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ABSTRACT

In the past decade, numerous consensus protocols for rhetvor
multi-agent systems have been proposed. Although somesfofm
robustness of these algorithms have been studied, reacbmnsgn-
sus securely in networked multi-agent systems, in spitenofii
sions caused by malicious agents, or adversaries, has gyl
underexplored. In this work, we consider a general modeafbr
versaries in Euclidean space and introduce a consensusipr tdy
networked multi-agent systems similar to the Byzantineseosus
problem in distributed computing. We present the Advesdigri
Robust Consensus Protocol (ARC-P), which combines ideas fr
consensus algorithms that are resilient to Byzantinedauitl from
linear consensus protocols used for control and coordinati dy-
namic agents. We show that ARC-P solves the consensus proble
in complete networks whenever there are more cooperateetsg
than adversaries. Finally, we illustrate the resiliencABIC-P to
adversaries through simulations and compare ARC-P witheali
consensus protocol for networked multi-agent systems.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems; H.1.1 Models and Principleqd: Systems and Information
Theory—General Systems Theory

General Terms
Algorithms, Security, Theory

Keywords

Consensus, Dynamic agent, Networked multi-agent systemn, R
bustness, Adversary

1. INTRODUCTION

Reaching consensus is a fundamental problem in group ecoordi
nation. The formal study of consensus has a rich history in-ma
agement science [5] and distributed computing [18]. Mocendy,
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there has been a surge of research in the coordination afagdnt
networks. Within mobile robotics, there are several apginea re-
searching the minimum attributes required to achieve ibdigted
tasks such as gathering [1, 4, 29, 32]. In control, conseakss
rithms have been used for the coordination of dynamic agents
group formation [10, 33], conflict resolution [24], and a ho$
other problems [19, 21]. In sensor networks, consensus éas b
considered for filtering [30], sensor fusion [36], and dizsited hy-
pothesis testing [22].

Various forms of uncertainty have been considered in cansen
protocols for multi-agent networks. Reaching average &osiss
in a wireless network with interference is studied in [34ditive
channel noise is addressed in [14]. Packet loss in ring mksnie
studied in [13]. Nonuniform time delays for a class of linegs-
tems is considered in [17]. Contraction analysis is use@%j {o
study nonlinear systems and wave variables are used in the co
munication for robustness to nonuniform constant delaysvirA
tual layer is used for self-stabilization of a network of otdto a
desired curve in [11] whenever there are intermittent distoces
in the network. Robustness in terms of sensitivity to moadeen-
tainty has been addressed in [15].

On the other hand, robustness of consensus protocols in
worked multi-agent systems to malicious attacks and fadlwim-
ilar to the Byzantine failures of [16] has only been studiedhe
last few years. In [25—-27], detecting and isolating malisiagents
in discrete-time linear consensus networks is considerguini-
larly, [31] addresses calculating functions of the initséhtes of
cooperative agents in discrete-time linear consensusonk$wn
the presence of malicious agents. Similar to these worlssptiper
considers a problem that addresses security of consensusrke;
however, the problem introduced here is formulated in comtiis-
time. Moreover, the algorithm described here is less coatjmut-
ally complex when implemented in discrete-time.

Specifically, in this paper we consider robustness of néebr
multi-agent systems to adversaries. The multi-agent systeom-
prised of two classes: cooperative and adversarial agéhtsco-
operative agents have first-order integrator dynamics hednly
assumption about the behavior of the adversarial ageritatigheir
state trajectories are bounded and continuous. Addifigveé as-
sume there is an upper bound on the number of adversarialsagen
present. The agents exchange scalar state information ail-an
to-all manner either through communication or sensing. gaed
is for the states of the cooperative agents to asymptoticdityn
to a constant value within the range of their initial stateghout
knowledge of which agents are adversaries.

The main contribution of this work is the design and analgsis
a consensus protocol that is robust to the presence of adiexs

net-



First, we introduce a system model in the context of ordirdify
ferential equations (ODESs). Then, we define the adversagiae-
ment problem and present the consensus protocol, whichfee re
to as the Adversarially Robust Consensus Protocol (ARGYRE-

P is inspired by the&ConvergeApproxAgreemeatgorithm [6, 18]
and the linear consensus protocol (LCP) [23]. We prove tHEA
P yields a unique solution which solves the adversarialeagent
problem with an exponential rate of convergence. Then, wog/sh
an upper bound on performance that allows for approximadte so
tions to the problem in finite time. Finally, we provide sealesim-
ulation results comparing ARC-P to LCP in the presence oéandv
saries, and illustrate the performance tradeoff incurnedRC-P
for robustness to adversaries.

ARC-P combines ideas from tl@onvergeApproxAgreemeal-
gorithm, which is resilient to Byzantine faults, and LCPeSif
ically, it employs the sort and reduce function — which efiate
outlying values to ensure the output is within the range @peo-
ative agents’ states — similarly to [6]. The concept of usrgum
of relative state values (i.e., the difference between ghieiring
agent’s state and the given agent’s state) as control iopafitst-
order integrator agent — in order to drive the agents’ staigsther
— is taken from LCP. By combining these ideas from distridute
computing and control, we obtain a new consensus protoetl th
is resilient to adversaries, and can be analyzed usingreytbieo-
retic techniques. Specifically, we analyze the Lipshcitaticwity
of the protocol to ensure the uniqueness of solutions. Wetuse
dynamics to show exponential pairwise convergence of tlop-co
erative agent states. We show that the states of the coiwgerat
agents always converge to a point within the range of théialn
conditions using an invariant set argument. Finally, wertabthe
worst-case convergence time with respect to any arbigraniall
error tolerance, so the protocol can terminate in finite timté an
approximate solution.

