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Abstract—General-purpose middleware must often be special-
ized for resource-constrained, real-time and embedded systems
to improve their response-times, reliability, memory footprint,
and even power consumption. Software engineering techniques,
such as aspect-oriented programming (AOP), feature-oriented
programming (FOP), and reflection make the specialization task
simpler, albeit still requiring the system developer to manually
identify the system invariants, and sources of performance
and memory footprint bottlenecks that determine the required
specializations. Specialization reuse is also hampered due to a
lack of common taxonomy to document the recurring specializa-
tions. This paper presents the GeMS (Generative Middleware
Specialization) framework to address these challenges. We
present results of applying GeMS to a Distributed Real-time
and Embedded (DRE) system case study that depict a 21-35%
reduction in footprint, and a 3̃6% improvement in performance
while simultaneously alleviating 9̃7% of the developer efforts in
specializing middleware.
Keywords - Middleware, Specialization, Optimization, Generative,
Models, Patterns, Frameworks.

I. INTRODUCTION

A large variety of applications and application product lines,
particularly those found in distributed, real-time and embedded
(DRE) systems, such as avionics, telecommunication call
processing, multimedia streaming video, industrial automation,
shipboard computing and mission-critical computing environ-
ments, are leveraging general-purpose middleware in their
design and implementation. Middleware enables these systems
to realize long shelf lives by shielding these systems from the
constant evolution in the underlying operating systems and
hardware resources.

Despite the many advantages offered by middleware, the
generality, flexibility, and configurability provided by con-
temporary general-purpose middleware platforms (which stem
from the need to support a range of application domains) leads
to over-general mechanisms that in turn result in performance
bottlenecks, excessive memory footprint, and even extra power
consumption issues for DRE systems. Developing proprietary
middleware solutions to overcome these problems is not a vi-
able solution due to cost and maintenance issues. A promising
alternative thus is to transform general-purpose middleware
into customized variants that are suited for each application
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domain and product variant – a process we call middleware
specialization.

Most prior efforts at specializing middleware (and other
system artifacts) [1]–[6] often require manual efforts in iden-
tifying opportunities for specialization and realizing them on
the software artifacts. At first glance it may appear that these
manual efforts are expended towards addressing problems that
are purely accidental in nature. A close scrutiny, however,
reveals that system developers face a number of inherent
complexities as well, which stem from the following reasons:

1. Spatial disparity between OO-based middleware design
and domain-level concerns - Middleware is traditionally
designed using object-oriented (OO) principles, which enforce
a horizontal decomposition of its capabilities into layers
comprising class hierarchies. This design is, however, not
suited for specializing middleware since domain concerns
tend to map along the vertical dimension, which are shown
to crosscut the OO class hierarchies [7] hence necessitating
vertical decomposition.For example, in OO-based middleware
implementations of Real-time CORBA (RTCORBA) [8], the
implementation of features related to handling requests at a
fixed priority (called the SERVER_DECLARED model) or al-
lowing priorities to be propagated from task to task (called the
CLIENT_PROPAGATED_PRIORIY models) crosscut multi-
ple functional modules such as the object request broker
(ORB), the portable object adapter (POA), and request de-
multiplexing and dispatching modules. Since the two priority
models are mutually exclusive, only one configuration can be
valid along the critical path between tasks of a DRE system.
Thus, any transformation to prune the logic for the unused
priority model must necessarily involve modifying several
different classes that implement these different modules.
2. Lack of apriori knowledge of specialization require-
ments due to temporal separation of application lifecycle
phases - DRE systems often involve a well-defined application
development lifecycle comprising the design, composition,
deployment, and configuration phases. Due to the temporal
separation between these phases, and potentially a different
set of developers operating at each phase, it is not feasible to
identify specialization opportunities all at once. Instead, with
each successive phase of the development lifecycle, system
properties start becoming invariant one by one. For example,
the system composition of an end-to-end task chain may reflect



