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ABSTRACT 

The AI model-based diagnosis community has developed qualitative reasoning 
mechanisms for fault isolation in dynamic systems. Their emphasis has been on 
the fault isolation algorithms, and little attention has been paid to robust online 
detection and symbol generation that are essential components of a complete di-
agnostic solution.  This paper discusses a robust diagnosis methodology for hy-
brid systems that combines fault detection with a combined qualitative and quan-
titative fault isolation scheme.  We focus on fault detection, symbol generation, 
and parameter estimation, and illustrate the effectiveness of this method by run-
ning experiments on the fuel transfer system of aircraft. ©: 2003 IFAC 
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1. INTRODUCTION 
 
This paper addresses the problem of designing and 
implementing online monitoring and diagnosis 
algorithms for complex systems whose behavior is 
hybrid (discrete + continuous).  Hybrid models 
capture the behavior of embedded systems that are 
common in the avionics, automotive, and robotics 
domains. This work deals with a special class of 
embedded hybrid systems characterized by con-
tinuous plant dynamics and a discrete supervisory 
controller. The behavior of the plant evolves in 
continuous time governed by the physical parame-
ters of plant components and their interconnec-
tions. The controller generates actuator signals at 
discrete time points that can change (i) the opera-
tional modes of the plant by turning components 
ON and OFF, (ii) component parameter values, and 
(iii) the set points of regulators. These operating 
mode changes produce discrete changes in the dy-
namic models of the system behavior, and behavior 

analyses require multiple system models. As a re-
sult, tasks like monitoring, fault diagnosis, and 
control require appropriate model selection and 
switching to be performed online in real time. 
 
Current techniques in model-based diagnosis apply 
well to dynamic systems whose behavior is mod-
eled by discrete event [Lunze and Schroder, 
'02;Sampath et al., '96], or continuous models 
[Gertler, '97;Mosterman and Biswas, '99]. For hy-
brid diagnosis, the discrete-event approach defines 
abstractions of system behavior (both nominal and 
faulty) that map to discrete event representations. 
The resultant information loss may be critical for 
tasks like fault isolation and control. [Manders and 
Biswas, '01] have demonstrated that behavior tran-
sients are the key to quick diagnosis of abrupt 
faults in continuous systems. Discrete event mod-
els also require pre-enumeration of all faulty and 
non faulty behavior trajectories, which may be 
computationally infeasible. Traditional algorithms 
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for continuous diagnosis are based on a single 
model with no provision for discrete changes. 
Therefore, discrete effects of mode changes have 
to be modeled by complex continuous non-linear 
functional relations that are hard to analyze online 
in real time.  
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Recent work on diagnosis of hybrid systems 
[Dearden and Clancy, '02;Hofbaur and Williams, 
'02;Zhao et al., '01] has focused on discrete faults, 
and required the enumeration of the model in all 
modes to perform diagnostic analysis. This work 
discusses a model-based diagnosis methodology 
for parametric faults in hybrid systems that do not 
require explicit pre-enumeration of models in all 
modes of system operation. Our online hybrid di-
agnosis scheme uses a novel approach that com-
bines fast qualitative reasoning techniques with 
parameter estimation methods to achieve more 
refined and accurate diagnoses [Narasimhan and 
Biswas, ‘02]. The qualitative approach overcomes 
limitations of quantitative schemes, such as con-
vergence and accuracy problems in dealing with 
complex non-linearities and lack of precision of 
parameter values in system models. It significantly 
cuts down the computational complexity to facili-
tate online processing. The qualitative reasoning 
scheme is fast, but it has limited discriminatory 
ability. To uniquely identify the true fault candi-
date, we employ a quantitative parameter estima-
tion scheme, which also returns the magnitude of 
the deviated parameter. The paper focuses on fault 
detection, symbol generation, and parameter esti-
mation algorithms that work in conjunction with 
the qualitative fault isolation scheme. To deal with 
realistic situations, the algorithms are designed to 
be robust to modeling errors and measurement 
noise. 

