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Abstract. Cyber-Physical Systems (CPS) [1] are engineered systems that re-

quire tight interaction between physical and computational components. De-

signing a CPS is highly challenging [2] because these systems are inherently 

complex, need significant effort to describe and evaluate a vast set of cross-

disciplinary interactions, and require seamless meshing of physical elements 

with corresponding software artifacts. Moreover, a large set of architectural and 

composable alternatives must be systematically explored and evaluated in the 

context of a highly constrained design space. The constraints imposed on the se-

lection of alternatives are derived from the system’s functional, performance, 

dimensional, physical, and economical objectives. Furthermore, the design pro-

cess of these systems is highly iterative and requires continuous integration of 

design generation with design selection and manipulation supported by design 

analyses. Existing computer-aided design tools are not well-suited for this 

method of design. To facilitate the iterative design process for CPS-s, we have 

developed a design toolchain, OpenMETA [4] [9], built around a Domain-

Specific Modeling Language (DSML) [3], called the Cyber-Physical Modeling 

Language (CyPhyML). In this paper, we present parts OpenMETA that address 

the requirements of Design Space Exploration and Manipulation (DSEM) for 

CPS-s. 
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1 Introduction 

Cyber-Physical Systems (CPS) [1] are systems that require tight interaction be-

tween physical and computational components. These systems span several engineer-

ing domains such as mechanical, electrical, thermal, and cyber (i.e., digital control). 

CPS design is highly challenging [2] because these systems are inherently complex, 

need significant effort to describe and evaluate a vast set of cross-domain interactions, 
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and require seamless meshing of physical elements with their corresponding software 

artifacts. CPS design involves a set of architectural and composable alternatives (a 

‘design space’) that must be systematically explored and evaluated. Design spaces 

formulated with these alternatives can grow exponentially large due to combinatorial 

explosion of design choices. A way to limit discrete design selections is to utilize 

various known hard design constraints. These constraints can be derived from the 

system’s functional (e.g., gas, electric, or hybrid drivetrain), performance (e.g., min. 

torque of engine), dimensional (e.g., max. height or capacity), physical (e.g., weight, 

join structures), and economical (e.g. vendor acquisition cost, system’s operating 

cost) objectives. In this way, only those design configurations are generated that satis-

fy these design constraints. Using existing Computer-Aided Engineering (CAE) tools, 

the process of fully specifying all of the possible alternatives is cumbersome and has 

the potential of being extremely time-consuming, especially if a user were to apply all 

these design constraints manually. 

Fig. 1. 

OpenMETA Architecture 

Good system design must further consider several factors such as manufacturabil-

ity, stability, complexity, reliability, risks, time-to-market, etc. However, we consider 

these factors as secondary, coming after the basic set of constraints has been satisfied. 

The discrete selection of composable and architectural alternatives based on these 

primary constraints form the initial Design Space Exploration (DSE). The resulting 

full-system alternative designs (i.e., configurations or design points) can then be ana-

lyzed for evaluation against the secondary requirements. Existing CAE tools do not 

quite help in making this task easy, as few support any kind of parallel multi-model 

simulation execution and comparison of results. The result of these detailed system-

level analyses in terms of valid design selections and reformulations should then be 

incorporated into the original design space, which must be re-explored to generate a 

new set of valid design configurations. This iterative nature of the design process with 

strong bidirectional coupling between design activities and system analysis and veri-

fication is a key to efficient and effective CPS design. 



To streamline the iterative design process for CPS-s, we have developed a design 

toolchain called OpenMETA [4] [9] (see Fig. 1), built around a Domain-Specific 

Modeling Language (DSML) [3], called the Cyber-Physical Modeling Language 

(CyPhyML). The CyPhyML captures integration interfaces of system components 

across multiple design domains (e.g., Cyber, CAD, FEA) as well as generic assembly 

rules given in terms of composable and architectural alternatives and hard design 

constraints for the final assembly. OpenMETA supports multi-level and multi-fidelity 

exploration of system-level architectural and parametric tradeoffs. These tools facili-

tate the iterative design process by integrating formal qualitative reasoning methods, 

Design Space Exploration and Manipulation (DSEM), and analysis of design alterna-

tives. In this paper, we focus on tools that support DSEM for CPS design. 