the need to differentiate priorities among multiple information
flows across the tasks. However, whether the requests within a
flow are handled at a fixed priority at each task or whether the
priorities are propagated end-to-end will be evident only after
the developers configure the system. Thus, any specialization
will have to wait until the configuration of the system is
known.
3. Lack of mechanisms for reusing specializations - Unlike
the years of efforts in documenting good patterns of software
design, there is a general lack of a knowledge base document-
ing reusable patterns for middleware specialization, which
leads to reinventing specialization efforts in identifying what
specializations are needed, and in realizing them. For example,
if there is no approach to document how the specializations
for a particular priority model are performed, then developers
will be faced with similar challenges every time the same
specialization is to be performed on a different DRE system.
Solution approach — Domain-driven generative middle-
ware specialization - To overcome the challenges outlined
above, in this paper we present the GeMS (Generative
Middleware Specialization) approach for automating the mid-
dleware specializations process while promoting reuse. The
GeMS framework supports a five step process as follows:

1. Deduce the context for specialization by leveraging models
of application compositions, configurations and deployments.
2. Infer the set of specializations that can be performed based
on the deduced context.
3. Identify the specialization points within the middleware
code base where specializations must be realized,
4. Generate the directives that perform the specializations,
5. Stage the necessary workflow of back-end tools that will
execute the specialization directives to result in the specialized
middleware.

We use a representative DRE case study to validate the
GeMS approach in terms of reductions in memory footprint,
improvements in latency, and efforts saved over manual ap-
proaches to specialization.
Paper Organization - The rest of the paper is organized as
follows: Section II compares GeMS to related work; Section
III presents the GeMS process and the underlying techniques;
Section IV empirically evaluates GeMS specialization process
in the context of a DRE case study; and finally Section V
provides concluding remarks identifying lessons learned and
scope for improvements.

II. RELATED WORK

We present related research in specialization classifying
them along the inherent difficulties in middleware specializa-
tion that we outlined in Section I.

1. Addressing the spatial disparity between OO design
and domain concerns - Both aspect-oriented programming
(AOP) and feature-oriented programming (FOP) have been
used extensively for specializing systems by addressing the
disconnect between the vertical decomposition of OO design

and horizontal decomposition of domain concerns. For exam-
ple, Lohmann et. al. [1] argue that the development of fine-
grained and resource-efficient system software product lines
requires a means for separation of concerns [9] that does not
lead to extra overhead in terms of memory and performance
which they show using AspectC++.
The FACET [2] project identifies the core functionality of a
middleware framework and then codifies all additional func-
tionality into separate aspects that represent domain concerns,
which then can be woven into the core middleware. Our prior
work used FOP-based reverse engineering in a tool called
FORMS [10] that prunes unnecessary features from the mid-
dleware by deducing the necessary middleware features from
high-level application requirements (i.e., domain concerns).
2. Specialization in temporally distinct phases of appli-
cation lifecycle - The Modelware [3] methodology adopts
both the model-driven engineering (MDE) [11] and AOP. The
authors use the modeling views – intrinsic to characterize
middleware architectural elements that are essential, invariant,
and repeatedly used despite the variations in the application
domains, and extrinsic to denote elements that are vulnerable
to refinements or can become optional when the application
domains change. Edicts [6] is an approach that shows how
optimizations are also feasible at other application lifecycle
stages, such as deployment- and run-time. Just-in-time mid-
dleware customization [12] shows how middleware can be
customized after application characteristics are known.
3. Higher-level abstractions and generative mechanisms
- The DADO project [4], [5] has shown how AOP can be
used in a software development process to bypass the rigid
layered processing by extending the middleware platform with
new aspect-oriented modeling syntax and code generation
tools. The FOCUS project [13] relies on manual identification
of the application invariants, the specialization context and
the specialization points within the middleware source, and
manual writing of scripts to feed into a transformation tool
that specializes the middleware sources.

Limitations in related research - Even if AOP is shown to
be effective, it still suffers from the overhead of excessive
memory footprint due to the additional code required for
instrumenting the aspects within the source codes. Moreover,
the learning curve required leads to additional complexity
in maintaining and debugging AOP programs. The FACET
like AOP approaches additionally require redesigning and
refactoring the traditional middleware into aspects. Our work
on FORMS does not address the vertical decomposition prob-
lem in its entirety since it only accounts for coarser-grained
features. As shown later, however, tools like FORMS can
be leveraged to add a systematic process to the higher-level
requirements reasoning and to customize the middleware build
configurations.