The paper is organized as follows: Section 2 describes #stersy
model and the adversarial agreement problem. In Sectiore 3 th
protocol ARC-P is described. In Section 4, we prove that ARC-
P solves the adversarial agreement problem. Section 5ntsese
simulations illustrating ARC-P in the presence of adveesarand
compares the performance of our solution with LCP. Relatedkw
is discussed in Section 6. Finally, Section 7 provides aatiog
remarks and some ideas for future work.

2. SYSTEM MODEL AND PROBLEM

2.1 System Model

The topology of the networked multi-agent system is desdrib
by a labelled strongly connected digragh= (V, &), whereV =
{1,...,n} describes thes dynamic agents. Without loss of gen-
erality, V is partitioned into a set of cooperative agenty/. =
{1,...,p}, and a set of adversarial agent¥,, = {p+1,...,n},
with ¢ = n — p. The number of adversarial agents in the net-
work is bounded by a constait € Z*, so thatg < F. The
edge sef C V x V models the information flow between the
agents, which is realized either through communicationemss
ing. For each ordered p4(t, j) € £, state information flows from
agent; to agentj. For loops,(i,:) € & represents local state feed-
back. In this paper, the network is assumed to be complete, i.
e={(i.j)li.j € V}.

The networked multi-agent system is a composition of twerint
acting subsytems, i.e., the set of cooperative and advaragents.
The agents interact in a synchronous manner by sharingisfate
mation, as shown in Figure 1. In the figure, = [x1,...,z,]" €
RP? represents the states of the cooperative agents. Similarky

----»| Adversarial | * a<t ) Cooperative
N agents X, ( t) agents
E E xa(t)ec E > xc:fc(xc’xa)
Figure 1: System model.
[©pt1,...,2,]" € RY represents the states of the adversaries. The

state feedback to the adversarial agents is shown as dasksdd
indicate that this information may or may not be used to imftge
the behavior of the adversaries. On the other hand, the caibme
agents must use the state information from all the agentsimitar
manner since the cooperative agents are unaware of whictisage
are adversaries. However, from a global perspective, Htesof
the adversaries can be viewed as uncertain inputs to theemop
tive agents. This is the approach used to analyze the cavesg
properties of the subsystem of cooperative agents.

2.1.1 Cooperative Agents

Each cooperative agente V. has dynamics given by;
u;, whereu; = fi(xc,zq) is @ control input, which is designed
in such a way so that the cooperative agents reach consansus i
spite of the influence of at mogt adversaries. The state of the
adversarial agents;,, is treated as an uncertain input; however,
because there is no prior knowledge concerning which ageats
adversarial, the control input must treat the state infoionafrom
neighboring agents in the same manner. With these clarifitat
the dynamics of the system of cooperative agents are given by

@)

where fe(ze, zo)=[f1(2e, Za) - - fo(Te, )], 2o € RP is the
vector of initial values of the cooperative agents, &hd- R? is
some fixed compact set.

ZTe = fe(Tey®a), x(0) = Tey, Ta(t) €C,

2.1.2 Adversarial Agents

The adversarial agents are assumed to be designed for the pur
pose of disrupting the objective of the cooperative agéftis.main
limitation on the behavior of the adversaries is that theedrajec-
tory of each agent is restricted to bounded continuous iomst
of time. Specifically, we assume tha(¢) has a continuous tra-
jectory that remains in some arbitrarily large, but fixed pact
setC C R? for all t > 0. Although these assumptions eliminate
most unstable systems, the fixed compactsein be chosen large
enough to include any finite region. One interesting casehisnw
the adversaries are designed to drive the states of the iaivee
agents to some unsafe region.

2.2 Adversarial Agreement Problem

Consider a networked multi-agent system consisting afents,
where a subset of the agents are adversaries. Assume tistgeaex
upper bound” on the number of such agents. Thendldeersarial
agreement problens defined by two conditions: agreement and
validity.

Theagreement conditiostates that the pairwise absolute differ-
ence between the states of the cooperative agents appsazatte
asymptotically, regardless of the adversaries’ trajéesorThat is,
for all z.(0) € RP,

tle lzi(t) —z; ()| =0, Vi,j€Ve, za(t)eC. (2)



Equivalently, the cooperative agents achieve the agreeomn
dition if the state of the cooperative agents, converges to the
agreement spacel = {y € RP|y; = y;,Vi,j € V.}.

