
adfa, p. 1, 2014.

© Springer-Verlag Berlin Heidelberg 2014

Design Space Exploration and Manipulation for Cyber

Physical Systems

Himanshu Neema, Zsolt Lattmann, Patrik Meijer, James Klingler, Sandeep Neema,

Ted Bapty, Janos Sztipanovits, Gabor Karsai

Institute for Software Integrated Systems, Vanderbilt University

1025 16th Ave S, Suite 102, Nashville, TN 37212

{himanshu, lattmann, patrik85, jklingler, sandeep,

bapty, sztipaj, gabor}@isis.vanderbilt.edu

Abstract. Cyber-Physical Systems (CPS) [1] are engineered systems that re-

quire tight interaction between physical and computational components. De-

signing a CPS is highly challenging [2] because these systems are inherently

complex, need significant effort to describe and evaluate a vast set of cross-

disciplinary interactions, and require seamless meshing of physical elements

with corresponding software artifacts. Moreover, a large set of architectural and

composable alternatives must be systematically explored and evaluated in the

context of a highly constrained design space. The constraints imposed on the se-

lection of alternatives are derived from the system’s functional, performance,

dimensional, physical, and economical objectives. Furthermore, the design pro-

cess of these systems is highly iterative and requires continuous integration of

design generation with design selection and manipulation supported by design

analyses. Existing computer-aided design tools are not well-suited for this

method of design. To facilitate the iterative design process for CPS-s, we have

developed a design toolchain, OpenMETA [4] [9], built around a Domain-

Specific Modeling Language (DSML) [3], called the Cyber-Physical Modeling

Language (CyPhyML). In this paper, we present parts OpenMETA that address

the requirements of Design Space Exploration and Manipulation (DSEM) for

CPS-s.

Keywords: Design Space Exploration, Design Space Manipulation, Cyber

Physical Systems, Ordered Binary Decision Diagrams, Symbolic Search, Mod-

el-Integrated Computing, Domain-Specific Modeling Language

1 Introduction

Cyber-Physical Systems (CPS) [1] are systems that require tight interaction be-

tween physical and computational components. These systems span several engineer-

ing domains such as mechanical, electrical, thermal, and cyber (i.e., digital control).

CPS design is highly challenging [2] because these systems are inherently complex,

need significant effort to describe and evaluate a vast set of cross-domain interactions,

mailto:jklingler%7D@isis.vanderbilt.edu
mailto:%7D@isis.vanderbilt.edu

and require seamless meshing of physical elements with their corresponding software

artifacts. CPS design involves a set of architectural and composable alternatives (a

‘design space’) that must be systematically explored and evaluated. Design spaces

formulated with these alternatives can grow exponentially large due to combinatorial

explosion of design choices. A way to limit discrete design selections is to utilize

various known hard design constraints. These constraints can be derived from the

system’s functional (e.g., gas, electric, or hybrid drivetrain), performance (e.g., min.

torque of engine), dimensional (e.g., max. height or capacity), physical (e.g., weight,

join structures), and economical (e.g. vendor acquisition cost, system’s operating

cost) objectives. In this way, only those design configurations are generated that satis-

fy these design constraints. Using existing Computer-Aided Engineering (CAE) tools,

the process of fully specifying all of the possible alternatives is cumbersome and has

the potential of being extremely time-consuming, especially if a user were to apply all

these design constraints manually.

Fig. 1.

OpenMETA Architecture

Good system design must further consider several factors such as manufacturabil-

ity, stability, complexity, reliability, risks, time-to-market, etc. However, we consider

these factors as secondary, coming after the basic set of constraints has been satisfied.

The discrete selection of composable and architectural alternatives based on these

primary constraints form the initial Design Space Exploration (DSE). The resulting

full-system alternative designs (i.e., configurations or design points) can then be ana-

lyzed for evaluation against the secondary requirements. Existing CAE tools do not

quite help in making this task easy, as few support any kind of parallel multi-model

simulation execution and comparison of results. The result of these detailed system-

level analyses in terms of valid design selections and reformulations should then be

incorporated into the original design space, which must be re-explored to generate a

new set of valid design configurations. This iterative nature of the design process with

strong bidirectional coupling between design activities and system analysis and veri-

fication is a key to efficient and effective CPS design.