The rest of the paper is organized as follows: Section 2 provides an overview of the 

design space portion of the CyPhyML. Section 3 describes our DSEM tools. Section 4 

puts our DSEM tools in the context of the iterative design process for CPS-s. Section 

5 presents a case study that shows DSEM tools usage and presents analyses results. 

Related work is given in Section 6, and Section 7 concludes the paper. 

2 Modeling Language 

The CyPyML uses Model-Integrated Computing (MIC) [3] techniques to support 

design-time integration of vast number of system-level design aspects and methods, 

and the automated exploration and manipulation of design spaces. Model-Integrated 

Computing (MIC) is the core technology on which CyPhyML and its tools are built. 

MIC focuses on the formal representation, composition, analysis, and manipulation of 

models during the design process. It utilizes models as the common concept through-

out the entire life-cycle of systems, including specification, design, development, 

verification, integration, and maintenance. The Generic Modeling Environment 

(GME) is a metaprogrammable toolkit that enables definition and use of Domain-

Specific Modeling Languages (DSMLs) [3] such as CyPhyML. In MIC, DSMLs are 

configured through metamodels, expressed as UML class diagrams, specifying the 

modeling paradigm of the application domain. Metamodels characterize the abstract 

syntax of the DSML, defining which objects (i.e. boxes, connections, and attributes) 

are permissible in the language. Simplistically, DSML is a schema or data model for 

all possible models that can be expressed by a language. A DSML for finite state 

machines would consist of states, and transitions, from which any valid state machine 

can be realized. The inherent flexibility and extensibility of GME via metamodels 

make it an ideal platform for CPS design and analysis using CyPhyML. 

CyPhyML captures the concepts of design models in various CPS domains, speci-

fies how these concepts are organized and related, and specifies the rules governing 

their composition (i.e., the relationships, inter-compatibility, and connectibility of 

discrete component models and subsystems). OpenMETA consists of a number of 

model interpreters and analysis tools, which can be used to generate system and anal-

ysis artifacts from system designs, and perform various structural and dynamic anal-

yses. 



Any DSML requires precise specification of the language’s syntax and semantics. 

Fig. 2 provides a simplified view of the design space part of the CyPhyML metamod-

el. As shown, the central modeling element in the language is called a DesignCon-

tainer. The key attribute of a design container is ContainerType, which can have one 

of the following three values: Compound, Alternative, or Optional. All elements of a 

compound design container must be part of the final system design. Alternative de-

sign containers are used to capture design choices/trade-offs. The final assembly will 

include only one of the choices from alternative design containers. Optional design 

containers are similar to alternative, but also allow ‘none’ as an option. 

Fig. 2. 

 
Simplified metamodel of the design space 

A key element of this language is that design containers can contain child design 

containers. This enables construction of a hierarchical AND/OR design space. The 

concrete elements of the design are Component and ComponentAssembly (CA). A CA 

is a system that can only contain components and child CAs (i.e. subsystems), and 

represents a system that has been fully explored, analyzed, and finalized. 

As can be seen in Fig. 2 components, component assemblies, and design containers 

have special elements called Property and Parameter. A property represents a static 

property of a component or a component assembly. Properties cannot directly be 

changed at design time during design space model construction. Examples of proper-

ties are engine’s power rating, or a driveshaft’s mass. A property of a design container 

may correspond to a basic property at that level in the design space or it may be a 

representative property that is calculated based on the chosen sub-elements of the 

design container. Alternatively, CyPhyML parameters can be used to specify a range 

of acceptable values. A key element of our tools is that parameters are automatically 

translated into design constraints to ensure that the values of the parameters generated 

for selected configurations lie within the ranges specified. 

