

Ports define the interfaces of blocks. The classes described heretofore Block, Model, System, are
first-class concepts in an mdl file and are stored as structured blocks of text enclosed within
braces. Ports on the other hand are stored as an attribute of the Block objects in an mdl file. The
value of this attribute is a 5-D vector, first two elements of the vector being the number of input
ports and the number of output ports respectively. When blocks have just one input port, or one
output port, or one input and output port, this attribute is omitted. This presents with some
difficulty in disambiguating the number and nature of ports just from the information available in
the mdl file. Unambiguously determination of the number and nature of ports is possible only by
referring to the documentation of the Simulink primitive block library.

In our data model we recognize ports as first-class concept. The Port class encapsulates a port.
The Port class is further specialized into InputPorts and OutputPorts. The primary attributes of
the Port class are name, and number. InputPorts and OutputPorts within a block are uniquely
numbered.

Line hierarchy

A Line object connects two Blocks in a System through their Ports. Semantically, a line
represents an association between the inputs of one subsystem to the outputs of another
subsystem. A Line object is associated with Input Ports and Output Ports. Input Ports play the
role of dstPort and Output Ports play the role of srcPort. A Line may be a BranchedLine in which
case it is associated with an Output Port only and contains one or more Branch objects. The
Branch objects may be a DirectBranch in which case it is directly associated with an Input Port,
or it may be a NestedBranch in which case it may further contain one or more Branch objects.

The Line class is derived from LineDefaults class to factor in the default attributes. The attributes
of the Line class capture name, and visual positioning information.

Annotation

An Annotation object is used to add text/comments in a Simulink model. The attributes of the
annotation object capture the added text. Additional attributes capture graphical information such
as font, font size, color, etc. We derive the Annotation class from AnnotationDefaults to factor in
the default attributes.

BlockDefaults

A BlockDefaults object groups together a set of Block attributes and retains project wide defaults
for these attributes. These attributes capture various visual preferences. The default value may
be overridden by individual Block objects. There is a single instance of BlockDefaults in a
Model object.

LineDefaults

A LineDefaults object groups together a set of Line attributes and retains project wide defaults for
these attributes. These attributes capture various visual preferences. The default value may be
overridden by individual Line objects. There is a single instance of LineDefaults in a Model
object.

AnnotationDefaults

An AnnotationDefaults object groups together a set of Annotation attributes and retains project
wide defaults for these attributes. These attributes capture various visual preferences. The
default value may be overridden by individual Annotation objects. There is a single instance of
AnnotationDefaults in a Model object.

Stateflow Data Model

Stateflow models behavior of dynamical systems based on finite state machines. The Stateflow
modeling formalism is derived from Statecharts developed by Harel [ref], and the Stateflow
The key differences from Statecharts are in the action
language. Stateflow action language provides has been extended primarily to reference Matlab
functions, and Matlab workspace variables. Additionally, a concept of condition action has been
added to the transition expression. A condition action is performed every time the condition is

models follow the same semantics.

evaluated.

The primary entities involved in the creation of a Stateflow model include States, Transitions,
Events, Data, and Junctions. Figure 2 shows these entities and their relationship in a UML class
diagram. In the following paragraphs each of the classes and their attributes are described briefly.

The attributes of each of the classes are described in detail in Appendix 1L

target

-name : String

-description : String * 1 machine -machine -instances instance
-codeCommand : String 1 N o - =
makeCommand : String <@-name : String (@ name : String
-codeFlags : String -targets -machine 1 1.* 1
-checksumOld : String -parent
1 } ar—m{;\chine
1 arts
—
* 1 .
event chart -transitions
-name : String — 1 [-name : String -parent transition
-scope : String -evRnts ’-decomposition : String‘J -transitions, |abelString : String
-trigger : String -updateMethod : String| . -Parent -dataLimits : Variant
-description : Stringl—revents -parent L gf-sampleTime : Double @1
*
‘events -parent 1
1 -parent
* -states
data r 1 o
B -junctions
-name : String - state arent] ————
. i i . i =
-scope : String |data -labelString : String j—-'uncti ‘I? ! :
-dataType : String |— -type : String Q—pareﬁt—J— * -type : String
-de;criptiop : String _data -parent -decomposition : String 1
-units : String .
-data 1
1 -parent
1
0.1 -props
props
-initialValue : Integer|
0.1 -ran 1 QO..l -array
range array
-minimum : Integer -size : Integer