2. TRACKING HYBRID BEHAVIOR 
Our diagnosis architecture implements a scheme to 
track the nominal system dynamics using a robust 
observer scheme implemented as a combination of 
an extended Kalman filter (EKF) and a hybrid 
automaton. A fault detector triggers the fault isola-
tion scheme, which first generates an initial candi-
date set, and refines it by tracking and analyzing 
the fault transients using fault signatures. The hy-
brid nature of the system complicates these tasks, 
because mode transitions cause model switching, 
which has to be included in the online behavior 
tracking and fault isolation algorithms. 
 
The hybrid observer has to track (i) continuous 
behavior in individual modes of operation, and (ii) 
discrete mode changes (controlled and autono-
mous). At mode changes, the new state space 
model and the initial state of the system are re-
computed. The hybrid observer scheme is designed 
as an extension of the continuous extended Kalman 
filter. Model uncertainty and measurement noise 
are implemented as white, uncorrelated Gaussian 
distributions with zero mean. The state space 
model in mode q is defined as:  

where w is distributed N(0,Q) and v is distributed 
N(0,R), and Q and R are process and measurement 
noise covariance matrices. It is assumed that wk 
incorporates the ∆Fq.xk term that captures model-
ing errors in the system. In our work, the Q and R 
matrices were determined empirically. The ex-
tended Kalman filter algorithm follows the meth-
odology presented in [Gelb ’96]. 
 
Mode change calculations are based on the system 
mode at time step k, qk, and the continuous state of 
the system, xk. The discrete controller signals to 
the plant are assumed known. For controlled tran-
sitions, we assume such a signal is input at time 
step k, and the appropriate mode transition is made 
at time step k+1 to qk+1. For autonomous transi-
tions, the estimated state vector, xk is used to com-
pute the Boolean functions that signal mode transi-
tions. A mode transition results in a new state 
equation model, i.e., the matrices Fq, Gq, Cq, and 
Dq are recalculated. To simplify analysis, we as-
sume that mode changes and faults occur only after 
the Kalman filter state estimate has converged to 
its optimal behavior. Further details of the ob-
server implementation are presented in [Narasim-
han ’02]. 

3. FAULT DETECTION AND SYMBOL 
GENERATION 

The fault detector continually monitors the meas-
urement residual, r(k) = y(k) − ŷ(k), where y is the 
measured value, and ŷ is the expected system out-
put, determined by the hybrid observer. Ideally, 
any non-zero residual value implies a fault, which 
should trigger the fault isolation scheme. In most 
real systems, the measured values are corrupted by 
noise (Gaussian with zero mean and unknown but 
constant variance), and the system model (thus the 
prediction system) is not perfect. Therefore, statis-
tical techniques are required for reliable fault de-
tection. 

3.1 Fault  detect ion scheme 
We start by defining a signal deviation at time step k 
in terms of an average residual for the last N2 sam-
ples, i.e., 
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A hypothesis testing scheme based on the Z-test is 
employed to establish the significance of the devia-
tion. To perform the Z-test, the variance of the meas-
urement residual must be known. (For unknown vari-
ance the T-test may be performed, but its confidence 
interval is much larger.) To approximate the condi-
tions necessary for the Z-test, the variance of the sig-
nal is estimated, but from a larger data set containing 
N1 samples, i.e., : 21 NN >>
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The Z-value has distribution N(0,1): 
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The confidence level, defined by α, defines the bound 
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This bound can be transformed to another bound 
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The proposed fault-detection scheme is sub-optimal 
compared to the well-known CUSUM algorithm 
[Basseville and Nikiforov ‘93]. However, its advan-
tage is that it makes no assumptions concerning the 
properties of the changed mean value (it does not 
have to be constant), and it is computationally sim-
pler.  