CyPhyML also supports combining the properties and parameters using Value-

Formula. The ValueFlow connections are used to connect properties and parameters 

to value formulae. A simple example could be to calculate mass of the system by 

adding the masses of its sub-components. CyPhyML supports two different kinds of 

value formulae: SimpleFormula and CustomFormula (not shown in the figure). A 

SimpleFormula is used for basic arithmetic operations on incoming ValueFlow prop-



erties, while a CustomFormula is used in situations when a derived property needs to 

be calculated using complex operations, e.g., Cosine() and Sqrt(). 

For the specification of high-level as well as fine-tuned system requirements, Cy-

PhyML also provides a large number of constraint types to support design constraints 

arising from component interactions and due to functional and practical system re-

quirements. We provide details of the supported constraint types in the next section. 

3 Design Space Tools 

CyPyML provides a collection of modeling methods and tools for exploration and 

visualization of designs and design spaces, solving complex design constraints, and 

effective management of the design spaces and designs. A brief overview of these 

tools is given below. Examples of tool usage and analyses are given in Section 5. 

3.1 Design Space Exploration Tool (DESERT) 

This is our key tool for design space exploration. It uses symbolic constraint satis-

faction for design space exploration using Ordered Binary Decision Diagrams 

(OBDD-s) [5]. The choices in the design space come from the AND-OR-LEAF tree 

structure as well as from the variability of values that can be bound to properties and 

parameters. The design space is a cross product of all possible choice outcomes. The 

process begins with a binary encoding of the design space, including the AND-OR-

LEAF tree and the design constraints. Each node in the design space tree is assigned a 

unique integer identifier (ID). These IDs are then translated into BDD variables such 

that the encoding reflects the design container containment semantics. The properties 

and constraints are also handled symbolically as BDDs [6]. For handling variable 

properties, we extended BDDs to Multi-Terminal BDDs (MTBDDs), which enables 

values other than 0 and 1 as terminals of BDDs [6]. With this encoding, the constraint 

satisfaction amounts to the creation and composition of design constraints and the 

symbolic design space representation. The resultant BDD represents the pruned de-

sign space. The symbolic representation has been proven to handle very large design 

spaces consisting of up to 10
80

 design configurations [6]. The interested reader is re-

ferred to [5] for an overview of BDDs and to [6] for detailed constraint-driven design 

space exploration algorithm used in OpenMETA. 

The key elements of DESERT are shown in Fig. 3. The exploration controls allow 

the users to manage constraints and enable them to selectively apply them to explore 

design spaces. The number of viable constraints may reduce or increase as new con-

straints are applied or reverted respectively. It also permits grouping constraints using 

their types and domains for selective constraint application. Further, design elements 

can also be selected to be included in all configurations. 

The right-hand side of Fig. 3 shows the configurations in a tree view. The left pan-

el lists the configurations and the right panel shows the corresponding design space 

tree with selection frequency for each design element. Users can select configurations 

and corresponding design elements are highlighted. Users can also select a particular 



alternative element and corresponding configurations on the left become checked. The 

selected configurations can be exported back to design space. 

Fig. 3. 

Design Space Exploration Tool 

DESERT supports a number of different types of constraints, most of which can be 

specified graphically. However, for constraints that involve several complex mathe-



matical functions, an extended Object Constraint Language (OCL) [3] for their speci-

fication is also supported. Functions supported include all trigonometric and loga-

rithm functions as well as sign, rint, sqrt, and abs. The example constraint given be-

low ensures that the vehicle can accelerate at 2 m/s
2
 on a 20-degree uphill. 

(Powerplant_maxTorque() * 1.3558) >= ((Tire_radius()/1000) * (Vehicle_weight() + 

13000) * sin(0.35) + ((Vehicle_weight() + 13000)/9.8) * 2) (1) 

Fig. 4. 