-maximum : Integer|

-firstindex : Integer|

Figure 2: UML diagram of Stateflow

-instance

Machine

The Machine class is the root container in the Stateflow hierarchy. There can be at most one
Machine instance per Simulink project. A Machine object may contain a number of Chart
instances. A Machine object may also contain Event, and Dara instances, that are available
across multiple Charts. The few attributes of the Machine class capture information about the
model in terms of author, creation date etc.

Chart

The Chart class forms the root state of a hierarchical concurrent state machine. There may be
many Chart instances in a Simulink project. Each Chart is uniquely associated with a Simulink
block in the Simulink project. This association is made through the Instance class. The attributes
of Chart class capture visual information about the chart such as screen co-ordinates, various
visual preferences such as color, font, etc., and chart properties such as decomposition etc.

State

The State class represents a state as defined in the Statechart formalism. Stateflow supports
hierarchical composition of state machines i.e. states containing state machines. A state machine
can be composed within a State by containing one or more States, and Transitions. Two types of
composition semantics are possible: parallel and sequential. The decomposition attribute of the
State denotes the type of composition semantics to be employed. Parallel decomposition captures
concurrency in the system behavior. The State hierarchy is rooted in a Chart. A State may also
contain Events, and Data that are scoped locally within the State. Each state in the Stateflow can
be associated with a number of actions. These actions can be entry actions that are performed
when the state is entered, exit actions that are performed when the state is exited, during actions
that are performed when the system stays in the state, or they can be event actions that are to be
performed when the system is in the state and the event occurs. These actions are specified in an
action language defined by Stateflow. The details of the action language can be seen in [ref].
The entry, exit, and during actions are captured as attributes of the State class. The event actions
are captured as EventAction objects that are event-action pairs. Other attributes of the State
capture graphical information, and visual preferences.

Transition

The Transition class represents a transition as defined in the Statechart formalism. Every
Transition may be associated with a trigger, a condition, a number of condition actions, and a
number of actions. A trigger is a Boolean expression over Events. A condition is an expression
that evaluates to true or false. Condition actions are actions expressed in action language that
must be performed when the condition is evaluated. Other actions are performed when the
transition is enabled and taken. Attributes of the Transition class capture the trigger, the guard,
condition actions, and actions. Additional attributes capture graphical information.

Junction

The Junction class represents a junction as defined in the Statechart formalism. Two types of
junctions are possible: 1) Connective junctions: these are used to create multiple transitions with
different conditions and actions between a pair of states; and 2) History junctions: these are used
to specify the destination sub-state of a transition based on historical information in a hierarchical
state machine. History junction keeps track of most recently active state. The attributes of the
Junction class capture the type of the junction, and graphical information.

Event

The Event class represents an event as defined in the Statechart formalism. Events are scoped
and a triggering mechanism is defined. Thus Events could be rising edge, falling edge, or either
edge trigger events. The attributes of the Event class capture the scope, and triggering
mechanism.

Data

The Data class represents data as defined in the Statechart formalism. In the Simulink Stateflow
interaction semantics data as well as events are used to exchange information between Simulink
blocks and Stateflow blocks. The attributes of the class capture the scope, the data type, and the
units.

Instance
The Instance class captures the link to the Simulink block that contains the chart.

Target

The Target class represents a target for the Stateflow models. The target may be a simulation
target (MATLAB S-Function), or a synthesis target that generates code. Attributes are specific to
the particular target and capture the various options and preferences.