Thevalidity conditionstates that the limit of the state trajectory
of each cooperative agent exists and is contained in thevaite
formed by the initial states of cooperative agents, regaslbf the
adversaries’ trajectories. That is, if we define the interva

To = i 7 3 i )
o = [min 2:(0), max z;(0)]
then the validity condition is formulated as
tlim zi(t) € To, Vi€ Ve, za(t) €C. (3)
— 00

As in the case of the agreement condition, the validity ciiorlican
be stated in terms af.. LetHo, = Z! C R? denote the hypercube
formed by the Cartesian productp€opies ofZy. Then the validity
condition stated in (3) is equivalent tomn;—, ooz (t) € Ho for all

x,(2)
t
| T el
—» Sort | Reduce 0 +
: : £, rlt)
x,(1) (1) —
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Figure 2: Synchronous data flow model of ARC-P for agent.

and therefore, the cooperative agents’ states are drivegrdothe
median of the state values. Before stating the protocol,egaire

z4(t) € C. Note that if the system satisfies both the agreement and gome definitions.

validity conditions, then all of the states of the coopertigents
will converge to a single limit point withity.

Example: Consider the linear consensus protocol [23], which
we will denote by LCP throughout this paper:

Bi(t) = Y (w(t) — (1), 2i(0) = wo,,

JEN;

4)

whereN; = {j € V|(j,i) € £€,5 # i}. In complete networks,
adversaries of the type outlined above cannot prevent theera-
tive agents from asymptotically aligning their states t@asensus
state. This is because for complete networks, (4) can beewrits

@i(t) = —nai(t) + > x(t).

j=1

Therefore, the pairwise erref;; = z; — x; for i,5 € V. has
dynamics given by

éi;(t) = —nei; (1),

which converges exponentially to zero with rate

However, the validity condition is not satisfied by LCP. Exaen
single adversary in a complete network can become the |@auer
drive the state of each cooperative agent to an arbitramyt poi
the intervalC. Although LCP is designed for cooperative agents,
the sensitivity to adversarial influence on the cooperaiiyents is
undesirable in cases where security is an issue.

3. CONSENSUS PROTOCOL

This section introduces the Adversarially Robust Conse/sa-
tocol (ARC-P), which is robust to adversaries in completsvoeks
whenever there are more cooperative agents than advetsarie
n > 2F. The main idea of the protocol is for each agent to sort
the state values and then filter (remove) fhéargest andr' small-
est values so that the remaining values lie within the rarfigmo
operative states. The state of the given agestthen subtracted
from each of the remaining values to fomm = n — 2F relative
state values. A relative state value is negative if the sihtgent
1 is greater than the filtered state value and nonnegativevaite
The rate of change of the state of agéi then the sum of these
m relative state values. The result is that the state of agémt
creases (decreases) whenever it is smaller (larger) tiesavttrage
of the m filtered values, and remains constant if it is equal. Intu-
itively, this process should force the cooperative agentetverge
to the average of the filtered values. In the extreme casenwhe
evern = 2F + 1, only the median of the state values remains,

DEFINITION 1. Letm = n — 2F, and denote the elements of
avectorr € R" byx;,i =1,2,...,n. Then:

1. The concatenation functiog, ,: R x R? — RP*9, is de-
fined by
Y.
z ’

2. The (ascending) sorting function arelementsp,,: R™ —
R", is defined by = p,(z) such that is a permutation of
x satisfying

Xp.a(Y,2) = { 5)

&1 <& <<y (6)

3. The reduce function with respect o € Z* is defined by
rr: R® — R"2F n > 2F, satisfying

rr(€) = [€ps1 Erta - Ener) (7)
4. The sum functiors: R™ — R, is defined by
s(@) =Y w; ®)
=1

5. The composition of the concatenation, sorting, reducel, a
sum functions is defined lgy: R? x R? — R, satisfying for
all (y,z) € RP x RY,

)

The concatenation, sorting, and sum functions are defined in
natural way. The reduce function is intended to be compostd w
the sorting function — as in the definition ¢ so that the resulting
operation removes thE smallest and” largest elements.

With these definitions, ARC-P calculates=f;(z., z.) for each
cooperative agente V. by

fi(@e(t), za(t)) = —mai(t) + d(zc(t), za(t)),

wherem = n — 2F. Thus, to ensuren > 1, we requiren > 2F.
Figure 2 shows the data flow model of ARC-P for cooperative

agent:. In the figure, the state;;(¢), of the agent, whose dynam-

ics arez;(t) = ui(¢), is subtracted from each of the other states,

¢(y,2) = (sorropoxpq)(y;2).

(10)

The concatenation functiog, , is essentially the identity func-

tion on R4, Itis used for notational reasons so thatcan be
treated as an uncertain input to the system of cooperatietag



including itself. The resulting relative state values avgtedd and
then reduced by eliminating the largest and smalléslements.
Finally, the remaining elements are summed to produce thigaio
inputu; (t) to the integrator agent. Itis straightforward to show that
this order of operations is equivalent to (10). This impletagon

is most beneficial in cases where the relative state is selisadly,

so there is no need for a global coordinate system.

4. ANALYSIS

In this section, we analyze the continuity and convergemop-p
erties of ARC-P. First, we consider the Lipschitz contipwf the
protocol, in order to ensure existence and uniqueness oficos
for all time ¢ > 0, over all initial conditionsz.(0) € RP, and
for all adversarial trajectories;.(t) € C. Next, we show the
agreement condition is satisfied and characterize the cgpenee
rate to the agreement space. Then, we prove that the vatiality
dition holds, thereby showing that ARC-P solves the advixksa
agreement problem. Finally, we consider a uniform uppembou
on convergence in order to obtairapproximate solutions to the
adversarial agreement problem in finite time.