To streamline the iterative design process for CPS-s, we have developed a design

toolchain called OpenMETA [4] [9] (see Fig. 1), built around a Domain-Specific

Modeling Language (DSML) [3], called the Cyber-Physical Modeling Language

(CyPhyML). The CyPhyML captures integration interfaces of system components

across multiple design domains (e.g., Cyber, CAD, FEA) as well as generic assembly

rules given in terms of composable and architectural alternatives and hard design

constraints for the final assembly. OpenMETA supports multi-level and multi-fidelity

exploration of system-level architectural and parametric tradeoffs. These tools facili-

tate the iterative design process by integrating formal qualitative reasoning methods,

Design Space Exploration and Manipulation (DSEM), and analysis of design alterna-

tives. In this paper, we focus on tools that support DSEM for CPS design.

The rest of the paper is organized as follows: Section 2 provides an overview of the

design space portion of the CyPhyML. Section 3 describes our DSEM tools. Section 4

puts our DSEM tools in the context of the iterative design process for CPS-s. Section

5 presents a case study that shows DSEM tools usage and presents analyses results.

Related work is given in Section 6, and Section 7 concludes the paper.

2 Modeling Language

The CyPyML uses Model-Integrated Computing (MIC) [3] techniques to support

design-time integration of vast number of system-level design aspects and methods,

and the automated exploration and manipulation of design spaces. Model-Integrated

Computing (MIC) is the core technology on which CyPhyML and its tools are built.

MIC focuses on the formal representation, composition, analysis, and manipulation of

models during the design process. It utilizes models as the common concept through-

out the entire life-cycle of systems, including specification, design, development,

verification, integration, and maintenance. The Generic Modeling Environment

(GME) is a metaprogrammable toolkit that enables definition and use of Domain-

Specific Modeling Languages (DSMLs) [3] such as CyPhyML. In MIC, DSMLs are

configured through metamodels, expressed as UML class diagrams, specifying the

modeling paradigm of the application domain. Metamodels characterize the abstract

syntax of the DSML, defining which objects (i.e. boxes, connections, and attributes)

are permissible in the language. Simplistically, DSML is a schema or data model for

all possible models that can be expressed by a language. A DSML for finite state

machines would consist of states, and transitions, from which any valid state machine

can be realized. The inherent flexibility and extensibility of GME via metamodels

make it an ideal platform for CPS design and analysis using CyPhyML.

CyPhyML captures the concepts of design models in various CPS domains, speci-

fies how these concepts are organized and related, and specifies the rules governing

their composition (i.e., the relationships, inter-compatibility, and connectibility of

discrete component models and subsystems). OpenMETA consists of a number of

model interpreters and analysis tools, which can be used to generate system and anal-

ysis artifacts from system designs, and perform various structural and dynamic anal-

yses.

Any DSML requires precise specification of the language’s syntax and semantics.

Fig. 2 provides a simplified view of the design space part of the CyPhyML metamod-

el. As shown, the central modeling element in the language is called a DesignCon-

tainer. The key attribute of a design container is ContainerType, which can have one

of the following three values: Compound, Alternative, or Optional. All elements of a

compound design container must be part of the final system design. Alternative de-

sign containers are used to capture design choices/trade-offs. The final assembly will

include only one of the choices from alternative design containers. Optional design

containers are similar to alternative, but also allow ‘none’ as an option.

Fig. 2.

Simplified metamodel of the design space

A key element of this language is that design containers can contain child design

containers. This enables construction of a hierarchical AND/OR design space. The

concrete elements of the design are Component and ComponentAssembly (CA). A CA

is a system that can only contain components and child CAs (i.e. subsystems), and

represents a system that has been fully explored, analyzed, and finalized.