Appendix |: Atiributes of the Classes in Simulink Data
Model

In this appendix we tabulate all the attributes of the different classes in the Simulink Data Model.
The attributes are tabulated with their names, data types, a short description, and a categorization.
The attributes grouped into the following categories:

Core —These attributes are the core attributes of the class and occasionally have semantic
implications. Examples of core attributes include name, block type, state decomposition,
etc.

Information — These attributes store some form of documentary information such as
description, author name, version, date of creation/modification, etc.

Visual — These attributes capture graphical information about the object such as
window/screen co-ordinates.

Visual preferences — These attributes capture various graphical options or preferences
such as fonts, colors, show tips, show names, show labels, etc.

Printing preferences — These attributes capture various options that assume relevance
when the models are printed. Attributes such as paper size, orientation (portrait or
landscape), printing margins, etc. fall in this category.

Simulation — These attribute capture various options that are used by Simulink when
simulating a model.

Diagnostics — These attributes capture options that are used when checking a model for
well-formedness.

Matlab — These attributes are Matlab specific. They refer to Matlab Workspace variables
and Matlab functions that are to be invoked as callback functions when some model is
opened or closed.

Code generator preferences — These attributes capture options that used by the Real-Time
Workshop ® code generator when generating code from Simulink models.

Model Class Attributes

ATTRIBUTE DESCRIPTION | VALUE CATEGORY | ACCESSIBLE
Name Model name Quoted String Core Yes
Version Simulink Literal Information | No
version used to
create/modify
the model
SimParamPage Simulation Quoted Enum Visual No
Parameters {Solver | Workspacel/O | Preference

dialog box page || Diagnostics }
to display (page

last displayed)
SampleTimeColors Sample Time | Boolean {on | off} Visual No
Colors menu Preference

option

InvariantConstants Invariant Boolean {on | off} Matlab No
constant setting

WideVectorLines Wide Vector | Boolean {on | off} Visual No
Lines menu Preference
option

ShowLineWidths Show Line | Boolean {on | off} Visual No
Widths menu Preference
option

SimulationMode Quoted Enum {normal | | Simulation | No

...}

BlockDataTips Show tips on |Boolean {on | off} Visual No
block data Preference

BlockParametersDataTip Show tips on | Boolean {on | off} Visual No
block Preference
parameters

BlockAttributesDataTip Show tips on |Boolean {on | off} Visual No
block attributes Preference

BlockPortWidthsDataTip Show tips on |Boolean {on | off} Visual No
block port Preference
widths

BlockDescriptionStringDataTip | Show tips on | Boolean {on | off} Visual No
block Preference
description
string

BlockMaskParametersDataTip | Show tips on | Boolean {on | off} Visual No
block mask Preference
parameter
dialog

ToolBar Show tool bar | Boolean {on | off} Visual No

Preference
StatusBar Show status bar | Boolean {on | off} Visual No
Preference

BrowserShowLibraryLinks Show library | Boolean {on | off} Visual No
links on a Preference
reference block

BrowserLookUnderMasks Show internals | Boolean {on | off} Visual No
of masked Preference
blocks

PaperOrientation Printing paper | Quoted Enum {portrait | | Printing No
orientation landscape} Preference

PaperPosition Position of | Vector [left bottom Printing No
diagram on | width height] Preference
paper
PaperPositionMode Paper position | Quoted Enum {auto | Printing No
mode manual } Preference
PaperSize Size of | Vector [width height] Printing No
Paper Type in Preference
PaperUnits
PaperType Printing paper | Quoted Enum {usletter | | Printing No
type uslegal 1a0 | al a2 a3 | | Preference
a4 1a51b01bl 1b21b3 1|
b4 1 b5 | arch-A | arch-B
| arch-C | arch-D | arch-E
IAIBICIDIEI
tabloid}
PaperUnits Printing paper | Quoted Enum Printing No
size units {normalized | inches | Preference
centimeters | points}
StartTime Simulation start | Quoted Real Simulation | No
time
StopTime Simulation stop | Quoted Real Simulation | No
time
Solver The solver to be | Quoted Enum {ode45| |Simulation |No
used ode23 | odel13 | odel5s
| ode23s | ode5 | ode4 |
ode3 | ode2 | odel |
FixedStepDiscrete |
VariableStepDiscrete }
RelTol Relative error | Quoted Real Simulation | No
tolerance
AbsTol Absolute error | Quoted Real Simulation | No
tolerance
Refine Refine factor Quoted Integer Simulation | No
MaxStep Maximum step | Quoted Integer | Quoted | Simulation | No
size Enum {auto}
InitialStep Initial step size |Quoted Integer | Quoted | Simulation | No
Enum{auto}
FixedStep Fixed step size | Quoted Integer | Quoted | Simulation | No