4.1 Lipschitz Continuity

We begin by recalling the definition of Lipschitz continuifyor
the purposes of this paper, we restrict ourselves to Euatidpaces.

DEFINITION 2. Let|| - || denote any norm defined on a Eu-
clidean space, and lgt: R™ — R™. Theng is Lipschitz contin-
uous with Lipschitz constadt if the following condition holds for
all z,y € R™:

llg(z) =gl < Lllz —yl|.

In order to show the Lipschitz continuity of ARC-P, we must
show that the sorting function is Lipschitz continuous. sEimwe
consider an interesting property of the sorting functioamely,
given any two vectors, then the angle between the vectoraevier
increase by sorting the vectors. This result is then usedhdw s
Lipschitz continuity of the sorting function.

LEMMA 1. Givenz,zo € R™ with { = pn(z) and & =
pn(x0), then

n n
£7¢ = Zfif% > Zl’il’oi =z 20.
=1 =1

PROOF We prove the result by induction on The base step
(n = 1) is obvious (sinc& = z, & = x0). Now, suppose (11) is
true forl < n < m, and leth = m+ 1, with z, 2o, £, &o € R™FL.
Let j (andk) denote the index of the element with minimum value
in z (xo). If there are multiple elements with minimum values in
either vector, arbitrarily fix the index to correspond to afghe
minimum values. There are two casgs# k andj = k.

Case 15 # k: Swap the elements; andzy, in z so that the min-
imum values ofr andz occur in the same index (in this case).
Remove the:™" element from each vector and denote the resulting
vectors byz’, z(, € R™, and their corresponding sorted versions
by ¢ and¢; respectively. Then, by the inductive hypothesis

(11

m m

> _&io, 2 Y wip,.
i=1 i=1

But the terms in (12) are related to the terms:inzo and¢™¢, as
follows. For the right-hand side, the only elements alténed are
x; andzy, which have been swapped (with removed), and only

12)

xo, has been removed fromy, with no other changes te. Thus,
we have
m m—+1
:c;:cf)1 = Z TiTo, + TkTo; - (13)
=1 i=1
i#j,k
Similarly, for the left-hand side of (12), only one minimuralve
of each vector has been removed; therefore, the inner praduc
the resulting sorted vectorg'{ £)) contain the same terms &5¢,
except for the term;zo, = £1&o,. Hence,

m m+1

> gigo, =Y &k,
i=1 =2

Substituting (13) and (14) into (12) and addingro, = £1€o, t0
both sides of the inequality yields

(14)

m—+1 m—+1

E &io, > E TiTo; + TkTo; + TjTo, - (15)
i1=1 i=1
i)k

Now, sincexy > x; andxzo; > xo,, we have

(xr — x;5)(wo; — 20,) = 0
= ZkTo; + xjTo, > TkrTo, + T;5T0; -
Finally, combining this with (15) produces the desired tesu

m—+1 m—+1

Z &io, > Z TiTo,,
i=1 i=1

which completes the inductive step.

Case 2j = k: Fix 2’ andz) by removing thek'" element (the
minimum value) ofr andz,, respectively. Then, (12) is true by the
inductive hypothesis. Analogous to Case 1, (14) also hdidthis
case, the right-hand side of (12) is given by

an

m m—+1
1!
wiwoi = E ZTiZo,; -
i=1
itk

Substituting (14) and (18) into (12) and addingzo, = &:1&o,
to both sides of the inequality yields (17), which completes
inductive step and the proof. O

(18)

i=1

LEMMA 2. The sorting function = p,(z) € R"™, defined by
(6), is a Lipschitz continuous function ofc R™.

PROOF. Fix z,z9 € R™ and letp,(z) = &, pn(z0) = &o.
Then, using the norm preservation property of permutatams
Lemma 1, we have

1
e = &oll = (7€ + €760 — 26760 ) *
%
< (zT:r + :rz)r:ro — 2:ET:E0) =|lz — zoll2- O

THEOREM 1. The functionf.(z., z.) defining the dynamics of
the subsystem of cooperative agents (c.f. (1)), witdefined in
(10), is Lipschitz continuous in. andz,,.

PROOF The concatenation, reduce, and sum functions are lin-
ear maps and are therefore Lipschitz continuous. The gditimc-
tion is Lipschitz continuous by Lemma 2. The result thendet
since scalar multiplication is Lipschitz continuous ane dompo-
sition and difference of Lipschitz functions result in a &ghitz
continuous function. O



Sincez,(t) € C is a bounded continuous trajectory afidis
Lipschitz continuous, the system (1) admits a solutieft) which
is uniquely defined o™ for all z.(0) € R” andz,(t) € C [2].

COROLLARY 1. The networked multi-agent system with>
2F and each cooperative agent’s control protocol given by (10)
has a unique solution for atl > 0, z.(0) € R?, andz,(t) € C.

4.2 Agreement

In this section, we prove the agreement condition for ARGHP a
characterize the convergence rate to the agreement space.