As can be seen in Fig. 2 components, component assemblies, and design containers

have special elements called Property and Parameter. A property represents a static

property of a component or a component assembly. Properties cannot directly be

changed at design time during design space model construction. Examples of proper-

ties are engine’s power rating, or a driveshaft’s mass. A property of a design container

may correspond to a basic property at that level in the design space or it may be a

representative property that is calculated based on the chosen sub-elements of the

design container. Alternatively, CyPhyML parameters can be used to specify a range

of acceptable values. A key element of our tools is that parameters are automatically

translated into design constraints to ensure that the values of the parameters generated

for selected configurations lie within the ranges specified.

CyPhyML also supports combining the properties and parameters using Value-

Formula. The ValueFlow connections are used to connect properties and parameters

to value formulae. A simple example could be to calculate mass of the system by

adding the masses of its sub-components. CyPhyML supports two different kinds of

value formulae: SimpleFormula and CustomFormula (not shown in the figure). A

SimpleFormula is used for basic arithmetic operations on incoming ValueFlow prop-

erties, while a CustomFormula is used in situations when a derived property needs to

be calculated using complex operations, e.g., Cosine() and Sqrt().

For the specification of high-level as well as fine-tuned system requirements, Cy-

PhyML also provides a large number of constraint types to support design constraints

arising from component interactions and due to functional and practical system re-

quirements. We provide details of the supported constraint types in the next section.

3 Design Space Tools

CyPyML provides a collection of modeling methods and tools for exploration and

visualization of designs and design spaces, solving complex design constraints, and

effective management of the design spaces and designs. A brief overview of these

tools is given below. Examples of tool usage and analyses are given in Section 5.

3.1 Design Space Exploration Tool (DESERT)

This is our key tool for design space exploration. It uses symbolic constraint satis-

faction for design space exploration using Ordered Binary Decision Diagrams

(OBDD-s) [5]. The choices in the design space come from the AND-OR-LEAF tree

structure as well as from the variability of values that can be bound to properties and

parameters. The design space is a cross product of all possible choice outcomes. The

process begins with a binary encoding of the design space, including the AND-OR-

LEAF tree and the design constraints. Each node in the design space tree is assigned a

unique integer identifier (ID). These IDs are then translated into BDD variables such

that the encoding reflects the design container containment semantics. The properties

and constraints are also handled symbolically as BDDs [6]. For handling variable

properties, we extended BDDs to Multi-Terminal BDDs (MTBDDs), which enables

values other than 0 and 1 as terminals of BDDs [6]. With this encoding, the constraint

satisfaction amounts to the creation and composition of design constraints and the

symbolic design space representation. The resultant BDD represents the pruned de-

sign space. The symbolic representation has been proven to handle very large design

spaces consisting of up to 10
80

 design configurations [6]. The interested reader is re-

ferred to [5] for an overview of BDDs and to [6] for detailed constraint-driven design

space exploration algorithm used in OpenMETA.

The key elements of DESERT are shown in Fig. 3. The exploration controls allow

the users to manage constraints and enable them to selectively apply them to explore

design spaces. The number of viable constraints may reduce or increase as new con-

straints are applied or reverted respectively. It also permits grouping constraints using

their types and domains for selective constraint application. Further, design elements

can also be selected to be included in all configurations.

The right-hand side of Fig. 3 shows the configurations in a tree view. The left pan-

el lists the configurations and the right panel shows the corresponding design space

tree with selection frequency for each design element. Users can select configurations

and corresponding design elements are highlighted. Users can also select a particular

alternative element and corresponding configurations on the left become checked. The

selected configurations can be exported back to design space.

Fig. 3.

Design Space Exploration Tool

DESERT supports a number of different types of constraints, most of which can be

specified graphically. However, for constraints that involve several complex mathe-

matical functions, an extended Object Constraint Language (OCL) [3] for their speci-

fication is also supported. Functions supported include all trigonometric and loga-

rithm functions as well as sign, rint, sqrt, and abs. The example constraint given be-

low ensures that the vehicle can accelerate at 2 m/s
2
 on a 20-degree uphill.

(Powerplant_maxTorque() * 1.3558) >= ((Tire_radius()/1000) * (Vehicle_weight() +

13000) * sin(0.35) + ((Vehicle_weight() + 13000)/9.8) * 2) (1)

Fig. 4.