Enum{auto}

MaxOrder Maximum Quoted Integer {11213 |[Simulation |No
order for | 1415}
0del5s
OutputOption Output option | Quoted Enum Simulation | No
{ AdditionalOutputTimes
|
RefineOutputTimes |
SpecifiedOutputTimes}
OutputTimes Values for | Vector Simulation | No
chosen
OutputOption
L oadExternalInput Load input | Boolean {on | off} Matlab No
from workspace
Externallnput Time and input | Quoted Scalar | Quoted | Matlab No
variable names | Vector [t, u]
SaveTime Save simulation | Boolean {on | off} Matlab No
time
TimeSaveName Simulation time | Quoted String Matlab No
name
SaveState Save states Boolean {on | off} Matlab No
StateSaveName State output | Quoted String Matlab No
name
SaveOutput Save simulation | Boolean {on | off} Matlab No
output
OutputSaveName Simulation Quoted String Matlab No
output name
LoadlInitialState Load initial | Boolean {on | off} Matlab No
state
InitialState Initial state | Quoted String | Vector | Matlab No
name or values
SaveFinalState Save final state | Boolean {on | off} Matlab No
FinalStateName Final state | Quoted String Matlab No
name
LimitMaxRows Limit output Boolean {on | off} Matlab No
MaxRows Maximum Quoted Integer Matlab No
number of

output rows to
save

Decimation Decimation Quoted Integer Matlab No
factor

Algebraicl.oopMsg Algebraic loop [Quoted Enum {none | Diagnostics | No
diagnostic warning | error}

MinStepSizeMsg Minimum step | Quoted Enum {warning | Diagnostics | No
size diagnostic || error}

UnconnectedInputMsg Unconnected Quoted Enum {none | Diagnostics | No
input ports | warning | error}
diagnostic

UnconnectedOutputMsg Unconnected Quoted Enum {none | Diagnostics | No
output ports | warning | error}
diagnostic

UnconnectedLineMsg Unconnected Quoted Enum {none | Diagnostics | No
lines diagnostic | warning | error}

InheritedinSrcMsg Quoted Enum {none | Diagnostics | No

Warning | error}

IntegerOverflowMsg Integer Over | Quoted Enum {none | Diagnostics | No
flow warning | error}

UnnecessaryDatatypeConvMsg | Unnecessary Quoted Enum {none | Diagnostics | No
Conversion warning | error}

Int32ToFloatConvM sg Int32 to float|Quoted Enum {none | Diagnostics | No
conversion warning | error}

Signal LabelMismatchM sg Signal label | Quoted Enum {none | Diagnostics | No
mismatch warning | error}

ConsistencyChecking Consistency Boolean {on | off} Diagnostics | No
checking

ZeroCross Intrinsic ~ zero | Boolean {on | off} Simulation | No
crossing
detection

BooleanDataType Enable Boolean | Boolean {on | off} Simulation | No
mode

OptimizeBlocklOStorage Boolean {on | off} Code No

Generation

BufferReuse Enable reuse of | Boolean {on | off} Code No
block /O Generation
buffers