3.2  Symbol Generat ion 
The transients in the deviant measurements are 
tracked over time and compared to predicted fault 
signatures to establish the fault candidates. A fault 
signature is defined in terms of magnitude and higher 
order derivative changes in a signal [Mosterman and 
Biswas, '99]. However, to achieve robust and reliable 
analysis with noisy measurements, we assume that 
only the signal magnitude and its slope can be relia-
bly measured at any time point. Since the fault signa-
tures are qualitative, the symbol generation scheme is 
required to return (i) the magnitude of the residual, 
i.e., 0 ⇒ at nominal value, + ⇒ above nominal value, 
and − ⇒ below nominal value, and (ii) the slope of 
the residual, which takes on values, ± ⇒ increasing 
or decreasing, respectively. Also, measuring only 
magnitude changes and slopes of residuals implies 
that the direction of the discontinuity plus the slope 
of the signal provides the discriminatory evidence 
needed for fault isolation. Otherwise, only the first 
change in the signal provides the discriminatory evi-
dence for fault isolation [Manders et al., '00].   
 
The magnitude of the residual is computed as the sign 
of µ̂ . When a discontinuity is detected, the slope of 
the residual after the discontinuity is computed by 
making the assumption that the time point of fault 
detection is . The approximate variance of the 
residual at this point is . It is as-
sumed that the noise variance of the signal does not 
change due to the fault. A delayed value is used to 
prevent distortion of the variance estimate.  
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Like in the case of symbol generation for the residual 
magnitude, a statistical test on the mean value is used 
to make the decision on the value of the slope. The 
size of the window used to calculate the mean is in-
creased until the symbol is successfully generated. 
The estimated ‘mean slope’ of the signal after fault 
detection is defined as: 
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where  is an estimate of the ‘initial’ residual 

value after the fault detection, using  samples: 
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rσ . The uncertainty of the 

initial residual value depends on the noise and , 
while the uncertainty of the mean estimate depends 
on the noise and the number of samples used in the 
calculation. Using a confidence value 

3N

α and the cor-
responding  value defined in equation (2), the 
condition of for a + slope symbol is given by: 
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The condition for the negative symbol can similarly 
be derived. The rules for generation of the slope sym-
bol can be summarized as follows. 
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The method is illustrated in Figure 1. The first plot 
shows the noisy residual, while the other plots show 
the slope estimate dµ with the corresponding confi-
dence bounds, and also the confidence bound of the 
initial residual estimate 

0rµ . As the figure illustrates, 

the choice of  is not straightforward. A small 
value results in a large threshold and a large value 
may cause significant delay. Another disadvantage of 
a large value is that it may suppress short transients 
in the residual. The best values for  were between 
5 and 20. 

3N

3N

4. FAULT ISOLATION AND      
IDENTIFICATION 

Once a fault has been detected, fault isolation and 
identification is performed to uniquely isolate the 
fault and determine its magnitude. Our fault isola-
tion and identification architecture, presented in 
Figure 2 involves three steps: (i) qualitative roll-
back, (ii) qualitative roll-forward, and (iii) quanti-
tative parameter estimation. 
 



For hybrid systems, discontinuous changes in 
measured variables can only occur at the point of 
failure or when discrete mode changes occur in the 
plant behavior. At all other time points the plant 
behavior is continuously differentiable. We take 
advantage of this fact for qualitative analyses of all 
measured variables, yk.. The deterministic form of 
the corresponding residual, rk is continuously dif-
ferentiable after the fault occurrence, and after 
each mode change, so it can be approximated by 
the Taylor series expansion: 

 
Figure 2: Fault Isolation and Identification Architecture k
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We use this formulation to define the fault signa-
ture corresponding to a residual as the qualitative 
value of the magnitude and higher order derivative 
terms of the Taylor series. As discussed above, the 
qualitative values used are: (−, 0, and +).  