THEOREM 2. The networked multi-agent system with> 2F
and each cooperative agent’s control protocol given by ($@jis-
fies the agreement condition (2). Moreover, the convergemtee
agreement space is exponential with rate=n — 2F'.

PROOF For each paii,j € V., i # j, we define the pairwise
errore;;(t) = zi(t) — x;(t). Sincen > 2F, ¢(xzc(t),za(t))
is defined. Because the network is completér.(t), z4(t)) is
identical for each agent. Therefore, thaerms cancel in the error
dynamics ofé;;(t) = —me;;(t). Now, definee(t) as the column
vector containing al{%) pairwise errors of the forra;; (¢). Clearly,

e = 0 is equivalent tar. € A. The error dynamics are then

é¢=-me = e(t)=e(0)e ™,
which proves the agreement condition is satisfied and tleatdh-
vergence is exponential with rate = n — 2F. O

4.3 Validity

While the agreement condition follows directly from the sym
metry provided by the complete network, the validity coiuditre-
quires an invariant set argument, facilitated by some testom
the theory of uncertain systems. As described in Sectionvizel
consider a decomposition of the multi-agent system intqpeoo
ative and adversarial agents which interact through spastate
information. The state information from the adversariatrag is
viewed as an uncertain input to the subsystem of cooperagents
and may take values in the compact SeWWe begin with the defi-
nition of robustly positively invariant sets.

DEFINITION 3. The setS C RP” is robustly positively invariant
for the system given by (1) if for all.(0) € S and allz,(t) € C
the solution is such that.(¢) € S for ¢ > 0.

In order to show that the validity condition holds, we firsbsh
that the hypercubé,, containing all of the initial values of the
cooperative agents, is a robustly positively invariantusghg an
extension of Nagumo’s Theorem for uncertain systems. Then w
prove that the limit of the cooperative agents’ states exéstd
therefore lies in this hypercube. For notational brevitg, denote

Zmin = min z;(0) andzmax = max x;(0).
i€Ve i€V
LeEmMA 3. If each cooperative agent’s control protocol is given
by (10), then the hyperculié, = Z defined by
Ho = {y S Rp|l’min <y < xmax},
is robustly positively invariant for the system (1).

PROOF. Firstwe require a definition. For any compact and con-
vex setS C RP, the tangent cone 6§ in y is the set

dist(y + hz,S)

Ts(y) = { € R”| lim Z24T

:0}7

where disty, S) = infses ||y — z[|2. SinceHo is closed and
convex, an extension to Nagumo’s Theorem presented in186p.
states that, is robustly positively invariant if and only if

fe(y,xa) € Tay (y), Yy € Ho andz, € C.

For interior pointsy in Ho, we haveTy,(y) = RP, so we only
need to check the boundary ®fy,. The boundarygH,, is given

by
OHo = {y € HolFi € {1,2,...,p} S.t.yi € {Zmin, Tmax}}-

In other words, points on the boundary have at least one coemo
that is either a minimum or maximum of the initial values.

Fixy € 0Ho and letZmin, Zmax C {1, 2, ...,p} denote the sets
of indices such that

J € Inmin < yj = Tmin @aNAE € Tmax < Y = Tmax-

Sincey € 0Ho, at least one of these index sets is nonempty. Let
e; denote thg-th canonical basis vector. From the geometry of the
hypercube, it is sufficient for the following to hold:

€}fc(y7$a) >0 Vj € Imimxa(t) € C’
enfe(y,2a) SO Vk € Tmax, za(t) € C.

It can be shown that each compongne {1,2,...
(rF o pn o Xp,q)(y,zq) satisfies

Zmin < (5 < Tmax, Vza(t) € C.

,m}of¢ 2

Indeed, otherwisg ¢ Ho. Therefore, we have that for all,(t) €
C, j € Zmin, andk € Tmax,

—MImin + Z Cz > O,
=1

€ fely,wa) = —my; + > G =
i=1

enfe(y,za) = —myk + > G = —mTmax+ »_ G <0. [
i=1 i=1
THEOREM 3. The networked multi-agent system with> 2F
and each cooperative agent’s control protocol given by ($8jis-
fies the validity condition (3).

PROOF Considery(t) =
JjE Ve,

max;ecv, (zi(t)). Define for each

Iy ={t=0]x;(t) = ¢(t)}.
Then, letS = {j € V.|Z; # 0}. We claim that elements &
satisfy the following property: foi,j € S, z;(t) = z;(¢), for all
t > 0. To show this, fixi,j € S, and consider the erroes;(t)
from the proof of Theorem 2. t£;(0) > z;(0), then

eij(t) = eij(0)87mt > 07 vt > 0.

This contradicts the fact thate S. By symmetry, we cannot have
z;(0) > z;(0). Thereforex;(0) = z;(0), ande;;(¢t) = 0, which
impliesz;(t) = z;(¢), forallt > 0.

