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Abstract

The TrueTime toolbox simulates real-time control sys-
tems, including platform-specific details like process
scheduling, task execution and network communications.
Analysis using these models provides insight into platform-
induced timing effects, such as jitter and delay. For safety-
critical applications, the Time-Triggered Architecture (TTA)
has been shown to provide the necessary services to create
robust, fault-tolerant control systems. Communication in-
duced timing effects still need to be simulated and analyzed
even for TTA-compliant models. The process of adapting
time-invariant control system models, through the inclusion
of platform specifics, into TTA-based TrueTime models re-
quires significant manual effort and detailed knowledge of
the desired platform’s execution semantics. In this paper,
we present an extension of the Embedded Systems Model-
ing Language (ESMoL) tool chain that automatically syn-
thesizes TTA-based TrueTime models. In our tools, time-
invariant Simulink models are imported into the ESMoL
modeling environment where they are annotated with de-
tails of the desired deployment platforms. A constraint-
based offline scheduler then generates the static TTA execu-
tion schedules. Finally, we synthesize new TrueTime models
that encapsulate all of the TTA execution semantics. Using
this approach it is possible to rapidly prototype, evaluate,
and modify controller designs and their hardware platforms
to better understand deployment induced performance and
timing effects.

1. Introduction

Designs for embedded control systems typically start
with an “idealized”, or time-invariant, controller model.
This model usually does not take into account the real-world
hardware environment onto which the controller will be de-

ployed. Deployment of the controller onto actual hardware
often introduces temporal effects which may degrade per-
formance or alter the expected behavior of the controller.
Temporal effects can stem from constraints imposed on the
controller by the hardware, such as from limited CPU ca-
pacity or inadequate communications bandwidth, or from
the specific scheduling algorithm used.

Current state-of-the-art model-based controller develop-
ment environments, such as Simulink/Stateflow [19], do
not directly support the concept of a deployment platform
and do not natively simulate the impact of deployment on
controller performance. Third-party extensions to Simulink
have been developed that allow these impacts to be sim-
ulated and analyzed. The TrueTime toolbox [8, 11] is a
suite of Simulink blocks designed expressly for this pur-
pose. TrueTime supports modeling, simulation, and analy-
sis of distributed real-time control systems including real-
time task scheduling and execution, various types of com-
munications networks, and “analog” inputs and outputs for
interaction with the continuous-time plant model. While
gaining insight into platform effects is crucial, TrueTime
imposes an additional burden on systems engineers. It re-
quires significant effort and a deep understanding of both
TrueTime and the desired deployment platform in order to
adapt time-invariant models into TrueTime models.

TrueTime’s flexibility allows for it to model a wide range
of real-time platforms, from simple systems through com-
plex hard real-time architectures. The Time-Triggered Ar-
chitecture (TTA) [15, 16, 17] has been shown to provide
the necessary services to create robust, fault-tolerant con-
trol system communications. In our interpretation of TTA-
based control systems, some of the key architectural re-
quirements are statically scheduled task execution, tight
time synchronization between nodes, strongly controlled
time-based bus access, and robust support for identifying
and handling fault conditions. TTA provides a fully syn-
chronous distributed environment, at the possible cost of
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additional time delays between distributed functions. The
TrueTime toolbox’s primitives have all of the necessary fea-
tures required to support these concepts, but it does not di-
rectly implement a TTA-based platform.

In this paper, we discuss an extension to the Embedded
Systems Modeling Language (ESMoL) [21, 22, 25] tool
chain that synthesizes a TTA-based TrueTime model from
a system description captured in the ESMoL language. The
ESMoL tool suite is a set of modeling tools for the defini-
tion, analysis and synthesis of distributed safety-critical em-
bedded systems. Its underlying execution semantics closely
follow those of TTA platforms. Designers import software
components defined in other tools, such as Simulink or BIP
[2, 4], into an ESMoL model. Details about the hardware
platform are joined with the component definitions into a
full description of the embedded system. From such a sys-
tem description, the new ESMoL extension can automati-
cally synthesize a TTA-based TrueTime model.

Throughout this paper we use an example to illustrate the
steps involved in synthesizing a TrueTime model. Our ex-
ample system is an actuator limited quad-integrator model
whose corresponding control architecture approximates that
of more-advanced architectures used to control quad-rotor
aircraft [18] as shown in Fig. 1.