The qualitative roll-back algorithm can be sum-
marized as follows. Given the observer estimated 
mode trajectory Q = {q1,q2, …, qk}, we first use the 
back propagation algorithm [Mosterman and 
Biswas, '99] to generate hypotheses in mode qk. 
The deviated symbols at the time of fault detection 
(α) are back propagated through the temporal 
causal graph in mode qk to identify causes for the 
deviations. Since the fault may have occurred in 
previous modes, we then go back in the mode tra-
jectory and create hypotheses in each of the previ-
ous modes qk-1, qk-2,…, qk-n+1, where n is a number 
determined externally by diagnosability studies. 
During the crossover from a mode to a previous 
mode, the symbols are propagated back across the 
mode change using the inverse of the reset func-
tions (γ-1) associated with the mode transition. The 
hybrid hypotheses generation algorithm returns a 
hypotheses set, H = {h1, h2, …, hm}, where each 

hypotheses hi is a three-tuple {q,p,λ}, and q repre-
sents the mode in which the fault is hypothesized 
to have occurred, p is the parameter whose devia-
tion corresponds to the fault, λ is the direction of 
deviation of parameter p. 
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Figure 1: Slope Symbol Generation with 

different N3 Values 

 
The next step is to generate fault signatures for 
each hypothesis in the current mode, and match 
them against the observed behavior. The occur-
rence of the fault may change the parameters of the 
functions that determine autonomous transitions 
leading the observer to incorrectly predict (or not 
predict) an autonomous transition. Hence the cur-
rent mode of the system has to be estimated for 
each hypothesis.  But this cannot be done till the 
faulty parameter value is estimated. To overcome 
this problem, we apply all observed controlled 
transitions, and calculate the fault signatures in the 
new mode. When fault signatures do not agree 
with the observations, autonomous mode transi-
tions are hypothesized, new fault signatures com-
puted, and the matching process is continued. This 
process, again limited to n steps (diagnosability 
limit) is the roll-forward process [Narasimhan and 
Biswas ‘02]. Further mismatches in signatures and 
symbols eliminate hypotheses. 
 
[Manders et al., '00] have shown the limited dis-
criminatory capabilities of the qualitative progres-
sive monitoring scheme leads to multiple fault hy-
potheses being reported as the diagnostic result. 
We use a parameter estimation technique for fur-
ther fault isolation and identification. Even when 
isolation is reduced to a single candidate, it is im-
portant to estimate the faulty parameter value. Due 
to the hybrid, possibly non-linear nature of the 
system traditional parameter estimation techniques 
cannot easily be applied. A novel mixed simula-
tion-and-search algorithm is applied to estimate 
physical parameter deviations in the system model. 
For multiple fault hypotheses, multiple optimiza-
tions are run simultaneously, and each one esti-
mates one scalar degradation parameter value. 
The parameter estimation scheme is initiated at the 
time point of fault detection, Tfault. The current state 
variable values and a set of N measurement samples 
that includes the system input and output signals are 
used (currently N is pre-defined). The estimation 
scheme is based on an optimization algorithm (tech-
nically any non linear optimization algorithm may be 
employed), and the goal is to find the fault parameter 



value that minimizes the least square error between 
the expected system output generated by the simula-
tor and the available measurement values over the N 
samples. A greedy search algorithm is applied to 

minimize the error using an error surface that is pa-
rameterized by the fault parameter, p.  The simulator 
uses the hybrid automata model of the system to gen-
erate system behavior, Y , from an arbitrary initial 
state (currently from T

ˆ
fault, with X (Tfault) as initial 

state) using the state space model of the system. The 
simulator is parameterized, thus the fault parameter 
can be modified for different simulation runs. 
 
Theoretically the minimum of the error surface 
ε2(p) can be determined by scanning the possible 
parameter range and determining the minimum 
value of ε2. The calculation of each point ε2(p) of 
the error surface involves a run of the simulator 
with parameter p. Since each run is computation-
ally expensive, the number of simulation runs must 
be kept as low as possible. A practically feasible 
solution is to use an iterative scheme that calcu-
lates the error values for a small number of p val-
ues by making the assumption that error surface is 
almost parabolic. The optimization in this case is 
performed by a series of parabolic fits, with a rela-
tively small number of simulator runs. This 
scheme is run for every fault hypothesis, and the 
one that returns the minimum least square error is 
defined to be the true fault. This scheme has been 
successfully applied to isolating and identifying 
the true fault in a number of experiments that we 
have conducted. 