Thereforeg)(¢) uniquely describes the positive trajectory of the
subset of cooperative agents with initial valuga. Now, since
d(xc(t), za(t)) < map(t), 1(¢) is nonincreasing. Furthermore,
sincewy(t) must remain irZy by Lemma 3, it is bounded below by
Zmin; thuslims .o 1 (t) € Zo exists. Finally, by Theorem 2, all of
the states of the cooperative agents convergi(tp and therefore,
we havelim;—, o0 () =lims— o x;(t), for all i € V.. Since this is
independent of,(¢), the validity condition is satisfied. O

By Theorem 2, ARC-P satisfies the agreement condition. By The
orem 3, ARC-P satisfies the validity condition. Therefor&G:P
solves the adversarial agreement problem.



THEOREM 4. The networked multi-agent system with> 2F
and each cooperative agent’s control protocol given by ($6)ves
the adversarial agreement problem.

4.4 Finite Termination

In this section, we derive an upper bound on the performance
of ARC-P in order to terminate in finite time while ensuring an
e-approximate solution to the adversarial agreement pnoblBy
Theorem 2, the rate of convergence is exponential withrratBut,
the upper bound on convergence can be made precise.

COROLLARY 2. Consider a networked multi-agent system with
n > 2F and each cooperative agent's control protocol given by
(10). Defines = max;cy x:(0) — min;ey x;(0). Then,

max e;;(t) < Be” ™Vt > 0.
1,jEVe
PrRoOOF Foralli, j € V.,

€ij (t) = €ij (O)eiwu5 < 567Mt,vt > 0. O
Using Corollary 2, are-approximate solution to the adversarial
agreement problem can be obtained in finite time. Speciicall
ensure that the maximum pairwise error between the states-of
operative agents is less than> 0, Corollary 2 implies we may
terminate at any time greater thah| log(5)! (provideds # 0, in

which caser.(0) € A).

5. SIMULATIONS

To illustrate the robustness of ARC-P, we consider threenexa
ples in which a subset of the agents have been overtaken and re
designed with malicious intent, and a fourth example thasttates
the performance tradeoff incurred for the robustness teraadvies.
The first scenario considers the case where two out of thd eigh
agents are adversaries and their goal is to drive the consetete
of the cooperative agents to an unsafd el the second scenario,
three of the agents have been redesigned as oscillatordén wr
force the cooperative agents to oscillate at the desiraguiénecy.
Finally, in the third scenario a single adversary in a largievork
tries to force the other agents to follow a sinusoidal tr@jscin the
unsafe set.

To motivate the need for a consensus protocol that is robust t
adversaries, we compare ARC-P with LCP under the same condi-
tions. It is shown that LCP achieves the agreement condition
spite of the behavior of the adversaries, but not the valicin-
dition. For LCP, the states of the cooperative agents éffdyt
converge to the average of the aversaries’ trajectoriess,Tih all
three scenarios, the adversaries are able to achieve t&ir g

Example 1: Consider a multi-agent network with eight agents,
each with unique identifier i1, 2, ..., 8}, and with initial states
equal to their identifier (e.g., for agehtz1(0) = 1). Suppose that
agents7 and 8 have been compromised (i.8,= {7,8}). The
adversaries are redesigned with

—10x; + 10u;, Vi € V,,

Ty =
where the reference inputs for the adversarial agents ate =

25 andus = 26. Therefore, the adversarial agents will converge
exponentially t@®25 and26, respectively, with raté0.

The goal of the adversaries is to drive the states of the caepe
tive agents into the unsafe $é={y € R|y > 20}. The results for
LCP and ARC-P are shown in Figure 3. The adversaries are@ble t
achieve their goal only with LCP. The cooperative agentspgpa
with ARC-P achieve both the agreement and validity cond#io
Because both of the adversaries always have larger statesyahe

consensus process for the cooperative agents is unaffectethe
final consensus state is the average ofrthe= 4 initial states of
the agents filtered by(z., z.); in this cased.5. Also, the rate of
convergence ism = 4.

30

0 0.5 1 15 2 25 3
t(s)
(@) LCP.
30
5 4
O L L L L
0 0.5 1 15 2 25 3
t(s)
(b) ARC-P.

Figure 3: Adversaries try to drive agents tol{.

Example 2: Consider the same multi-agent network as Exam-
ple 1, with the same initial conditions, but with agefits7, and
8 as adversaries (i.eY,= {6,7,8}). This time the adversaries’
dynamics are designed as

& = —10072z;, Vi € V.

Thus, they are oscillators with natural frequericidz and ampli-
tude given by their initial state. The goal of the adversaniethis
case is to force the cooperative agents’ states to osciltatelz.

The results for LCP and ARC-P are shown in Figure 4. As can
be seen in Figure 4(a), the cooperative agents executingsy@P
chronize and begin oscillating atHz, with a phase lag ¢f0° with
respect to the adversaries. However, for the case of ARGeP, t
cooperative agents achieve the agreement and validityitommsl
As the adversarial agents move their states inside the raintipe
filter ¢, the limit point for the cooperative agents is shifted, whic
can be seen in Figure 4(b) as a change in the shape of the expo-
nential decay each time the adversaries move through thggera
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Figure 4: Adversaries try to force agents to oscillate ab Hz.

This shifts the limit point fronB to 2.6, without affecting the rate
of consensus.