Constraints type examples in DESERT 

DESERT allows compatibility constraints represented graphically as Implies con-

nections between design elements. Using AND/OR groups of design elements, these 

can be nested hierarchically to create complex Boolean expressions for compatibility 

constraints. Fig. 4(a) shows constraint that non-C7 engines are only compatible with 

CX31 transmission. The parameter specifications are also translated into constraints. 

In Fig. 4(b), the range given is translated into a parameter constraint to ensure that 

the value of spring_constant parameter lies between 0.75–45.0 N/m. Many require-

ments can be captured using simple limit constraints on properties. Fig. 4(c) shows a 

property constraint example.  For property constraints applicable only for certain 

selection of alternatives, a conditional property constraint can be used. In Fig. 4(d), 

MaxWeight4500 is applied only if ISG_PowerMgmt_and_Battery is in a configura-

tion. We also support succinct specification of constraints for some special cases. For 

example, all 4 tires of a vehicle might have same alternatives, but all must be same in 

any full-system configuration. Instead of specifying cross-product of compatibility 

constraints, DecisionGroup constraints can be used, where the user simply collects 

the alternative design containers, the equivalent compatibility constraints are auto-

generated. 



3.2 Component Assembly Export Tool (CAExporter) 

The configurations exported by DESERT contain only a flat set of references to the 

design elements that were selected during the DESERT process. The CAExporter tool 

is then used to convert these configurations into fully-specified component assemblies 

that include the full hierarchical and structural composition of all the components and 

sub-assemblies, along with all the ports and connections. 

3.3 Design Space Refinement Tool (DSRefiner) 

DSRefiner allows the user to select a subset of configurations of a design space and 

generate a refined design space using these configurations. The refined design space 

has the exact same hierarchical structure, ports, and connections as the original design 

space, but omits design elements from the original design space that are not part of 

the selected configurations. Further, original design constraints are removed, but a 

new compatibility constraint is added that ensures that when DESERT is run on the 

refined design space, the exact same set of configurations is generated. This avoids 

repetition of the analyses that were done in the original design space. DSRefiner is 

highly useful for gradually building design spaces, performing coarser-grained anal-

yses, and incorporating the results for refining and manipulating the design space. 

3.4 Design Space Manipulation Tool (DSRefactorer) 

DSRefactorer is a key design space tool that directly supports iterative design pro-

cess for CPS-s. Design spaces evolve continually during the design process as more 

knowledge is gathered as well as when more refinement is done or parts of the design 

space are finalized. We developed a dedicated tool that can manipulate design spaces 

according to various domain-specific use-cases, while maintaining the hierarchical 

placement, port restrictions, and valid connections. DSRefactorer is context sensitive 

such that the refactoring choices presented to the user and the actions taken depend on 

where and on what design element the tool is invoked. Following are some of the key 

refactoring use-cases: (1) Component Assembly (CA) to a Design Container (DC) for 

design space extension, (2) Component or CA to an Alternative DC with original 

component or CA as a choice, (3) Extract design elements of a CA or a Compound 

DC in the parent DC, (4) One or more components and/or CA-s to inside a new CA or 

a new compound DC, (5) DC to a new Alternative DC with original DC as one 

choice, (6) Compound DC to a CA, and (7) Optional DC to a Compound DC. 

3.5 Design Space Criticality Meter (DSCriticalityMeter) 

The DSCriticalityMeter generates the frequency of design elements in the set of 

configurations generated from a design space. Using this metric, designers can make 

informed decisions regarding resource allocation: if an element is ubiquitous (or ab-

sent) in the generated configurations, it might merit increased scrutiny. 



3.6 Supporting Tools 

OpenMETA has other interpreter tools that are associated with DSE. The Compo-

nent Authoring Tool provides importing capability from various domains (e.g. CAD, 

Modelica) into CyPhyML, essentially wrapping domain models with CyPhyML inter-

faces and making them readily usable in the OpenMETA toolchain. After the compo-

nent library is populated the Component Library Manager helps to discover and insert 

different instances of the same component types into an alternative design container. 