Figure 1. High-level quad-integrator con-
troller model

The flight controller is divided into three primary sub-
systems: DataHander, InnerLoop and OuterLoop. The
DataHandler block receives the GPS and IMU sensor data
and performs some simple unit conversions. The Inner-
Loop controls the first two integrators in the quad-integrator
model which relate a saturated limited control-torque|τ | ≤
τmax to the corresponding angular-velocityω(t) = θ̇(t)
and angular-positionθ of a rotational body with inertiaJ
such thatJω̇(t) = τ(t) holds. In order to control angular-
position a passive discrete-time proportional-derivativecon-
troller is implemented periodically with a zero-order-hold
(ZOH) at timet = kTs (in whichTs is the sample-rate and

k is an integer) in the InnerLoop block such thatτ(t) =
kp(θd(k)− θ(k))− kdω(k), t ∈ [kTs, (k + 1)Ts). The re-
sulting angular position is equal to the control force applied
to a body with massm such that its velocityv(t) = ẋ(t)
and positionx are related such thatθ = mv̇. Therefore, the
OuterLoop control block determines the desired angular-
position set-pointθd to be sent to the InnerLoop controller
using a saturated passive proportional-derivative controller
such thatθdu(k) = kpo(xd(k) − x(k)) − kdov(k)

θd =

{

θdu, if |θdu| ≤ θmax

sgn(θdu)θmax, otherwise.

Finally, it is assumed that onlyθ andx are periodically sam-
pled, therefore the respective angular velocityω(k) and ve-
locity v(k) are approximated using the following passive
high-pass filter with roll-off time-constantτf > 0:

y(k)−cy(k−1) =
1 − c

Ts

(u(k)−u(k−1)), c = exp(−
Ts

τf

)

in which (u(k), y(k)) correspond to either(θ(k), ω(k))
or (x(k), v(k)) respectively. All three of these subsys-
tems are incorporated into the final TrueTime model. The
continuous-time plant and trajectory reference(RefHandler)
are also necessary in the TrueTime model, but reside outside
of the TrueTime blocks.

The remainder of this paper is organized as follows: Sec-
tion 2 discusses the steps necessary to prepare the model for
TrueTime generation. Section 3 describes the process and
results of generating the TrueTime model. Section 4 covers
related work and Section 5 concludes the paper.

2. ESMoL Modeling Process

The ESMoL modeling tools support the entire process of
creating embedded systems software, as described in [22].
An understanding of the steps involved in importing and
annotating an ESMoL model to prepare it for TrueTime
generation is important. The complete process for model-
ing and generation includes the following steps: (1) Import
controller design from Simulink (2) Define components and
message types (3) Generate component functional code (4)
Create deployment hardware configuration (5) Deploy com-
ponents and messages (6) Calculate time-triggered schedule
(7) Synthesize the TrueTime model.

The first step for our example is importing the source
controller model from Simulink into the ESMoL model-
ing environment. The dataflow semantics of the original
Simulink model are preserved and are fully represented
within the ESMoL model. Software components in ESMoL
are defined by creating references to Simulink subsystem
blocks and to input and output message types. Instances



of these software components correspond to individual run-
time tasks. Each task has logical execution time semantics
[12], which means that all input messages are available be-
fore a task consuming them is released, and output mes-
sages of the task are sent at precisely defined points in time,
after the task has finished. Message types and their data
elements must also be defined.

Once components and message types are defined, a
model interpreter synthesizes platform-independent func-
tional code. The internal dataflow representation of each
component is converted into synchronous C-code blocks
which will be executed on top of a thin virtual machine that
implements the TTA execution semantics. As will be dis-
cussed in Section 3, this functional C-code is complied to-
gether with a layer of generated “glue code”, acting as the
TTA virtual machine, and together they are directly incor-
porated into the TrueTime model.

The next step is to define the deployment platform hard-
ware configuration. In our example the deployment plat-
form consists of a Gumstix Verdex embedded processing
module with a Robostix I/O expansion board, as shown in
Fig. 2. They are connected via anI2C bus over which
time-triggered communications are sent.

