
MULTIGRAPH: An Architecture for Model-Integrated Computing

Abstract
The design, implementation and deployment of computer

applications tightly integrated with complex, changing
environments is a difficult task. This paper presents the
Multigraph Architecture (MGA) developed for building
complex embedded systems. The MGA is a meta-level
architecture which includes tools and methods to create
domain specific model integrated program synthesis
environments. These environments support the integrated
modeling of systems independently from their
implementation, include tools for model analysis and
application specific model interpreters for the synthesis of
executable programs.

1. Introduction
In the rapidly expanding category of computer integrated

systems (CIS), functional, performance, and reliability
requirements mandate a tight integration of "information
processing" and "physical environment". In CIS's,
embedded computer applications are essential to the overall
system performance. Several characteristics of the CISs
represent significant challenge for the underlying
technology:

Functionalities implemented by physical components and
software are inextricably combined. Consequently, the
design process needs to employ tools and methods that
allow the tight integration of the hardware and software
development cycle. The problems of HW/SW codesign
have been increasingly recognized and investigated in the
last five years [1].
Use of design-time models in system operation.The ever
increasing computing power enables the application of
sophisticated model-based methods in monitoring,
control, diagnostics and fault recovery. The use of
models in system operation require maintaining the
consistency of the software and its environment during
the full lifetime of CISs.
Evolutionary systems.Many of the CIS's, such as space
systems or computer-integrated manufacturing systems

have several decade long lifecycle. During this period
both the physical hardware and the software components
evolve - in many cases parallel with the regular system
operation. For example, the International Space Station
Alpha (ISSA) is an evolutionary system by design; the
tools and methods have to be prepared to follow changes
in the hardware configuration and software capabilities.

The tight integration of the software and its physical
environment has profound impact on the nature of the
software technology to be applied. The reason can be best
explained by Brook's argument, which remains valid eight
years after its publication: the essential complexity of
large-scale software systems is in their "conceptual
construct" [2]. In CIS's, the conceptual construct of the
software is combined with the conceptual construct of its
environment, therefore the methods and tools developed for
managing complexity must cover both sides.

Recent developments in software and systems
engineering indicate that the use of models have great
potential in answering these challenges. Multiple-view
models with rigorous formal semantics can support and
integrate design, analysis, implementation and operation
activities, such as: (a) capture the conceptual structure of
the design [3], (b) trace process and product information
[4], (c) analyze properties of the system [5], and (d)
synthesize software from the models [6].

The Multigraph Architecture (MGA) has been developed
as a model-integrated program synthesis (MIPS)
environment for large-scale embedded applications in
manufacturing, instrumentation, monitoring, and fault
detection, isolation and recovery (FDIR) systems. In these
and similar applications, system designers and operators
view the software as an implementation method of
functionalities (controllers, monitoring and diagnostic
systems, simulators, etc.), which are integral parts of a
complex, dynamic environment.

This paper provides an overview of the MGA and
describes the role of a meta-level architecture in the
technology of complex computer systems. Companion
papers [7][8] present applications of MGA in several major
projects in manufacturing and large-scale signal processing.

2. Background

The MGA research shares ideas and builds on results of
several important directions in software engineering. The
model-based approachhas become a particularly rich,
productive research area in object-oriented software
engineering, and has already made significant impact on
today's software engineering practice. One of the
fundamental goals of the research in object modeling is to
identify general modeling paradigms to be used in the
design and analysis of complex systems. Different
approaches are proposed for modeling functional structure,
static and dynamic behavior, physical structure, inter-object
communication using multiple views, finite state machines,
dataflow modeling and other abstractions [9].

Research onsoftware reusefocused much attention on
domain specific modeling paradigms. The underlying
assumption has been that large-scale software reuse is based
on common domain characteristics expressed by domain
specific models and domain specific software architectures
(DSSA). Projects related to ARPA's DSSA Program and the
Software Technology for Adaptable Reliable Systems
(STARS) program generated many results in this area. One
of the key conclusions of the research in reuse is to
emphasize composition instead of decomposition [10][11].