Once these containers (i.e., component- and subsystem-placeholders) are composed 

into a design space and design configurations are exported, the Master Interpreter 

automates the translation of each unique design configuration into an executable do-

main-specific model, essentially parsing the CyPhyML design configuration and gen-

erating a valid, simulation-ready compound model which incorporates preexisting 

component models. After these model transformations, the Master Interpreter trans-

fers the generated executable models (along with the appropriate domain-tool analysis 

packages) to the Job Manager, which executes the analyses using domain specific 

tools (e.g., Dymola, Creo, etc.) via the Job Manager. OpenMETA supports parallel 

execution of analyses, either locally on user’s computer or remotely on a cloud of 

Jenkins-managed ‘slave’ job executors, which have the appropriate domain-specific 

tools installed. 

4 Iterative Design Process and Design Flows 

CPS design is a major integration problem because of their inherently complexity 

and unexpected component interactions. As shown in [7], the design process must 

allow for the continuous existence of an executable system, with a concrete architec-

ture, well-defined interfaces, and an executable form. This allows designers to ana-

lyze their designs earlier during the design process and obtain useful feedback. This 

facilitates less error-prone designs, saved manpower, and manageable design spaces. 

To enable the iterative design process for CPS-s, OpenMETA supports three key de-

sign flows. 

Fig. 5 shows the iterative design process in OpenMETA pictorially. As can be seen 

a classic design flow is to begin with creating a design space model with top-level 

design container and then adding further design elements in it along with constraints 

on those elements according to design requirements. A second design flow show in 

the figure, begins from a single seed design. This design flow is highly applicable for 

the real-world design use-cases, where there are existing designs and design process-

es. Starting from the seed design, the user extends the design space (using the tools 

mentioned above) to add alternatives in place of concrete design elements such as 

components or component assemblies. In this fashion, the user grows a larger design 

space from that seed design. Another supported design flow is when the user does not 

have concrete design elements or assemblies to work with. In this case, the user can 

use surrogate equations in place of design space elements. The design space can still 

be explored and analyzed. These surrogates can then be replaced with more accurate 



models as they become available. Surrogates are also helpful for performing coarse-

grained analyses, the results of which can be used to refine the design space. 

Fig. 5. 

Iterative Design Process in OpenMETA 

It is important to note that while there are several design flows that users can exer-

cise in OpenMETA, all of the design space tools, such as DSRefactorer and DSRefin-

er, are equally applicable. Different design flows do not eliminate the need to contin-

ually evolve design spaces using a closed-loop integration of design and analysis 

activities. As shown in Fig. 5, and described previously, OpenMETA provides several 

supporting tools to build, test, and analyze design configurations. 

5 Case Study 

In this section we present a simplified drive line model as a case study for design 

space exploration. Many CAE tools (e.g., CAD, FEA, CFD, Modelica) have great 



capabilities to analyze a design, but creating and extending a design in CAE tools 

often takes significant time, and invariably requires subject matter expertise. To im-

prove the process, OpenMETA allows users to alter a seed design with alternative 

component instances, and then to evaluate which combination performs best. We use 

DSEM tools in OpenMETA to capture architectural and composable alternatives and 

specify design constraints, generate configurations that satisfy these constraints, and 

then apply a set of model translations to generate fully-specified executable models, 

ready for simulation by the CAE tools. 

Fig. 6. 

Driveline Design Space Model 



Fig. 6 shows the design space of a simplified drive line that contains several sub-

systems. In the figure, each dotted icon in the center represents a DesignContainer and 

system interfaces are at the periphery of the image. The architecture and composition 

of the design space was derived from a single design point built in Modelica. The 

design space is extended with additional engine, power take-off module, transmission, 

final drive, hydraulic fan, and hydraulic pump alternatives. This leads to a large de-

sign space – 15456 combinatorial configurations – many of which are not even viable 

due to design constraints. Fig. 7 shows 4 constraints (see Section 3.1 for constraint 

types). FinalDriveSymmetry constraint ensures that the left and right drives have the 

same gear ratios. MinPower and MaxPower constraints assert that the engine’s nomi-

nal power lies between the transmission’s min. and max. power ratings. NoMoreTh-

anOnePumps ensures the design uses no more than one hydraulic pump. Application 

of these constraints reduces the viable number of designs to 47 – a manageable set 

that users can analyze. 