Figure 2. Robostix-Gumstix platform with
time-triggered communications bus

Next, instances of software components are mapped onto
the platform. This step defines the deployment of software
onto hardware. Multiple instances of a particular compo-
nent may be deployed. Messages are mapped to I/O ports on
the hardware to define channels via which they will be com-
municated. The deployment model is used to determine the
configuration of TrueTime kernel and network blocks and
their relationship and interaction with the plant model. The
deployment of our example quad-rotor components onto
our hardware platform is shown in Fig. 3.

The final step necessary before a TrueTime model can be
generated is to execute an off-line schedulability analysis.
Automated schedulability analysis begins with the transfor-
mation of the ESMoL model into a scheduler configuration

Figure 3. Deployment of components onto
hardware and mapping of ports to commu-
nication channels

file. The configuration file contains an abstract version of
the design, limited to information about platform connec-
tivity, assignment of tasks to processors, routing of mes-
sages through buses, and timing specifications. The ESMoL
static scheduler[20] uses this abstract specification to build
a finite-domain integer constraint problem, which is solved
using the Gecode constraint logic programming library[24].
Details about the scheduler are documented in [20], though
the approach is a refinement of the constraint formulation
first described by Schild and Würtz[23].

The constraint problem models dependencies between
tasks and messages, exclusive use of processors and buses,
and timing constraints (i.e., maximum acceptable latency
between tasks). If the problem is feasible then a solution
will satisfy the specified timing requirements and will con-
tain start times for each of the tasks and messages. Another
automated tool writes the schedule start times to fields in the
original model, so that start time information can be used
during platform-specific code generation steps. Infeasible
problems are reported as such.

Once a source controller has been imported, components
and message types defined, the component functional code
generated, a deployment hardware configuration created,
components and messages deployed and a time-triggered
schedule created, then the ESMoL model is prepared to
have the TrueTime model synthesized.

3. TrueTime Model Generation, Simulation
and Analysis

There are two primary phases involved in synthesizing
a TrueTime model from an ESMoL model. First, a new
Simulink model containing TrueTime network and kernel
blocks must be generated. These kernel blocks only pro-
vide a scheduling and execution framework but do not im-
plement task behaviors themselves. Therefore, code imple-
menting tasks that will execute within kernel blocks must be



supplied. The second phase synthesizes some “glue code”
that, when compiled with the previously generated func-
tional code, see Section 2 step 3, implements the tasks the
TrueTime model will execute.

The first phase, creating the new Simulink model, is it-
self a two step process since, due to available Matlab APIs,
it is easier to synthesize an M-file script, which in turn gen-
erates a Simulink model, than it is to generate a Simulink
model directly. Once generated, the M-file script is run
and a new Simulink model is created with the appropriate
configuration of blocks. A one-to-one correspondence ex-
ists between ESMoL nodes and buses and TrueTime kernels
and networks respectively. The original Simulink model’s
plant and reference signal blocks must also be part of the
new model. Fig. 4 shows the resulting Simulink model
generated from the M-file script. TrueTime kernels inter-

Figure 4. Synthesized TrueTime model of the
quad integrator system

act with the rest of the Simulink model via “analog” in-
puts and outputs. Interactions directly between kernels are
communicated using the TrueTime network block. In our
example, analog inputs are generated by the ADC and Se-
rialIn blocks and outputs are sent to the SerialOut block, as
seen in Fig. 2. The number and ordering of analog signals
must be derived from the sensor and actuator messages de-
fined in the ESMoL deployment configuration, as seen in
Fig. 3. Other kernel parameters such as the node number
(for network identification) and initial local clock valuesare
similarly derived from the ESMoL model.

The TrueTime network block also must be configured,
but does not require any additional code for proper ex-
ecution. TrueTime supports a range of networks types:
CSMA, Round Robin, FDMA, TDMA, Switched Ethernet,
FlexRay, and PROFINET. Each of these network types must
be configured with bus speed, frame size, loss probability,
etc. In our example, a TDMA network block is generated
and its properties are configured according to the bus in-
formation in the ESMoL model. A TDMA network was
chosen since it implements TTA-like time-based bus access

and its timing behavior most resembles that of ourI2C bus.
The second phase of creating a TrueTime model is to

synthesized the layer of glue code that binds the functional
code to the TrueTime run-time. TrueTime is able to com-
pile and link with either M-file or C/C++ code for task
implementations. In ESMoL both representations of tasks
are available, M-file from the original imported controller
model, and C-code from the synthesized functional code.
We have chosen to leverage the C functional code since it
is identical to the code that will eventually be utilized in a
fully deployed control system application.