Constraints type examples in DESERT

DESERT allows compatibility constraints represented graphically as Implies con-

nections between design elements. Using AND/OR groups of design elements, these

can be nested hierarchically to create complex Boolean expressions for compatibility

constraints. Fig. 4(a) shows constraint that non-C7 engines are only compatible with

CX31 transmission. The parameter specifications are also translated into constraints.

In Fig. 4(b), the range given is translated into a parameter constraint to ensure that

the value of spring_constant parameter lies between 0.75–45.0 N/m. Many require-

ments can be captured using simple limit constraints on properties. Fig. 4(c) shows a

property constraint example. For property constraints applicable only for certain

selection of alternatives, a conditional property constraint can be used. In Fig. 4(d),

MaxWeight4500 is applied only if ISG_PowerMgmt_and_Battery is in a configura-

tion. We also support succinct specification of constraints for some special cases. For

example, all 4 tires of a vehicle might have same alternatives, but all must be same in

any full-system configuration. Instead of specifying cross-product of compatibility

constraints, DecisionGroup constraints can be used, where the user simply collects

the alternative design containers, the equivalent compatibility constraints are auto-

generated.

3.2 Component Assembly Export Tool (CAExporter)

The configurations exported by DESERT contain only a flat set of references to the

design elements that were selected during the DESERT process. The CAExporter tool

is then used to convert these configurations into fully-specified component assemblies

that include the full hierarchical and structural composition of all the components and

sub-assemblies, along with all the ports and connections.

3.3 Design Space Refinement Tool (DSRefiner)

DSRefiner allows the user to select a subset of configurations of a design space and

generate a refined design space using these configurations. The refined design space

has the exact same hierarchical structure, ports, and connections as the original design

space, but omits design elements from the original design space that are not part of

the selected configurations. Further, original design constraints are removed, but a

new compatibility constraint is added that ensures that when DESERT is run on the

refined design space, the exact same set of configurations is generated. This avoids

repetition of the analyses that were done in the original design space. DSRefiner is

highly useful for gradually building design spaces, performing coarser-grained anal-

yses, and incorporating the results for refining and manipulating the design space.

3.4 Design Space Manipulation Tool (DSRefactorer)

DSRefactorer is a key design space tool that directly supports iterative design pro-

cess for CPS-s. Design spaces evolve continually during the design process as more

knowledge is gathered as well as when more refinement is done or parts of the design

space are finalized. We developed a dedicated tool that can manipulate design spaces

according to various domain-specific use-cases, while maintaining the hierarchical

placement, port restrictions, and valid connections. DSRefactorer is context sensitive

such that the refactoring choices presented to the user and the actions taken depend on

where and on what design element the tool is invoked. Following are some of the key

refactoring use-cases: (1) Component Assembly (CA) to a Design Container (DC) for

design space extension, (2) Component or CA to an Alternative DC with original

component or CA as a choice, (3) Extract design elements of a CA or a Compound

DC in the parent DC, (4) One or more components and/or CA-s to inside a new CA or

a new compound DC, (5) DC to a new Alternative DC with original DC as one

choice, (6) Compound DC to a CA, and (7) Optional DC to a Compound DC.

3.5 Design Space Criticality Meter (DSCriticalityMeter)

The DSCriticalityMeter generates the frequency of design elements in the set of

configurations generated from a design space. Using this metric, designers can make

informed decisions regarding resource allocation: if an element is ubiquitous (or ab-

sent) in the generated configurations, it might merit increased scrutiny.

3.6 Supporting Tools

OpenMETA has other interpreter tools that are associated with DSE. The Compo-

nent Authoring Tool provides importing capability from various domains (e.g. CAD,

Modelica) into CyPhyML, essentially wrapping domain models with CyPhyML inter-

faces and making them readily usable in the OpenMETA toolchain. After the compo-

nent library is populated the Component Library Manager helps to discover and insert

different instances of the same component types into an alternative design container.