Example 3: Consider a multi-agent network withl agents,
where only agen$1 is an adversary. The initial states of the coop-
erative agents are; (0) = —1, z2(0) = -2, ..., x50(0) = —50.
The adversary is designed with time-varying dynamics gisethe
following expressions:

if 0<t<1;
it ¢ >1;

5651 = —0.257T2$51
51 = —0.47wsin(0.27(t — 1))

and initial conditionszs1(0) = 0, £51(0) = 157. The resulting
trajectory is

a1 (1) = 30 sin(0.57t) t <1
T Y 2cos(0.2m(t — 1)) +28 ¢ > 1.

The objective of the adversary is to bring the states of ttap€o
erative agents into the unsafe sétas in Example 1), and force
them to oscillate at a frequency 6f1 Hz. The results for LCP

5 20 25

state

- 5 10 15 20 25
t(s)

(b) ARC-P.

Figure 5: A single adversary tries to drive 50 cooperative
agents to oscillate ab.1 Hz in the unsafe set/.

ulation. The result is that the trajectory of the coopemtigents
appears to be a single curve in the figure. Clearly, the admers
is able to achieve its objective only with LCP. The conserisuois
point for ARC-P is—25, i.e., the average of; (0),. . .,z49(0).

Example 4: We consider the performance tradeoff required
for robustness to adversaries. For this purpose, condidesame
multi-agent network of Example 1, but with no adversariess A
shown in Theorem 2, the rate of exponential convergence is
n—2F. The change in the rate of convergence witfs illustrated
in Figure 6 for the eight agent network. Note that ARC-P resguc
to LCP in the casé’ = 0. Itis also important to note that although
the limit point observed in Figure 6 is the same in all fouresashis
would not be the case with asymmetries in the initial condi

By scaling ARC-P in (10) by the factok, we may eliminate
the tradeoff in performance for robustness to adversaiesmake
ARC-P perform as well as LCP. However, LCP may also be scaled
to improve its rate of convergence. Moreover, scaling ARGHP

and ARC-P are shown in Figure 5. In this case, the convergenceincur a reduction in robustness to time delays as it does A,

rates for LCP and ARC-P ari and49, respectively, so the pair-
wise difference between the states of cooperative agentaies
negligible by 0.1 s (approximately five time constants) thi@sim-

Indeed, scaling LCP scales the largest eigenvalue of thiatiap,
which reduces the robustness to time delays [20]. Invetstigaf
the robustness of ARC-P to time delays is left for future work
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Figure 6: Performance tradeoff for robustness with ARC-P.

6. RELATED WORK AND DISCUSSION

More recently, there has been work in mobile robotics, which

Some of the earliest work on reaching consensus in the presen Views coordination problems from a distributed computirey-p

of adversaries can be found in [28] and [16], where the Bymant
agreement problem was first introduced. The notion of adwers
described in this paper is similar to Byzantine failures] has the
same intent, i.e., to consider robustness to some sensersf-wo
case behavior. However, the restriction on continuity & tha-
jectory and the requirement to share true state informatiake
our model more limited than the Byzantine fault model. Byzan
tine faulty processors are allowed to change their stataywalid
state, and are allowed to send different messages to differe-
cessors. But within the environment of Euclidean space atid w
evolution in continuous-time, the restriction of contityuis sensi-
ble and even required in many physical situations. Furtbeerrif
the state information is obtained through sensing or brastdtom-
munication, it is reasonable to assume the same state iafimnm
is received by all agents (under the assumption of perfestcss).
The Byzantine agreement problem has been generalizedvo all
approximate solutions for both synchronous and asynchiosgs-
tems whenever the values are arbitrary real numbers [6] fikae
¢ of this work is modeled after the class of approximation fiors
considered in [6]. In contrast to [6], we constrdobn the topology
of Euclidean space as opposed to using multisets. Morether,
select function is not needed because the adversaries tdaidieo
their true state. This is why we are able to loosen the cansiva
the ratio of adversaries to > 2F + 1 (fromn > 3F + 1). Anin-
teresting consequence of the results presented here ihéhelass
of approximation functions considered in [6] are Lipschitntin-
uous (the proof of the Lipschitz continuity of the selectdtion
follows because the select function is linear).

spective. The goal of the research is to characterize thkaseaet
of assumptions required for achieving a certain coordhadsk
in finite time [29]. One of the tasks considered is for a grofip o
robots to gather at a single point in space (i.e., rendevndimite
time [32]. In order to consider the weakest assumptions erc#h
pabilities of the robots, it is common to assume that the tohece
indistinguishable, have different local coordinate framand are
oblivious (which means they do not remember past obsenstio
or computations performed in previous steps). In some césses
assumed that all robots are able to obtain the exact pogifiaf
other robots, which is similar to the case considered infhjzer.

The robot gathering problem has also been studied in the pres
ence of faults [1], including Byzantine faults [4]. From aulibuted
computing perspective, the issue of stability of the rolystaamics
is ignored, and the evolution of the robots occur in comporai
cycles (e.g., th&Vait-Look-Compute-Moveycle) [29]. The com-
mon computational models used are the ATOM model [32], where
the full cycle is executed instantaneously and atomicalhg the
CORDA model [29], where each stage requires a (nonzerogfinit
amount of time to execute any given stage, and any non-nuéemo
action will result in a (nonzero) finite distance moved.