The MGA has evolved as a framework for the model-
integrated construction of large-scale, embedded computer
applications. The following properties of these applications
have had significant impact on the evolution of the
architecture:

The application domainsare typically dominated by
some mature engineering discipline. The modeling
paradigms are not "negotiable": instead of simplified,
"easy-to-use" programming models, the users need to be
supported by rich, domain specific concepts, relations,
and composition principles routinely used in the field.
Thescope of modelingis determined by the problem and
related functionalities and not by their implementation.
The modeling paradigms are typically not narrowed to
"software implemented" functionalities, but cover the
relevant parts of the "environment" as well.
The conceptual structure of domain models does not
necessarily reflect the structure (architecture) of the
related application. The relationship between the two
(often called problem space and solution space) can be
quite complex. The effect of small changes in domain
model specifications may ripple through several software
modules, and may even change the composition of the
application. Additionally, domain model changes may
occur during system operation evoked by end-user
requests or changes in the environment. This necessitates
system reconfiguration while the application is running
[12].

3. Functional Components of the Multigraph
Architecture

The MGA provides a unified software architecture and
framework for building model-integrated program synthesis
(MIPS) environments. The MIPS environments are domain
specific, and include tools for: (1) building, testing, and
storing domain models, (2) transforming the models into
executable programs and/or extracting information for
system engineering tools, and (3) integrating applications on
heterogeneous parallel/distributed computing platforms. The
MGA-based MIPS environments have the following
functional components [6,12] (Figure 1):

Graphical Model Builder (GMB): The modeling
paradigms include concepts, relationships, model
composition principles, integrity constraints, and
representation formalisms that are accepted and used in the
application domain. Domain models are constructed by the
GMB tool which provides a customizable model building
environment for domain experts. It enforces domain
specific constraints during model building, uses domain
specific graphical formalism, and supports checking the
models using consistency and completeness criteria. The
latest version of GMB is the Visual Programming
Environment (XVPE) [13].

Model Database:The model database stores the complex,
multiple-view domain models. In the last MGA
implementations the model database function is
implemented using object-oriented databases (OODB).

Model Interpreters: Model Interpreters synthesize
executable programs from domain models, and generate
data structures for systems engineering tools that perform
various analyses of the system to be built [6,12]. Since the
model interpreters capture the relationship between the
problem space and solution space, they are specific to the
domain modeling paradigm and to the type of applications
to be generated. In the FDIR domain [5], for example,
different model interpreters generate the diagnostic system,
fault detection system, and operator interface components
of the application from the same integrated domain models.
Similarly, a different model interpreter generates input for
system engineering tools that analyze the diagnosability of
the design.

Multigraph Kernel (MGK):The executable programs are
specified in terms of the Multigraph Computational Model
(MCM). The MCM is a macro-dataflow model which
represents the synthesized programs as an attributed,
directed, bipartite graph. The MGK is a runtime system for

the model, and provides aunified system integration layer
above heterogeneous computing environments including
open system platforms, high performance, parallel,
distributed computers and signal processors [6,12]. The
elementary computations scheduled by the MGK, are
carefully defined reusable code components that are part of
application specific run-time libraries. The model
interpreters have two options for synthesizing applications:
1) building/changing the structure of the dataflow graph, or
2) setting/changing parameters of the elementary
computation blocks. The MGK is implemented as an
overlay above operating and communication systems. A
unique capability of the MGK is itssupport of the dynamic
reconfiguration of the executing system[6,12].

Currently, the construction of an MGA-based MIPS
environment for a new domain includes the following steps:
Step 1. Definition of the modeling paradigm.This step

requires understanding of the concepts,
relationships, model composition principles, and
integrity constraints of the domain.

Step 2. Customization of the model building tool and the
model database. Customization of the GMB tool
requires the following information: (a) assignments

between modeling concepts and graphic symbols,
(b) assignments between graphic operations and
model composition principles, (c) assignments
between domain specific modeling constraints and
admissible graphic operations. The assignments are
represented in the Editor Definition Language
(EDL) of XVPE [13]. Customization of the model
database requires the specification of database
schema using the Object Description Language
(ODL) of the OODB.

Step 3. Specification and implementation of model
interpreters.Model interpreters perform a mapping
between "domain model objects" and "run-time
objects". Domain model objects are created during
model building and they are accessible in the
model database. Run-time objects are described in
terms of the Multigraph Computational Model.
Specification of this mapping depends on the type
of the application to be synthesized. Different
functional components of the executable system
(e.g. "simulator", "diagnostic system", "signal
processing system", etc.) are generated by unique
model interpreters.