It is the glue code that implements the semantics of a
time-triggered architecture on top of the TrueTime prim-
itives. TrueTime kernels support both periodic and spo-
radic execution of tasks. Neither of these provide the ex-
act timing semantics desired for TTA as they are deadline
or period driven and are not guaranteed to begin execution
at a specific time. Given a static TTA execution schedule,
tasks should begin execution at their scheduled times. This
requirement necessitates a custom execution scheduler be
built on top of the TrueTime scheduler. This is analogous to
implementing a TTA virtual machine on top of a host OS,
as discussed in [22]. The scheduler used within an ESMoL

Figure 5. Online TTA-based scheduler embed-
ded within each TrueTime kernel

TTA-based TrueTime model is shown in Fig. 5. Our sched-
uler is implemented as a high-priority periodic task and is
scheduled for execution at the beginning of every hyperpe-
riod. TrueTime structures task execution into “segments”.
A TrueTime task can execute in one or more segments, each
of which consumes some finite amount of simulation-clock
time. At the end of each segment the task returns control



to the TrueTime scheduler and informs TrueTime of its ex-
ecution duration via a returned double value. Any data that
must persist between segments or executions must be stored
and retrieved in “UserData” via TrueTime access functions.

Segment 1 in our scheduler corresponds to the first seg-
ment of each execution, and thus the beginning of each hy-
perperiod. Our scheduler maintains a sorted map of start
times to ESMoL tasks and a pointer that points to the next
task to be executed according to this schedule. During seg-
ment 1 the first ESMoL task for the hyperperiod is found
and its absolute start time calculated. The scheduler then
sleeps until this time is reached.

When the time has arrived for an ESMoL task to be exe-
cuted our scheduler should be awoken from sleep by True-
Time. This corresponds to any segment greater than 1. ES-
MoL tasks are implemented as sporadic TrueTime tasks that
have a priority lower than our scheduler task. Our scheduler
executes an ESMoL task by scheduling it for execution in
TrueTime using thettCreateJob() function. Since True-
Time is set to use a priority based scheduling scheme, and
no other tasks besides our scheduler are active, as soon as
our scheduler ends its segment this new job will execute.
This approach ensures that an ESMoL task starts execu-
tion at its statically scheduled time. ESMoL tasks interact
with the TrueTime runtime using segments also. Fig. 6

Figure 6. InnerLoop component execution
code within the TrueTime model

shows the corresponding code that is invoked when the In-
nerLoop component is executed. ESMoL task executions
are always contained in a single segment. All input and
output messages are implemented as generated structures
contained within the user data context. The ESMoL task
simply calls to the corresponding functional code method
that was generated for that task, passing in input data val-
ues and pointers to output data locations. This approach for
input and output messages adheres to the logical execution

time semantics mentioned in Section 2. The segment fin-
ishes by returning the expected worst-case execution time
(WCET) for that task given in the ESMoL model. True-
Time will always try to let the task execution continue by
calling it again with a segment value of 2, but the task will
signal it has completed executing by returning the TrueTime
defined value FINISHED.

When our scheduler finds no more tasks to execute in a
hyperperiod it signals TrueTime that it has completed exe-
cution by returning FINISHED. This cycle is repeated each
hyperperiod until the overall simulation is halted. TrueTime
provides output ports on each kernel block that chart the ex-
ecution states of all tasks. Fig. 7 shows one hyperperiod
of execution for the RS node. The top line in the chart is

Figure 7. A single hyperperiod of the task ex-
ecution schedule for the RS node

the ESMoL scheduler while all lines below it are individ-
ual ESMoL tasks. For our example there are seven tasks
that are executed on the RS node every hyperperiod. One
each for the DataHandler and InnerLoop components. One
for each analog input, ADC and SerialIn, and output, Seri-
alOut. Finally, there is also a separate task for each message
sent or received over the network. In this case, one message
is sent from the RS node to the GS node and one received
back. This ensures that all network communications remain
accurate to the TTA semantics.