RTWSystemTargetFile Target file Quoted String Code No

Generation

RTWInlineParameters Boolean {on | off} Code No
Generation
RTWRetanRTWFile Boolean {on | off} Code No
Generation
RTWTemplateM akefile Quoted String Code No
Generation
RTWMakeCommand Quoted String Code No
Generation
RTWGenerateCodeOnly Boolean {on | off} Code No
Generation
ExtModeMexFile Quoted String Simulation | No
ExtM odeBatchMode Boolean {on | off} Simulation | No
ExtModeTrigType Quoted Enum {manual | | Simulation | No
..}
ExtModeTrigMode Quoted Enum {oneshot | | Simulation | No
..}
ExtModeTrigPort Quoted Integer Simulation | No
ExtM odeTrigElement Quoted Enum {any | ...} [Smulation | No
ExtModeTrigDuration Integer Simulation | No
ExtModeTrigHol dOff Integer Simulation | No
ExtModeTrigDelay Integer Simulation | No
ExtModeTrigDirection Quoted Enum { rising | | Simulation | No
falling | ... }
ExtModeTrigLevel Integer Simulation | No
ExtModeArchiveMode Quoted Enum { off | ... | Simulation |No
}
ExtM odeA utolncOneShot Boolean {on | off} Simulation | No
ExtModelncDirWhenArm Boolean {on | off} Simulation | No
ExtM odeAddSuffixToVar Boolean {on | off} Simulation | No
ExtModeWriteAllDataToWs Boolean {on | off} Simulation | No
ExtM odeArmwWhenConnect Boolean {on | off} Simulation | No
Created Creation date | Quoted String Information | No
UpdateHistory Update history | Quoted String Information | No
ModifiedByFormat Quoted String Information | No

LastModifiedBy Quoted String Information | No
ModifiedDateFormat Quoted String Information | No
LastModifiedDate Quoted String Information | No
ModelV ersionFormat Quoted String Information | No
ConfigurationM anager Quoted String Information | No
CloseFcn Close callback | Quoted String Matlab No
Prel.oadFcn Pre-load Quoted String Matlab No
callback
PostLoadFcn Post-load Quoted String Matlab No
callback
SaveFcn Save callback | Quoted String Matlab No
StartFen Start simulation | Quoted String Matlab No
callback
StopFcn Stop simulation | Quoted String Matlab No
callback
System Class Attributes
ATTRIBUTE DESCRIPTION VALUE CATEGORY | ACCESSIBLE
Name Name of the system Quoted Core Yes
String
Location Screen position Vector [left, |Visua No
bottom,
width,
height]
Open Whether Boolean {on | | Visual No
system/subsystem is | Off} Preference
open and visible
ModelBrowserVisibility | Is the model browser | Boolean {on || Visual No
visible off} Preference
M odel BrowserWidth Width of the model | Integer Visual No
browser Preference
ScreenColor Color of the system |Quoted Visual No
screen Enum Preference
{automatic |
)

PaperOrientation Orientation when | Quoted Printing No
model is printed Enum Preference
{portrait |
landscape}
PaperType Paper Type Quoted Printing No
Enum Preference
PaperUnits Paper Units Quoted Printing No
Enum Preference
ZoomFactor Degree of zoom Quoted Visual No
Integer Preference
AutoZoom Should zoom | Boolean {on | | Visual No
automatically off} Preference
ReportName Name of report file Quoted Matlab No
String
Block Class Attribute
ATTRIBUTE DESCRIPTION VALUES CATEGORY ACCESSIBLE
Name Name of the block | Quoted String Core Yes
BlockType Type of the block | Unquoted Literal | Core Yes
Description User-specifiable Quoted String Information Yes
description
Priority Specifies the | Quoted Integer Core Yes
block’s sequencing
during execution
relative to other
blocks in the same
priority window
Tag User-defined string | Quoted String Information Yes
AttributesFormat | Specifies Quoted String Visual No
String parameters to be Preference
displayed below
block in a block
diagram
Orientation Where block faces | Quoted Enum | Visual No
{right | left | down | Preference
lup}
ForegroundColor | Block name, icon, | Quoted Enum | Visual No
ontline antnnt | [hlack | white | red | Preference