Step 4. Implementation of core run-time libraries.Run-
time libraries typically consist of software modules
of subroutine-size, with standard interfaces to the
Multigraph Kernel. Due to their small size,
individual modules can be easily implemented and
tested. The resulting code is re-usable in different
application domains.

In summary, MGA is an infrastructure for building MIPS
environments. It provides a framework for modeling,
model representation, model interpretation and execution,
and includes tools and run-time system components
customized to specific domains. Currently, MGA-based
tools are supported on standalone and networked Unix
workstations (Sun, HP9000, IBM6000, SG), PC's, and
distributed memory multiprocessors (networks of
Transputers and TI-TMSC40-s).

4. Levels in the MGA

In its current configuration, the MGA has three levels.
Since the higher levels include tools and methods to create
systems on the lower levels, MGA is a meta-level
architecture. An overview of the levels in MGA are shown
in Figure 2.

Going from the bottom up, the MGA levels include the
following components:

4.1 Application Level
The application level refers to synthesized applications,

i.e. monitoring, control, diagnostics, simulation and other

systems. These systems are generated by model interpreters
which are common for a particular application system
category(e.g. dynamic simulators using a particular solver
in the run-time system, etc.) and which are part of a domain
specific MIPS environment. The properties of the generated
applications (parameters and/or structure) are determined by
the relevant characteristics of models that are built by the
MIPS tools.

4.2 MIPS Level
The MIPS level comprises the customized versions of the

generic MGA tools. It has a modular internal structure,
which includes theGraphical Model Builder (GMB), Model
Database (OODB), tightly coupled analysis tools (TOOL-
I), loosely coupled analysis tools (TOOL-II)and Model
Interpreters.The function of the GMB, Model Database,
and Model Interpreters have been described before. The
analysis tools facilitate various systems engineering analyses
during design time.Tightly coupled toolsembed an MGA

Model Interpreter which accesses models in the Model
Database and synthesizes data structures for the analyzer
(e.g. DTOOL [5]). Loosely coupled toolsare external
systems (from the point of view of MGA), with some given
external interface. Several simulation and analysis tools
have unique model definition languages (e.g. ASPEN+
used in chemical engineering, or SPN Stochastic Petri Net
packages used in performance analysis of parallel
configurations). These tools are interfaced to MGA through
special model interpreters providing a two-way translation
between the unique model representation language of the
tools and the internal representation forms of MGA. We
have successfully used this technology for the following
packages: ASPEN+ (steady-state simulation), SPEEDUP
(dynamic simulation) [7], SPNP, and Vantage (DuPont's
real-time database system) [7].

The MGA tools on the MIPS level communicate via a
multi-layer interface:
1. Database Access Layer (ODMG-93):All of the MGA

components access the Model Database. We have chosen

object-oriented databases as the primary model database
for MGA, because their services satisfy the needs of
building and managing large-scale model databases. The
Database Access Layer supports the definition, creation,
and manipulation of objects stored in the Model
Database. We have adopted the ODMG-93 standard for
this layer which is widely supported by the OODB
vendors [14]. The ODMG-93 compliant OODB-s provide
services of persistence, transactions, recovery, and
concurrent sharing for application objects on all levels
of granularity. The ODMG-93 compliance assures that
commercial off-the-shelf database systems can be used
as Model Database, and that the MGA components are
relatively isolated form the rapid changes in the database
technology.

2. Common Model Interface Layer (CMI):Services of the
Object Database Management Layer do not define the
model semantics, although it needs to be "known" for the
GMB and the Model Interpreters. The CMI is the
representation of the model semantics for inter-tool
communication. The "physical" manifestation of the CMI
are the C++ header files generated by the ODL translator
of the OODB [14].

3. Distributed Object Communication Layer (CORBA):The
MGA allows concurrent access to the Model Database by
the GMB, and by various systems engineering analysis
tools (and program synthesis tools). This is a must in
large-scale engineering applications where several
engineering groups work concurrently on various aspects
of the same system. From the operational point of view,
the architecture is designed as a distributed object
system, where the communicating "macro objects" are:
GMB, OODB, and the Model Interpreters. For intertool
communication, we selected the emerging standard of the
Object Management Group (OMG), the Common Object
Request Broker Architecture (CORBA) [14]. CORBA
supports the management of interaction between client
and server objects.