The gathering problem with Byzantine failures shares sime s
ilarities with the adversarial agreement problem. As noerad
above, in some cases all-to-all sharing of state informaioas-
sumed [4]. Also, the cooperative agents are oblivious, kwic
also the case in our work because the control input is statit.
ditionally, in ARC-P the cooperative agents are indistispable,
although this is not explicitly required in our model.Thare also



some key differences between the gathering and adveragried-
ment problems. In our model, it is implicitly assumed thesai
global inertial coordinate frame, unless the relativeestatre the
quantities sensed. Also, in the gathering problem, consettsa

point must be achieved in finite time, as opposed to the asymp-

totic requirement of the adversarial agreement problenweer,
because the dynamics of the robots are not consideredijtgtébi
assumed, whereas in the adversarial agreement problendythe
namics of the individual agent and of the subsystem of catijper
agents is fundamental. A consequence of modeling the dysami
as ODEs is that the system model is synchronous. This diffens
the gathering problem with Byzantine faults, where the esysts
often assumed to be asynchronous [4].

Another closely related research problem is the issue afrggc
of consensus in multi-robot systems [9]. A distributed uston
detection system (IDS) has been developed using a hybriccimod
of robotic agents that monitors neighboring agents to deten-
cooperative agents using only local information [9]. Thetidbuted

agent system achieves the task. By extending the framevifitRlo
to continuous-time and by defining the cost function

(>

ij=1

C = lim

Jim | 3 (i(t) = () + 3 dlisr(1), o) ) ,

for the adversarial agreement problem, it is straightfodita show
using the results of this paper that ARC-P is worst-casestotou
adversaries up t¢" = L"T*lj agents in complete networks. This
shows that our interpretation of robustness is conformablaat
of [12].

7. CONCLUSIONS AND FUTURE WORK

In this paper, we provide a general model for adversariesiin E
clidean space and propose the adversarial agreement prohle
consensus problem in the context of adversaries. Then, tin@ in
duce the Adversarially Resilient Consensus Protocol (AR@hat
combines ideas from distributed computing and control ensss

monitors provide false information [8], and improved byngspast
information [7]. The distributed IDS approach differs frdkRC-

P because the agents executing ARC-P are oblivious, so they d
not require past information for robustness to adversaridsre-
over, the approximation functions can be computed in litieae,

so they are very efficient. However, the adversarial agre¢preb-

lem is not concerned with issues such as collision avoidamisieh
makes the agents executing ARC-P susceptible in this castheD
other hand, avoiding collisions with misbehaving agents lgen
considered for the distributed IDS [8].

Also, the issue of security of linear consensus networkdbkas
studied. In [25], the issue of a single malicious agent issabn
ered. The same authors later extended the work to chametae
connectivity of the network required to tolerate misbehgvagents
and non-colluding agents in [26]. A computationally expem$but
exact algorithm was presented in [26] to detect and isolpt® &
misbehaving agents in networks with connectivity at |€#st- 1.
Additionally the structure of the entire network was neeeggor
the exact algorithm [26]. In [27], two approaches were cbersd
to reduce the computational complexity and require onltiglar
network information. The first assumes the network is cosagti
of weakly interconnected subcomponents and restricts ¢haw
ior of the misbehaving agents. The second imposes a hiécatch
structure to detect and isolate the misbehaving agentspibidem
considered in these papers requires detecting and isplimis-
behaving agents, and therefore results in more complexitlgs
than ARC-P.

Another approach is considered in [31], where the feasyuli
reaching consensus on any function of the initial state®fsid-
ered in the presence of malicious agents. In this case,rtbarity
of the protocol is exploited to calculate the initial valumsactly
in at mostn steps, where: is the number of nodes. Similar to
our model for adversary, the malicious agents send the safime i
mation to all their neighbors. However, the malicious ageare
modeled in discrete-time, so there is no continuity retitnc

Finally, [12] presents a framework for determining the retbu
ness of distributed algorithms for discrete-time, synobres algo-
rithms on undirected graphs. The robustness of an algoristhm
defined with respect to a fault model and is measured usingta co
function. The cost function is a formal model of the coopeeat
task, and is defined on a domain consisting of all state anat inp
trajectories, initial states, and environmental varialié the net-
worked multi-agent system. The minimizer of the cost functi
should occur on a subset of the domain where the networketi- mul

show that it solves the adversarial agreement problem. tiadi
ally, we show how to obtain approximate solutions to the [mob

in finite time. Then we provide several simulations to illase

the resilient behavior of ARC-P to adversaries and the peidioce
tradeoff required for the robustness to adversaries. lgina¢ de-
scribe the related work and show how ARC-P is worst-case ro-
bust [12] to adversaries in complete networks wheneverdtie r

of adversaries to total agents is less than one-half.

Currently, we assume an “ideal” network, where all agengs ar
able to obtain instantaneous, real-valued state infoonditom ev-
ery other agent. This assumption isolates the network tainées
from the issue of adversaries. In future work, we would lige t
relax these idealized assumptions by simultaneously deriag
adversaries with other network uncertainties, such as dietays,
packet loss, channel noise, and quantization. Also, fopth&ocol
to be more useful, we intend to generalize the protocol foi-ar
trary network topologies by using a local bound on the nunadfer
adversaries amongst each agent’s neighbors.
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