signals, and signal
label

| green | blue |
cyan | magenta |

yellow | gray |
lightBlue | orange
| darkGreen }
BackgroundColor | Block icon | Quoted Enum | Visual No
background {black | white | red | Preference
| green | blue |
cyan | magenta |
yellow | gray |
lightBlue | orange
| darkGreen }
DropShadow Display drop | Boolean {off | on} | Visual No
shadow Preference
NamePlacement Position of block | Quoted Enum | Visual No
name {normal | | Preference
aternate}
FontName Font Quoted Enum | Visual No
{Helvetical ...} Preference
FontSize Font size Unquoted Integer | Visual No
Preference
FontWeight Font weight Quoted Enum | Visual No
{light | normal || Preference
demi | bold}
FontAngle Font angle Quoted Enum | Visual No
{normal | italic ||Preference
oblique}
Position Position of block in | Unquoted Vector | Visua Yes
model window [left top right
bottom]
ShowName Display block name | Boolean {on | off} | Visual No
Preference
ShowPortLabels | Display port labels | Boolean {on | off} | Visual No
Preference
CloseFcn Close callback Quoted String Matlab No
{MATLAB
expression}
CopyFcn Copy callback Quoted String Matlab No
{MATLAB
expression}
DeleteFcn Delete callback Onated Strino Matlab No

{MATLAB
expression}

InitFcn

Initialization
callback

Quoted String
{MATLAB
expression}

Matlab

No

LoadFcn

Load callback

Quoted String
{MATLAB
expression}

Matlab

No

ModelCloseFcn

Model close
callback

Quoted String
{MATLAB
expression}

Matlab

No

NameChangeFcn

Block name change
callback

Quoted String
{MATLAB
expression}

Matlab

No

OpenFcn

Open callback

Quoted String
{MATLAB
expression}

Matlab

No

ParentCloseFcn

Parent subsystem
close callback

Quoted String
{MATLAB
expression}

Matlab

No

PreSaveFcn

Pre-save callback

Quoted String
{MATLAB
expression}

Matlab

No

PostSaveFcn

Post-save callback

Quoted String
{MATLAB
expression}

Matlab

No

StartFcn

Start simulation
callback

Quoted String
{MATLAB
expression}

Matlab

No

StopFcn

Termination of
simulation callback

Quoted String
{MATLAB
expression}

Matlab

No

UndoDeleteFcn

Undo block delete
callback

Quoted String
{MATLAB
expression}

Matlab

No

LinkStatus

Link status of block
for library blocks

Quoted Enum

{none | resolved |

unresolved |
implicit}

Matlab

No

Port Class Attributes

ATTRIBUTE DESCRIPTION VALUE CATEGORY |ACCESSIBLE
PortNumber A block-wide unique | Integer Core Yes
number to identify the
port
Name The label of the port Quoted String | Core Yes
TestPoint Whether this port is a|Boolean {on | | Simulation No
test point off}
RTWStorageClass | When the Simulink | Quoted Enum | Code No
model is synthesized | {Auto|...} Generation
using the Real-Time
Workshop® toolset the
storage class of the port
Line Class Attributes
ATTRIBUTE DESCRIPTION VALUE CATEGORY |ACCESSIBLE
Name A name associated with a | Quoted String | Core Yes
line
Labels The location where the | Unquoted Visua No
label should appear Vector
Points Intersection points Unquoted Visua Yes
Vector
Annotation Class Attributes
ATTRIBUTE DESCRIPTION VALUE CATEGORY |ACCESSIBLE
Position Screen position of the | Unquoted Visua Yes
annotation Vector
Text The annotation text Quoted String | Core Yes
BlockDefaults Class Attributes
ATTRIBUTE DESCRIPTION VALUE CATEGORY |ACCESSIBLE
Orientation The orientation of the|Quoted Enum | Visual No
block {left | right} Preference
ForegroundColor | Foreground Color Quoted Enum | Visual No
Preference