4.3 Meta-Level
Customization of the tools on the MIPS level is

accomplished using methods and tools on the meta-level.
The first step in building a domain specific MIPS
environment is the specification of the modeling paradigm.
The modeling paradigm defines concepts, relationships,
model composition principles and model integrity
constraints specific to the domain, therefore the following
information must be expressed:

1. Concepts and relationships captured in the models.
2. Model composition principles and integrity constraints

that define model organization and capture the semantics
of models.

3. Graphical formalism used for model representation.

The first two components define the semantic content of
models unique to a given modeling paradigm. The third
component defines the representation formalism, which may
exist in different alternatives. Currently, the paradigm
specification is supported by the EDL and ODL declarative
languages and the related translators that are part of the
XVPE and the OODB.

A critical aspect of managing the complexity of large-
scale systems is the flexibility of the meta-level toward
defining complex model composition principles. In our
experience, each engineering domain tends to develop a
unique combination of composition principles which are
ultimately used to conceptualize systems. Domain engineers
require direct support of these "customary" composition
principles in their modeling environment, and consider other
principles idiosyncratic. Currently, the MGA meta-level
allows the combination of the following composition
principles in a domain:

Aspects:A frequently used engineering technique is to
focus on selected features of complex systems. MGA
tools allow the definition of elaborate sets of aspects
capturing particular kind of system characteristics. Since
the modeling aspects describe the same underlying
system and/or include relationships that are not
independent from each other, the resulting models may
be subject to complex integrity constraints and/or
dependency relationships that must be satisfied or
explicitly represented. In MGA, modeling aspects are not
predefined and forced onto different application
domains. Aspects can be selected and modified
according to the nature of the domain. The following
two aspect categories are supported:
Independent aspects:They do not have generic integrity

constraints, therefore models can be built
independently from each other. However, the model
components in independent aspects may include
associations/references to other aspects expressing a
particular relationship.

Dependent aspects:Dependent aspects have strong
logical or conceptual relationship. The current version
of MGA modeling tools support a specific, frequently
used dependency, calledstructural dependency. In
structurally dependent multiple aspect modeling the
basic model structure is defined in adominant aspect
(e.g. physical structure or functional structure). Having
the model components defined, each component (e.g.
a functionality or a physical component) can be
modelled from a set of different, usually
complementary views (e.g. dynamics, fault
characteristics, etc.). In larger systems the dependent

aspects can be arranged into independent sets (e.g. the
set of behaviors (dynamics, fault, etc), the set of
interaction types (electrical, mechanical, etc.). If these
sets are orthogonal, i.e. they describe mutually
independent characteristics, the Cartesian product of the
dependent aspect sets may be meaningful (e.g.
dynamics of the electrical interactions of a
functionality, etc.).

Hierarchical composition: Models can be built
hierarchically, i.e. models can contain sub-models of the
same and/or different types. The depth of the model
hierarchies is not limited. Hierarchical composition can
be used for many different purposes in modeling
paradigms, such as expressing part-whole relationships or
different levels abstractions.

Module interconnections:A common model composition
concept in engineering is module interconnection. Model
objects with interconnectivity have well-defined
interfaces, which controls the visibility across the
boundaries. The module interfaces are specified in terms
of input/output objects of a given type.

Associations:Model objects may have associations in the
context of other model objects. The associations can be
defined through creating "references" to model objects
from the context of other model objects and connecting
the references to the associated model object. For
example, a signal can be associated with a physical
variable through creating a physical variable reference in
the signal-flow model, and connecting the reference to a
particular signal. Associations are used to express
conceptual relationships among model components.

Object Conditionalization:Certain objects and connections
can either be "present" or "absent" in a model under
different conditions. For example, a fault propagation
link can be absent when the system is in start-up phase,
but it can be present in full operation. Object
conditionalization means that objects can be
conditionalized by some other objects.

Model types:A model can be declared to be a type. The
instances of a model types can be components of more
than one model. If a model type is changed, the change
propagates to all of its intstances.

Using the appropriate combination of these composition
principles and defining the specific concepts and
relationships of the domain, a wide variety of domain
specific modeling environments can be created.

The second step in building domain specific MIPS
environments is to define and implement model interpreters.
Currently, writing model interpreters is relatively
complicated and requires in-depth knowledge of the internal
interfaces of MGA. One of our ongoing research effort in
MGA is the development of a declarative representation for

the interpretation process, and the development of tools that
use these representations to instantiate predefined interpreter
templates.