Once these containers (i.e., component- and subsystem-placeholders) are composed

into a design space and design configurations are exported, the Master Interpreter

automates the translation of each unique design configuration into an executable do-

main-specific model, essentially parsing the CyPhyML design configuration and gen-

erating a valid, simulation-ready compound model which incorporates preexisting

component models. After these model transformations, the Master Interpreter trans-

fers the generated executable models (along with the appropriate domain-tool analysis

packages) to the Job Manager, which executes the analyses using domain specific

tools (e.g., Dymola, Creo, etc.) via the Job Manager. OpenMETA supports parallel

execution of analyses, either locally on user’s computer or remotely on a cloud of

Jenkins-managed ‘slave’ job executors, which have the appropriate domain-specific

tools installed.

4 Iterative Design Process and Design Flows

CPS design is a major integration problem because of their inherently complexity

and unexpected component interactions. As shown in [7], the design process must

allow for the continuous existence of an executable system, with a concrete architec-

ture, well-defined interfaces, and an executable form. This allows designers to ana-

lyze their designs earlier during the design process and obtain useful feedback. This

facilitates less error-prone designs, saved manpower, and manageable design spaces.

To enable the iterative design process for CPS-s, OpenMETA supports three key de-

sign flows.

Fig. 5 shows the iterative design process in OpenMETA pictorially. As can be seen

a classic design flow is to begin with creating a design space model with top-level

design container and then adding further design elements in it along with constraints

on those elements according to design requirements. A second design flow show in

the figure, begins from a single seed design. This design flow is highly applicable for

the real-world design use-cases, where there are existing designs and design process-

es. Starting from the seed design, the user extends the design space (using the tools

mentioned above) to add alternatives in place of concrete design elements such as

components or component assemblies. In this fashion, the user grows a larger design

space from that seed design. Another supported design flow is when the user does not

have concrete design elements or assemblies to work with. In this case, the user can

use surrogate equations in place of design space elements. The design space can still

be explored and analyzed. These surrogates can then be replaced with more accurate

models as they become available. Surrogates are also helpful for performing coarse-

grained analyses, the results of which can be used to refine the design space.

Fig. 5.

Iterative Design Process in OpenMETA

It is important to note that while there are several design flows that users can exer-

cise in OpenMETA, all of the design space tools, such as DSRefactorer and DSRefin-

er, are equally applicable. Different design flows do not eliminate the need to contin-

ually evolve design spaces using a closed-loop integration of design and analysis

activities. As shown in Fig. 5, and described previously, OpenMETA provides several

supporting tools to build, test, and analyze design configurations.

5 Case Study

In this section we present a simplified drive line model as a case study for design

space exploration. Many CAE tools (e.g., CAD, FEA, CFD, Modelica) have great

capabilities to analyze a design, but creating and extending a design in CAE tools

often takes significant time, and invariably requires subject matter expertise. To im-

prove the process, OpenMETA allows users to alter a seed design with alternative

component instances, and then to evaluate which combination performs best. We use

DSEM tools in OpenMETA to capture architectural and composable alternatives and

specify design constraints, generate configurations that satisfy these constraints, and

then apply a set of model translations to generate fully-specified executable models,

ready for simulation by the CAE tools.

Fig. 6.

Driveline Design Space Model

Fig. 6 shows the design space of a simplified drive line that contains several sub-

systems. In the figure, each dotted icon in the center represents a DesignContainer and

system interfaces are at the periphery of the image. The architecture and composition

of the design space was derived from a single design point built in Modelica. The

design space is extended with additional engine, power take-off module, transmission,

final drive, hydraulic fan, and hydraulic pump alternatives. This leads to a large de-

sign space – 15456 combinatorial configurations – many of which are not even viable

due to design constraints. Fig. 7 shows 4 constraints (see Section 3.1 for constraint

types). FinalDriveSymmetry constraint ensures that the left and right drives have the

same gear ratios. MinPower and MaxPower constraints assert that the engine’s nomi-

nal power lies between the transmission’s min. and max. power ratings. NoMoreTh-

anOnePumps ensures the design uses no more than one hydraulic pump. Application

of these constraints reduces the viable number of designs to 47 – a manageable set

that users can analyze.

Fig. 7.

Constraints used in the drive line design space

The generated configurations capture the relevant information across multiple do-

mains, but in this case study, we focus on the dynamic behavior of the systems: the

generated Modelica system models, simulation execution, and visualization of results.