{black | white |
v }

BackgroundColor | Background Color Quoted Enum | Visual No
{black | white | | Preference
.}
DropShadow Drop shadow Boolean {on| | Visual No
off} Preference
NamePlacement Location of the name of | Quoted Enum | Visual No
block {normal | ...} |Preference
FontName Font to be used Quoted Enum | Visual No
{Helvetica | Preference
...}
FontSize Size of the font Integer Visual No
Preference
FontWeight Font weight Quoted Enum | Visual No
{normal | ...} |Preference
FontAngle Font angle Quoted Enum | Visual No
{normal | ...} |Preference
ShowName Show the name of the|Boolean {on| | Visual No
block on screen off} Preference
LineDefaults Class Attributes
ATTRIBUTE DESCRIPTION VALUE CATEGORY |[ACCESSIBLE
FontName Font to be used Quoted Enum | Visual No
{Helvetica | Preference
o}
FontSize Size of the font Integer Visual No
Preference
FontWeight Font weight Quoted Enum | Visual No
{normal | ...} |Preference
FontAngle Font angle Quoted Enum | Visual No
{normal | ...} |Preference
AnnotationDefaults Class Attributes
ATTRIBUTE DESCRIPTION VALUE CATEGORY | ACCESSIBLE
Horizontal Alignment | The horizontal | Quoted Enum | Visual No
alignment of text in an | {left | center | | Preference

annotation

right |
justified}

Vertical Alignment The vertical alignment | Quoted Enum | Visual No
of text in an annotation | {top | middle | | Preference
bottom}
ForegroundCol or Foreground Color Quoted Enum | Visual No
{black | white | | Preference
)
BackgroundColor Background Color Quoted Enum | Visual No
{black | white | | Preference
o}
DropShadow Drop shadow Boolean {on| | Visual No
off} Preference
FontName Font to be used Quoted Enum | Visual No
{Helvetica | Preference
o}
FontSize Size of the font Integer Visual No
Preference
FontWeight Font weight Quoted Enum | Visual No
{normal | ...} |Preference
FontAngle Font angle Quoted Enum | Visual No
{normal | ...} |Preference

Appendix Il: Attributes of the Classes in Stateflow Data

Model

Machine Class Attributes

ATTRIBUTE DESCRIPTION VALUE CATEGORY |ACCESSIBLE
name The name of the machine | Quoted String | Core Yes
creator Author Quoted String | Information No
created Model creation date and [Quoted String | Information No
time
version Version of the model Quoted Literal | Information No
document Quoted String | Information No
isLibrary Whether the model is a|Boolean {on ||Matlab No
library model off}
sfVersion Version of the Stateflow | Unquoted Information No
tools with which the | Literal
Stateflow diagram was
generated.
Chart Class Attributes
ATTRIBUTE DESCRIPTION |VALUE CATEGORY | ACCESSIBLE
name Name of the|Quoted String Core Yes
chart
windowPosition Window co- | Unquoted Vector Visua No
ordinates
viewLimits A graphical | Unquoted Vector Visual No
attribute
zoomFactor Zoom Factor Unquoted Double Visual No
Preference
screen Screen co- | Unquoted Vector Visua No
ordinates of the
chart object
visible Whether the | Boolean {110} Visual No
chart is open and Preference
visible