5. Applications of MGA

MGA first evolved in instrumentation systems which
was followed by several successful applications in the
aerospace and chemical manufacturing industries. A
summary of selected MGA applications developed recently
are shown in Table 1.

MGA-DTOOL/MGA-RDS: A Model-Based Engineering
Environment for FDIR in Aerospace

MGA is the software framework of a model-based robust
d i a g n o s t i c s y s t e m (M G A - R D S) a n d
diagnosability/testability analysis tool (MGA-DTOOL).
It has been developed in cooperation with the Boeing
Company, and is used in theInternational Space Station
Alpha (ISSA) Program. In this application, the multiple-
view modeling environment supports thefunctional,
physical, and behavioralmodeling of ISSA system
components [5]. A unique feature of this application is
the complexity of the modeling paradigm and the large
size of the models. Tools of the modeling environment
allow graphical model building, and support extensive
model consistency checking. The system has several
model interpreters. The model interpreter for the
Diagnosability/Testability Analysis Tool (DTOOL) [5]
extracts relevant information from the multiple-view
models and synthesizes data structures required by
DTOOL. DTOOL evaluates detectabi l i ty,
distinguishability, and predictability of faults given
on-line sensor allocation and built-in-test (BIT) coverage,
generates optimum test sequences, and provides advice
for additional sensors/BIT coverage to meet defined
criteria. A different family of model interpreters
automatically generates executable code for the real-time
diagnostic system from the same integrated model-set
allowing significant savings in system/software
engineering time.

Problem Solving Environment for Chemical Plants
The Intelligent Process Control System (IPCS) is an on-
line problem solving environment and decision support
tool for process and production management. The IPCS
application is described in a companion paper in this
proceedings [7].

CADDMAS: Computer Assisted Dynamic Data Monitoring
and Analysis System

MGA is the underlying software technology for the
Computer Aided Dynamic Data Monitoring System

System Domain Function Platform Difficulty

MGA-DTOOL aerospace
systems

modeling and
diagnosability
analysis

SUN and HP700
workstations

Complexity of modeling
paradigm, size of models

MGA-RDS aerospace
systems

robust, real-time
diagnostics

SUN and HP700
workstations

Complexity of modeling
paradigm and model
interpreters

IPCS chemical
plants

problem solving
environment for
process
management

HP700
workstations

Complexity of modeling
paradigms, heterogeneity of
the synthesized applications

CADDMAS dynamic
data
monitoring

real-time vibration
analysis

heterogeneous
network of PC-s
and over 100 TI-
TMSC40 and C31
signal processors

Complexity of the synthesized
parallel applications,
complexity of the computing
platform

DATVAL turbine
engine
testing

model-based sensor
data validation

SGI workstations Relationship to legacy
systems

(CADDMAS) developed in close cooperation with the
USAF Arnold Engineering and Development Center
(AEDC). CADDMAS provides real-time vibration
analysis for 48 channels of 50 kHz bandwidth using a
heterogeneous network of nearly 100 processors [6].
Different versions of the CADDMAS are now being
applied as primary on-line test systems in the turbine
engine testing facilities of AEDC. A derivative of the
CADDMAS system has been requested by NASA and
will be installed in the Structures and Dynamics
Laboratory of NASA-MSFC for Space Shuttle Main
Engine testing.

In the CADDMAS application, the MGA modeling
environment supports the hierarchical modeling of signal
flow graphs, hardware resources, and resource
limitations. The model interpreters synthesize the
complex executable program and configure the parallel
computing platform. The main difficulty of the
CADDMAS application is the complexity of the
executable system synthesized from the models. The
model-based programming environment allows AEDC
and NASA personnel to reconfigure the complex parallel
CADDMAS software according to the needs of a new
test. The MGA-based parallel program synthesis system
has been recently extended to image processing [9] and
parallel turbine engine simulation applications.

DATVAL: Data Validation System for Turbine Engine
Testing

A primary concern of testing systems is of the quality
of data produced. In cooperation with USAF-AEDC, a
model-based, real-time data validation system is under
development using MGA. DATVAL detects anomalies
in sensor data and isolates the most plausible source of
faults. The data validation system utilizes massive
amount of information about the test article and the
testing facility. The modeling paradigm of the full
system will include multiple view models of the facility,
the test article, and will configure the real-time validation
program on a distributed workstation network. The
primary technical challenge of the DATVAL application
is the elaboration of methods to integrate legacy systems
(large-scale engine simulator code written in FORTRAN)
with MIPS environments.