Although the FOCUS tool itself is reusable, the special-
izations required manual identification of opportunities for
specialization within the middleware code. Naturally, these
solutions are not maintainable, reusable and extensible, and



therefore cannot be easily transitioned to apply to different
middleware and are cumbersome to evolve with the mid-
dleware. Similarly, the manual writing of bypass IDL files
required by DADO and refactoring of middleware mandated
by FACET hampers reusability.

Modelware demonstrates an interesting approach to special-
izing middleware, however, its success hinges on generating
the entire middleware code from model artifacts. On the
contrary our work is focused on specializing existing mid-
dleware code. The GeMS framework presented in this paper
incorporates the promising ideas from these related research
while maximizing the opportunities for automation and reuse.

III. A FRAMEWORK FOR GENERATIVE MIDDLEWARE
SPECIALIZATIONS

Middleware Specialization for DRE systems is a process
that manipulates general-purpose middleware by (a) integrat-
ing custom features supplied by the application, (b) pruning
unwanted features, and (c) optimizing the resulting middleware
to address DRE system QoS and resource constraint require-
ments. For this paper we focus only on the pruning and opti-
mization dimensions. Identifying what features of middleware
are excessive, and determining hidden optimization opportu-
nities can be determined only from the invariant properties
of DRE systems, and by instrumenting the middleware after
excessive features are pruned.

As noted earlier, contemporary efforts at middleware spe-
cialization are often based on manual, point solutions. This
section first brings out the requirements for an automated
middleware specialization process. Subsequently it demon-
strates how these requirements are realized within the GeMS
framework.

A. Requirements for Generative Middleware Specializations

Detecting the system invariants manually on a case-by-
case basis is infeasible, not to mention the subsequent manual
efforts at specializing the middleware for each of the system
under consideration. Many questions arise if automation is
desired: How are the systems invariants to be identified au-
tomatically? Once these invariants are identified, how are they
mapped to the underlying middleware-specific features that
will indicate what parts of the middleware must be pruned and
how the rest of the middleware be optimized? This problem
is hard given that domain concerns crosscut class hierarchies
of middleware design, and because system invariants become
evident in different stages of the system lifecycle. We present
the key requirements of an automated solution to middleware
specialization.

1. Deducing the Specialization Context - We define spe-
cialization context as the intent that drives the specialization
process. Deriving the specialization context relies on detecting
the system invariants [14], which become known over the
application lifecycle stages.
2. Inferring the Specializations from the Specialization
Context - DRE system developers must be able to map
the specialization context to one or more known patterns of

specialization. Inferring the set of specializations will require
a repository of specialization patterns that can be queried
using the context, which then returns a set of specializations
applicable in that context. Such a repository must be extensible
to include new patterns as they are discovered.
3. Identifying the Specialization Joinpoints within the Mid-
dleware - The inferred patterns of specialization manifest at a
higher level of abstraction than the level of middleware source
code that actually must be transformed. Thus, there is a need
to identify the collection of Specialization Joinpoints, which
are regions of code within the middleware where specialization
patterns will apply [15].
4. Generating the Specialization Advice - Although the
specialization joinpoints are determined, the exact nature of
the transformation to be carried out at those joinpoints corre-
sponding to the specialization patterns must be specified as a
set of directives, which we call Specialization Advice.
5. Executing the Specialization Advice on Middleware
Source - A final requirement to realize the specialized middle-
ware code is to apply the specialization advice to the special-
ization joinpoints. Applying the advice requires a staging of
backend tools, such as AspectJ and AspectC++, specific to the
programming language in which the middleware is developed,
or language-agnostic tools, such as Perl.

B. The GeMS Generative Middleware Specialization Ap-
proach

We have developed the Generative Middleware Specializa-
tion (GeMS) framework that satisfies the five requirements for
middleware specialization highlighted in Section III-A. Figure
1 shows the GeMS approach and the different stages that form
the overall process. At the core of GeMS is a model-driven
engineering (MDE) approach [11]. Different model interpreter
tools form the different stages and use algorithms in GeMS to
perform their tasks. The rest of this section describes GeMS.