Results are collected locally and presented using the Project Analyzer tool. Visualiza-

tion capabilities include requirement analysis, design point grouping, design point

comparison, parallel axis plots, multivariate plots, surrogate model views, multi-

attribute decision analysis, and physical limit violations across the entire design space.

We used OpenMETA to analyze the behavior of the selected 47 configurations us-

ing the Modelica simulation tools, and the collected results are shown in Fig. 8. It

shows two visualization capabilities of the Project Analyzer (a) parallel axis plot and

(b) multi-attribute decision analysis. The parallel axis plot has vertical axis for each

variable of interest from the analysis and each colored plot represents a design con-

figuration. The requirement objective and threshold values are shown with green and

red colors respectively. The multi-attribute decision analysis widget shows an ordered

list of configurations based on the user’s specified weighting of each variable of inter-

est. This is an interactive widget that helps to quickly identify differences between

designs and choose the best design based on user preferences.

Fig. 8.

Project Analyzer: Parallel axis plot and multi-attribute decision analysis

6 Related Work

Design Space Exploration for complex CPS cannot be realized as a closed form

analytical search procedure, and requires multiple techniques, at multiple abstractions

and fidelity, and involves complex iterations. Our toolchain is uniquely placed in that

respect incorporating a comprehensive suite of methods for design space exploration

(DESERT – discrete combinatorial design space, PET – parametric design space,

Simulation based design metric evaluation, Dashboard for design space metric visual-

ization). However, there are several comparable efforts implementing constraint-

based search procedures using various methods. The use of OBDDs for design space

exploration is well known [6]. In the work presented, we use these concepts and tech-

niques, but extend the framework with a library of tools (e.g., translation, parallel

execution of simulations, and simplified result comparison) that are necessary for the

iterative design process for cyber-physical systems. There are also satisfiability solv-

ers such as CoBaSA [10], but these do not provide means for exploration and manipu-

lation of design spaces, an issue that is addressed by OpenMETA. Other efforts in-

volve addressing semantics of integration [12] [14] and model-based rapid synthesis

of heterogeneous simulations [13] [15]. Many efforts exist that focus on finding glob-

ally optimal solutions [11], but often the system architecture is not fully defined in the

initial design stages. Hence, it becomes difficult to define an objective function

(which is paramount to this approach), and designers must iteratively build the design

based on experimentation with a large, and often cumbersome, set of alternatives.

7 Conclusions and Future Work

In this paper, we have identified some of the challenges of Cyber-Physical System

design and highlighted the merits of using an iterative design process. We presented a

model-based design environment, called OpenMETA, which provides a number of

tools for design space exploration and manipulation.

OpenMETA is in use by ‘beta’ testers from several industry-leading vehicle design

companies (Caterpillar, Oshkosh, Ricardo, among others) in conjunction with

DARPA’s Adaptive Vehicle Make program, and we are incorporating their feedback

into improving both the robustness and the ease-of-use of the toolchain. Our current

work also specifically focuses on extending the toolchain for (i) additional design

space manipulation tools, (ii) increasing the library of supported design constraints

including those that get automatically generated from specifications and ones that

facilitate succinct representations of existing methods, (iii) increase feedback messag-

ing from analysis tools into design space exploration and manipulation.

8 Acknowledgements

This research is supported by the AVM Program [8] of the Defense Advanced Re-

search Project Agency (DARPA) under award # HR0011-12-C-0008 and the National

Science Foundation under award # CNS-1035655.

References

1. Sztipanovits J.: Composition of cyber-physical systems. In: 14th Annual IEEE Int’l. Con-

ference and Workshops on the Engineering of Computer-Based Systems (ECBS ’07),

Washington, DC, USA. IEEE Computer Society, 2007, pp. 3–6.

2. Lee E.: Cyber physical systems: Design challenges. In: Proc. of the 11th IEEE Int’l. Sym-

posium on Object Oriented Real-Time Distributed Computing (ISORC ’08), May 2008,

pp. 363–369.

3. Sztipanovits J., Karsai G.: Model-Integrated Computing. In: IEEE Computer 30, 1997, pp.

110-112.