Fig. 7. 

Constraints used in the drive line design space 

The generated configurations capture the relevant information across multiple do-

mains, but in this case study, we focus on the dynamic behavior of the systems: the 

generated Modelica system models, simulation execution, and visualization of results. 

Results are collected locally and presented using the Project Analyzer tool. Visualiza-

tion capabilities include requirement analysis, design point grouping, design point 

comparison, parallel axis plots, multivariate plots, surrogate model views, multi-

attribute decision analysis, and physical limit violations across the entire design space. 

We used OpenMETA to analyze the behavior of the selected 47 configurations us-

ing the Modelica simulation tools, and the collected results are shown in Fig. 8. It 

shows two visualization capabilities of the Project Analyzer (a) parallel axis plot and 

(b) multi-attribute decision analysis. The parallel axis plot has vertical axis for each 

variable of interest from the analysis and each colored plot represents a design con-

figuration. The requirement objective and threshold values are shown with green and 

red colors respectively. The multi-attribute decision analysis widget shows an ordered 

list of configurations based on the user’s specified weighting of each variable of inter-

est. This is an interactive widget that helps to quickly identify differences between 

designs and choose the best design based on user preferences. 



Fig. 8. 

 
Project Analyzer: Parallel axis plot and multi-attribute decision analysis 

6 Related Work 

Design Space Exploration for complex CPS cannot be realized as a closed form 

analytical search procedure, and requires multiple techniques, at multiple abstractions 

and fidelity, and involves complex iterations. Our toolchain is uniquely placed in that 

respect incorporating a comprehensive suite of methods for design space exploration 

(DESERT – discrete combinatorial design space, PET – parametric design space, 

Simulation based design metric evaluation, Dashboard for design space metric visual-

ization). However, there are several comparable efforts implementing constraint-

based search procedures using various methods. The use of OBDDs for design space 

exploration is well known [6]. In the work presented, we use these concepts and tech-

niques, but extend the framework with a library of tools (e.g., translation, parallel 

execution of simulations, and simplified result comparison) that are necessary for the 

iterative design process for cyber-physical systems. There are also satisfiability solv-

ers such as CoBaSA [10], but these do not provide means for exploration and manipu-

lation of design spaces, an issue that is addressed by OpenMETA. Other efforts in-

volve addressing semantics of integration [12] [14] and model-based rapid synthesis 

of heterogeneous simulations [13] [15]. Many efforts exist that focus on finding glob-

ally optimal solutions [11], but often the system architecture is not fully defined in the 

initial design stages. Hence, it becomes difficult to define an objective function 

(which is paramount to this approach), and designers must iteratively build the design 

based on experimentation with a large, and often cumbersome, set of alternatives. 



7 Conclusions and Future Work 

In this paper, we have identified some of the challenges of Cyber-Physical System 

design and highlighted the merits of using an iterative design process. We presented a 

model-based design environment, called OpenMETA, which provides a number of 

tools for design space exploration and manipulation. 

OpenMETA is in use by ‘beta’ testers from several industry-leading vehicle design 

companies (Caterpillar, Oshkosh, Ricardo, among others) in conjunction with 

DARPA’s Adaptive Vehicle Make program, and we are incorporating their feedback 

into improving both the robustness and the ease-of-use of the toolchain. Our current 

work also specifically focuses on extending the toolchain for (i) additional design 

space manipulation tools, (ii) increasing the library of supported design constraints 

including those that get automatically generated from specifications and ones that 

facilitate succinct representations of existing methods, (iii) increase feedback messag-

ing from analysis tools into design space exploration and manipulation. 
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