1) Deducing the Specialization Context from System Mod-
els:

Approach: System invariant properties provide an in-
dication of what features from the underlying middleware
will be utilized by the applications. Since system invariant
properties become evident only with every successive phase
of application lifecycle, we classify the system invariants as
(1) structural invariants, which are obtained from the structural
composition of the system; (2) configuration invariants, which
are obtained from the QoS configuration parameters selected
for the middleware hosting platforms that specify the perfor-
mance constraints. These constraints include latency, through-
put, timeliness and reliability that are placed on individual
application components, and their connections as well as the
end-to-end workflows of components (known as component
assemblies); and (3) deployment invariants, which are obtained
from the resource allocations including the mapping of appli-
cation software components to processors, platform bindings,
endianness, languages, compilers, and collocation of different
application software components.



Fig. 1. The GeMS Process

An approach to identifying these invariants is through model
interpreters that traverse the application models and establish
the specialization context. Such a step eliminates the need for
dedicated modeling annotations to identify the context within
the application models. Most coarse-grained contexts can be
detected automatically by examining the modeling structure
and attributes but finer-grained contexts may need explicit
identification.

Implementation: We have developed a model interpreter
that traverses the system models to detect the invariants that
provide the specialization context. The interpreter makes use
of well-defined matching patterns that were specifically devel-
oped for the PICML component-based DRE system modeling
language [16] to ease the traversal to specific granularity levels
(assembly, component, connection, port, interface, methods,
parameters, config properties, etc) of the system model. The
interpreter proceeds by starting from the highest level of
granularity (assembly) to the lowest (parameters, configuration
properties). Once it discovers the invariants, it gathers the
configuration data associated with them that will be further
used to deduce the specialization context. The interpreter
maintains an extensible catalog of these matching expressions
that can be predefined by the model developer and if necessary
can be further extended to accommodate the discovery of
newer invariants.

2) Inferring Specializations from Specialization Context:
Approach: Depending upon where they occur in the

application model, the invariants that form the specialization
context have certain semantics that implicitly determine the
specializations that can be performed. For instance, application
invariants such as repetitive tasks can provide a different
specialization context based on the semantics they have, e.g.,

periodic tasks can manifest in terms of periodic invocations
that have synchronous request-response semantics which pro-
vide opportunities to optimize the redundant processing along
the middleware call processing path. Since the specialization
contexts map to different patterns of specialization, an extensi-
ble repository that can be queried for the right specializations
is needed.

Implementation: We have synthesized an extensible and
intuitive repository called SP-KBASE, which serves as a
knowledge base and is implemented as a complex multi-
dimensional hashmap that stores the specialization patterns
corresponding to the specialization. Note that a pattern also
encodes the ordering in which individual specializations must
be executed. Such an ordering is useful to the specializa-
tion staging algorithm that can correctly determine the next
specialization to be performed. Another important piece of
information that is stored is the incompatibilities or conflicts
with other specializations in terms of common code paths or
features being manipulated by them.

TABLE II
Performance Optimization Principles [17]

Principle Description
P1 Avoid obvious waste
P2 Avoid unnecessary generality
P3 Don’t confuse specification and implementation
P4 Optimize the expected case

The snippet of SP-KBASE knowledge base shown in Table I
has been developed based on the intuition of the middleware
developers who have expert-level knowledge of the middle-
ware design and implementation. The model interpreter from
Step 1 parses the SP-KBASE using the uniquely inferred
specialization contexts for each invariant and obtains the set of
specializations. It then orders them based on the dependency
information extracted from the dependency fields and emits
out an ordered set of specializations that are to be performed.
It reports the incompatible set of specializations to the end-
user or simply skips them if running in ’silent’ mode.