6. Summary

According to our experience, the model-integrated
approach in program synthesis is a powerful method. It is
particularly useful in constructing and maintaining large-
scale embedded applications operating in dynamically
changing, complex environments. It has been our
experience that the tremendous productivity advantage of
domain specific MIPS environments and related systems

engineering tools can be exploited only if the following
criteria are met:

The modeling environments are closely tailored to the
domain.
The modeling environments are able to evolve with
the increased understanding of the domain problems
and solution strategies.
The modeling environment supports interoperability
with engineering databases and systems engineering
tools.

Some of the important conclusions of the practical
experiences with the MGA are the following:

Scalability of models. In several MGA applications
both the complexity of the modeling paradigm and the
size of the models have become a major issue. Our
experience is that the introduction of domain specific
model composition principles has been the key
element of managing this complexity. This relieved
the domain engineers from the responsibility of
finding an efficient implementation for the domain
specific modeling paradigm in terms of the object
model of the underlying OODB.
Scalability of executable programs.The IPCS and
CADDMAS applications synthesize highly complex
executable programs, whose structure and operation
strongly depends on their "environment", i.e. on the
plant, the system to be tested, the available computing
platform, etc. In these applications, model-integrated
program synthesis has dramatically decreased the cost
of application development, and virtually eliminated
the need for costly system integration.
Different application domains. We have built
customized MIPS environments for a wide range of
applications, including instrumentation, signal
processing, process management systems for chemical
plants, fault diagnostics, simulation and others.
Besides the generic tools of the MGA, modeling
paradigm definitions, model interpreters, run-time
libraries, even models have proved to be highly
reusable in different domains.

Our current research focuses on the development of meta-
level tools which will significantly decrease the cost of
creating customized MIPS environments even for complex,
critical applications.

References

[1] Rozenblit, J., Buchenrieder, K.:Codesign: Computer-
Aided Software/Hardware Engineering,IEEE Press,
1995.

[2] Brooks, F.P.,Jr.: "No Silver Bullet: Essence and
Accidents of Software Engineering",Computer,Vol.
20., No. 4., pp. 10-19, Apr. 1987.

[3] Harel, D.: Biting the Silver Bullet",Computer,Vol.
25., No. 1., pp.8-19, January, 1992.

[4] White, S.: "Tracing Product and Process Information
when Developing Complex Systems",Proc. of the
1994 CSESAW Workshop,pp. 45-50, July 1994.

[5] Misra, A., Sztipanovits, J., Underbrink, A., Carnes, R.,
Purves, B.:"Diagnosability of Dynamical Systems,"
Proc. of the Third International Workshop on
Principles of Diagnosis, pp. 239-244, Rosario, 1992
WA.

[6] Abbott, B., Bapty, T., Biegl, C., Karsai, G.,
Sztipanovits, J.: "Model-Based Software Synthesis"
IEEE Software,pp. 42-53, May, 1993.

[7] Karsai, G., Sztipanovits, J., Franke, H., Padalkar, S.,
DeCaria, F.: "Model-Embedded On-Line Problem
Solving Environment for Chemical Engineering", in
this proceedings.

[8] Moore, M., Nichols, J.: "Model-Based Synthesis of
Real-Time Image Processing Systems", in this
proceedings.

[9] Booch, G.:Object-Oriented Analysis and Design with
Applications, Prentice Hall, 1991.

[10] D'Ippolito, R., Lee, K.: "Modeling Software Systems
by Domain," AAAI-92 Workshop on Automating
Software Design,1992.

[11] G.Abowd, R.Allen, D.Garlan, "Using Style to Give
Meaning to Software Architecture", inProc.
SIGSOFT'93: Foundations of Software Eng., 12/93.

[12] Sztipanovits, J., Wilkes, D., Karsai, G., Biegl, C.,
Lynd, L: "The Multigraph and Structural Adaptivity,"
IEEE Transactions on Signal Processing,Vol. 41, No.
8., pp. 2695-2716, 1993.

[13] Karsai, G.: A Visual Programming Environment for
Domain Specific Model-Based Programming,"IEEE
Computer,pp. 36-44 March 1995.

[14] Cattell R.G.G. (Ed.):Object Database Standard:
ODMG-93,Morgan Kaufmann Publishers, 1994.