5. EXPERIMENTAL RESULTS 
Figure 3 shows the fuel system schematic of fighter 
aircraft that we have used as our diagnostic test bed. 
The fuel system is designed to provide an uninter-
rupted fuel supply at a constant rate to the aircraft 
engines, and at the same time to maintain the centre 
of gravity of the aircraft. 
 
The system is symmetrically divided into the left and 
right parts (top and bottom in the schematic). The 
four supply tanks (Left Wing (LWT), Right Wing 
(RWT), The Left Transfer (LTT), and Right Transfer 
(RTT)) are full initially. During engine operation, 
fuel is transferred from the supply tanks to the receiv-

ing tanks (Left Feed (LFT) and Right Feed (RFT)) in 
a pre-defined sequence. The pump is modeled as a 
source of effort (pressure) with a transformation fac-
tor that defines its efficiency, and the tanks are mod-
eled as capacitances. The pipes are modeled as 
nonlinear resistances. 

Table 1: Fuel System Experiments 
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Figure 3: Fuel System Schematic 

 
The diagnosis experiments used a controller se-

quence provided by the manufacturer. Table 2 
shows the parameters that were tuned to achieve a 
desired diagnostic performance. These parameter 
values were determined empirically. Their values 
depend on the nature of the system, the set of 
faults that we wish to isolate, and the trade-off of 
time to detection and isolation versus accuracy. It 
is clear that the results of the fault isolation 
scheme are very dependent on the choice of pa-
rameters for the Kalman filter and the fault detec-
tor. This issue is often ignored in diagnosis studies. 

 

Figure 4: Transfer Manifold and Right Wing Tank 
Pressure at Fault Detection 

 
The results of diagnosis experiments for a set of 
faults appear in Table 1. The parameters varied for 
the experimental runs were the percentage of noise 
in the measurement, and the fault magnitudes (see 
[Narasimhan, '02] for details). 
In what follows, we give demonstrate the details of a 
fault run, where the system’s left wing tank pump 
performance degraded to 66% of its original value at 



time step = 150. In this and other experiments, the 
pressures at the output of the six tanks plus the pres-
sure at the transfer manifold were the measured val-
ues. Mode changes and other factors, such as magni-
tude of the fault led to late fault detection at time step 
= 433. This is illustrated in Figure 4. The TCG log 
appears on the left bottom of the screen. In the Trans-
fer Manifold Pressure plot (top right), the deviation 
of the observer estimation (black line) from the sen-
sor measurement (red dots) can be observed. The 
TCG log shows the initial list of probable fault can-
didates. At the very next time step, the fault isolation 
system uses the discontinuity in the transfer manifold 
pressure to reduce the number of candidates to 10, 
i.e., the candidates that are inconsistent with the dis-
continuity are dropped. 
 
At time step = 469, the fault detector connected to the 
Left Wing Tank Pressure fires, and this reduces the 
probable fault candidate list to 6. Finally, when a 
right wing tank pressure deviation is detected, the 
candidate set is pruned down to four: three pipe resis-
tance increases, and the reduction in pump perform-
ance. At this point, no more reduction is possible in 
the candidate set. The qualitative analysis (TCG) is 
stopped and the quantitative analysis (Parameter Es-
timation) starts, and the candidate LeftWingTank.TF 
(Pump parameter) return the least error after the es-
timation. Its value is set to the estimated value (0.66) 
and the observer is found to continue tracking the 
faulty system well. 

6.  SUMMARY 
This paper has discussed an integrated approach 

to solving the tracking, fault detection, isolation, 
and identification tasks for hybrid systems. A key 
issue that we have demonstrated for the model-
based diagnosis community is the use of qualita-
tive reasoning techniques for robust diagnosis in 
real situations. This required the use of statistical 
techniques for fault detection and symbol genera-
tion. Our work is motivated by the requirements of 

the fault accommodation task, where diagnosis has 
to be performed online for embedded systems dur-
ing their operation. Hybrid diagnosis techniques 
directly apply to embedded systems and else where 
[Narasimhan, '02] we have also demonstrated 

through time and space complexity analysis that 
our algorithms can be applied to online analysis in 
resource constrained environments. 
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