4. Wrenn R., Nagel A., Owens R., Yao D., Neema H., Shi F., Smyth K., van Buskirk C., Por-

ter J., Bapty T., Neema S., Sztipanovits J., Ceisel J., Mavris D.: Towards Automated Ex-

ploration and Assembly of Vehicle Design Models. In: ASME 2012 International Design

Engineering Technical Conferences and Computers and Information in Engineering Con-

ference (IDETC '2012), Chicago, Illinois, USA, August 12-15, 2012. Volume 2: 32nd

Computers and Information in Engineering Conference, Parts A and B, pp. 1143-1152.

doi:10.1115/DETC2012-71464.

5. Bryant R.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE Transac-

tions on Computers, vol. C-35, pp. 677-691, 1986.

6. Neema S., Sztipanovits J., Karsai K.: Constraint-based design-space exploration and model

synthesis. In EMSOFT, 2003, pp. 290–305.

7. Karsai, G., Sztipanovits, J.: Model-Integrated Development of Cyber-Physical Systems. In:

Proceedings of the 6th IFIP WG 10.2 international workshop on Software Technologies

for Embedded and Ubiquitous Systems, October 01-03, 2008, Anacarpi, Capri Island, Ita-

ly. doi: 10.1007/978-3-540-87785-1_5.

8. DARPA Adaptive Vehicle Make Program.

www.darpa.mil/Our_Work/TTO/Programs/Adaptive_Vehicle_Make__(AVM).aspx.

9. Lattmann Z., Nagel A., Scott J., Smith K., van Buskirk C., Porter J., Neema S., Bapty T.,

Sztipanovits J., Ceisel J., Mavris D.: Towards Automated Evaluation of Vehicle Dynamics

in System-Level Designs. In: ASME 2012 International Design Engineering Technical

Conferences and Computers and Information in Engineering Conference. Volume 2: 32nd

Computers and Information in Engineering Conference, Parts A and B, Chicago, Illinois,

USA, August 12–15, 2012, pp. 1131-1141. doi:10.1115/DETC2012-71378.

10. Manolios P., Subramanian, G., Vroon D.: Automating component-based system assembly.

In: ISSTA 2007, pp. 61-72.

11. Gries M.: Methods for evaluating and covering the design space during early design de-

velopment. In: Integration, 38(2):131{183, 2004.

12. Porter, J., Lattmann, Z., Hemingway, G., Mahadevan, N., Neema, S., Nine, H., Kotten-

stette, N., Volgyesi, P., Karsai, G., Sztipanovits, J.: The ESMoL Modeling Language and

Tools for Synthesizing and Simulating Real-Time Embedded Systems. In: 15th IEEE Re-

al-Time and Embedded Technology and Applications Symposium, San Francisco, CA,

April 2009.

13. Neema, H., Gohl, J., Lattmann, Z., Sztipanovits, J., Karsai, G., Neema, S., Bapty, T.,

Batteh, J., Tummescheit, H., Sureshkumar, C.: Model-Based Integration Platform for FMI

Co-Simulation and Heterogeneous Simulations of Cyber-Physical Systems. In: Proceed-

ings of the 10th International Modelica Conference, pp. 235-245, March 2014, Lund Uni-

versity, Solvegatan 20A, SE-223 62, Lund, Sweden.

14. Simko, G., Levendovszky, T., Neema, S., Jackson, E., Bapty, T., Porter, J., Sztipanovits,

J.: Foundation for Model Integration: Semantic Backplane. In: Proceedings of the ASME

2012 International Design Engineering Technical Conferences & Computers and Infor-

mation in Engineering Conference, IDETC/CIE, 2012.

15. Hemingway, G., Neema, H., Nine, H., Sztipanovits, J., Karsai, G.: Rapid Synthesis of

High-Level Architecture-Based Heterogeneous Simulation: A Model-Based Integration

Approach. In: SIMULATION, vol. March 17, 2011 0037549711401950, no. March 17,

2011, Online, Simulation: Transactions of the Society for Modeling and Simulation Inter-

national, pp. 16, March 2011.

http://www.darpa.mil/Our_Work/TTO/Programs/Adaptive_Vehicle_Make__(AVM).aspx