The purpose of the TrueTime model is to allow designers
to simulate and analyze deployment platform induced ef-
fects on their controllers. Fig. 8(a) shows the position out-
put of the time-invariant Simulink model compared to the
synthesized TrueTime model, and (b) shows the thrust com-



Figure 8. (a) Position tracking (b) Thrust com-
mand comparison and (c) TrueTime error

mands (top) and TrueTime model error (bottom). The time-
invariant Simulink model does not contain any delays be-
tween the DataHandler, InnerLoop, and OuterLoop subsys-
tems, therefore these blocks calculate output synchronously
given input from the Reference signal and the plant blocks.
In contrast, the TrueTime model has propagation delays in-
troduced by the deployment of its components onto hard-
ware and the communications between components. The
schedule causes a total of two hyperperiods to elapse be-
tween an input and its associated output response. The
TrueTime model tracks position well, but does introduce
nominal variance in the thrust output. From the tracking we
see that this variance does not destabilize the system.

4. Related Work

Several modeling frameworks for real-time embedded
systems development include some variant of simulation
and analysis of platform effects. Both SystemC [10] and
AADL [14] are textual languages for defining both soft-
ware components and their deployment hardware platform.
Similarly, the Metropolis modeling framework [1] aims to

give designers tools to create verifiable system models, and
has the ability to simulate software components deployed
on a defined hardware platform. None of these modeling
frameworks explicitly support the time-triggered architec-
ture. Additionally, ESMoL differs from AADL, SystemC,
and Metropolis in the basic modeling approach[21]. The
DECOS project [13] has many similar goals to ESMoL, but
the project no longer appears to be active.

Other embedded system modeling frameworks adhere to
a time-triggered architecture, such as SCADE\Lustre [5],
Giotto [12] or its successor the Timing Definition Language
(TDL) [9], but tend not to include modeling of the deploy-
ment hardware platform. Without native inclusion of both
software and hardware components simulation and analysis
of platform effects can be difficult or incomplete.

The BIP [2, 4] tool chain supports modeling of heteroge-
nous embedded systems. The real-time variant of its run-
time engine supports timed execution of components, and is
able to simulate platform effects as long as a detailed model
of the platform is integrated into the overall model. The
BIP language specification [3] has not yet been extended to
explicitly include concepts for platform definition.

There are numerous examples of TrueTime being used
to simulate platform effects [6, 7]. In all of these examples
the models are manually created and details of the hard-
ware platforms are translated into TrueTime blocks by hand.
Additionally, no examples were found where time-triggered
communication was employed to provide a more robust dis-
tributed control system architecture.

5. Future Work and Conclusion

Some aspects of TTA are not yet fully represented in
the synthesized TrueTime models. Redundant communica-
tion networks, membership services and time synchroniza-
tion are important services required for robust execution and
fault-tolerance. Future work will expand the current focus
of TrueTime models to include better modeling of fault con-
ditions and the impact faults may have on controller perfor-
mance. Time synchronization between nodes is an impor-
tant aspect of TTA, but is somewhat moot in Simulink/True-
Time since all nodes can rely upon the global simulation
clock. We plan on enhancing our TrueTime models to in-
corporate a time synchronization protocol and to allow local
clocks on nodes to have some drift and error from the global
simulation clock. Together, these enhancements should al-
low our TrueTime models to more accurately reflect TTA
behavior.

Inclusion of sporadically executed tasks into the static
schedule is also an interesting research direction. Some
existing TTA-based approaches allow limited execution of
tasks outside of the static task schedule. Support for
sporadic execution will require extending both our online



scheduler and our communications network interfaces.
In this paper we presented an extension to the ESMoL

tool chain for synthesizing TTA-based TrueTime models.
Automatic synthesis via the tool chain greatly reduces the
level of effort needed to create TrueTime models. Leverag-
ing TrueTime for system prototyping is useful compared to
generating code directly for the embedded platform because
it is far easier to explore and debug execution behavior, al-
ter model design, or tap data streams in TrueTime/Simulink
than it is with C-code loaded onto an actual embedded sys-
tem. Once system behavior has been analyzed and design
criteria have been met in TrueTime the final transition to
deploying onto an embedded platform is eased.
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