decomposition The Unquoted Enum | Core Yes
decomposition {SET_CHART,
of the state chart. | CLUSTER_CHART,
.}
chartFileNumber Unquoted Integer Matlab No
transitionColor A 3-d color | Unquoted Vector Visual No
vector [r g b] Preference
transitionLableColor |A 3-d color | Unquoted Vector Visual No
vector [r g b] Preference
selectionCol or A 3-d color | Unquoted Vector Visual No
vector [r g b] Preference
disablelmplicitCasting Boolean Matlab No
stateColor A 3-d color | Unquoted Vector Visual No
vector [r g b] Preference
statel abel Color A 3-d color | Unquoted Vector Visual No
vector [r g b] Preference
junctionColor A 3-d color | Unquoted Vector Visual No
vector [r g b] Preference
chartColor A 3-d color | Unquoted Vector Visual No
vector [r g b] Preference
description Chart description | Quoted String/s Information | No
State Class Attributes
ATTRIBUTE DESCRIPTION VALUE CATEGORY | ACCESSIBLE
name The name of the state | Quoted String Core Yes
entryAction The entry action | Quoted String Core Yes
associated with the
State
exitAction The exit action [Quoted String Core Yes
associated with the
state
duringAction The during action | Quoted String Core Yes
associated with the
State
position Window position Unquoted Vector Visual Yes

type The ‘“decomposition” | Unquoted Enum | Core Yes
of the state {OR_STATE
AND_STATE}
decomposition Unquoted Enum { | Matlab Yes
CLUSTER_STATE,
.}
arrowSize Unquoted Double Visual No
Preference
fontSize Unquoted Double Visual No
Preference
Junction Class Attributes
ATTRIBUTE | DESCRIPTION |VALUE CATEGORY | ACCESSIBLE
position Window co- | Unquoted Vector Visud Yes
ordinates
type The type of the | Unquoted Enum Core Yes
junction { CONNECTIVE_JUNCTION
| HISTORY_JUNCTION }
arrowSize Unquoted Double Visual No
Preference
Transition Class Attributes
ATTRIBUTE DESCRIPTION VALUE CATEGORY | ACCESSIBLE
trigger The trigger associated | Quoted String | Core ?7?
with a transition
condition The condition associated | Quoted String | Core 7?
with a transition
conditionAction | The condition actions | Quoted String | Core 7?
associated with a
transition
action The actions associated | Quoted String | Core Yeds
with a transition
fontSize Font size Unquoted Visual No
Double Preference
arrowSize Unquoted Visud No
Double Preference

label Position The label graphical co-|Unquoted Visua No
ordinates Vector
midpoint Mid point of the line|Unquoted Visua No
denoting transition Vector
dataLimits Unquoted Matlab Yes
Vector
Event Class Attributes
ATTRIBUTE |DESCRIPTION |VALUE CATEGORY | ACCESSIBLE
name The name of the | Quoted String Core Yes
event
scope Scope of the event | Unquoted Enum { Core Yes
LOCAL_EVENT |
INPUT_EVENT |
OUTPUT_EVENT |
EXPORTED_EVENT? |
IMPORTED_EVENT }
trigger The triggering | Unquoted Enum { Core Yes
mechanism of the | EITHER EDGE_EVENT |
event RISING_EDGE_EVENT |
FALLING_EDGE_EVENT
}
description Some description | Quoted String Information |Yes
about the event
Data Class Attributes
ATTRIBUTE |DESCRIPTION VALUE CATEGORY | ACCESSIBLE
name The name of the|Quoted String Core Yes
data object
scope The scope of the|Unquoted Enum { Core Yes
data object LOCAL_DATA |
INPUT_DATA |
OUTPUT_DATA |
TEMPORARY_DATA
I
WORKSPACE_DATA
| CONSTANT_DATA |
o}
dataType The data type Quoted String Core Yes

units The data units Quoted String Core Yes
description Some description Quoted String Information | Yes
Instance Class Attributes
ATTRIBUTE DESCRIPTION VALUE CATEGORY |ACCESSIBLE
name The Simulink name of | Quoted String | Core Yes
the chart
Target Class Attributes
ATTRIBUTE DESCRIPTION VALUE CATEGORY | ACCESSIBLE
name Name of the target Quoted String | Core Yes
description Description about the target | Quoted String | Information | Yes
codeCommand | Code Quoted String | Code Yes
generation/compilation Generation
command
makeCommand | Code Quoted String | Code Yes
generation/compilation Generation
command
codeFlags Code Quoted String | Code Yes
generation/compilation Generation
flags
checksumOld Quoted String | Matlab Yes