3) Identifying Specialization Joinpoints:
Approach: To identify the specialization joinpoints within

the middleware we rely on the fact that most standards-based
middleware implementations use frameworks that are based
on well-known design patterns. Therefore it is possible to op-
timize the frameworks by specializing their constituent design
patterns. Rather than relying on the source code annotation
alone to specify the specialization joinpoints, other techniques
like code profiling and inspection, and feature identification
and composition can also be leveraged. Specialization join-
points for functional artifacts can be identified by examining
the design patterns in the middleware frameworks whereas
the joinpoints for the execution threads of control can be
identified by examining the middleware call paths. We lever-
age well-known optimization patterns (shown in Table II) to
specialize traditional middleware frameworks. A preliminary
catalog identifying the middleware specialization joinpoints
and the specialization techniques that apply to these joinpoints



TABLE I
SP-KBASE: Extensible Catalog of Specialization Techniques

# System Invariants Optimization Principles Specialization Techniques Specialization Joinpoints Depends On Conflicts
S1 Periodic Invocations P1, P4 Memoization Request Creation – S3
S2 Fixed Priorities P1, P4 Aspect Weaving Concurrency – S5
S3 Homogenous Nodes P1 Constant Propagation Demarshaling Checks – S1
S4 Same Call Handler P1, P4, Memoization + layer-folding Dispatch Resolution S2 –
S5 Known Implementation P2 Aspect weaving Framework Generality – S2
S6 Fixed Platform P2 autoconf Deployment Generality S2, S5 –

is shown in Table I. We expect this catalog to be extended as
new joinpoints are discovered.

Implementation: To specify the specialization joinpoints,
in GeMS we first figure out the source code files that need to
be transformed. To that end we have leveraged and extended
our previous work, FORMS [10], to figure out the file de-
pendency structure for the framework/pattern that needs to be
specialized. FORMS can take the required features as input
and compute the closure set of source file dependencies that
are independent of other closures. This gives us the files we
need to process to perform the required source transformations.

We have developed a generic inspection engine that uses
source code inspection to identify the various individual com-
ponents of a class such as header includes, forward declara-
tions, scopes, methods, and data members. This pre-processing
implicitly helps to identify the specialization joinpoints. Once
the pre-processing is done, it provides the necessary infor-
mation for the following operations – method removal, class
movement, scope section replacement, checking for already
defined methods, checking the order of typedefs and forward
declarations needed for ensuring clean compilations – which
form the basis of the specialization advice GeMS generates.

4) Generation and Execution of Specialization Advice:
Approach: Once the specialization joinpoints are identi-

fied, to specialize the frameworks into their optimized equiv-
alents, we require rules needed to perform the corresponding
source-to-source transformations on the frameworks sources
by using the available tools and scripts. One way of per-
forming this is to represent these middleware and patterns in
terms of high-level domain-specific architectural models [18].
Then perform model-to-model (M2M) transformations to con-
vert these models into their optimal equivalents and later
perform model-to-source (M2S) transformations to produce
the optimized source. A drawback of this approach is the
additional burden on the middleware developers to construct
these models and two-level transformations [19]. Another way
is to annotate the framework and pattern source code to
identify the specialization points and write source-to-source
transformations (S2S) [13]. However it is cumbersome to
manually annotate and identify the design patterns and the
corresponding implementing sources.

Implementation: In order to avoid these cumbersome
techniques, we have developed different generic transfor-
mation algorithms for optimizing/transforming each of the
commonly used patterns (Bridge, Strategy, Template Method)
in contemporary middleware. We have opted to design the
transformation algorithms to work with C++ – the most

Algorithm 1 Generic Specialization Advice Generation
Algorithm with the Pattern Specialization Plug-Ins

F : Framework Feature to be specialized/concretized.
M : Middleware Sources
D : Developer specified advice/specialized code
Ms : Specialized subset of Middleware Sources M
Input - F , M, D
Output - Ms (Initially empty)

begin
Fs := FIND all the framework files that contain the usage of the concrete Framework
Feature Class f using FORMS
Ps := FIND the pattern implementation files using FORMS
Pd := COLLATE the data necessary for transformation using FORMS and D

{PATTERN SPECIALIZATION PLUG-IN}

REPLACE Base Class occurences with Concrete Class in all framework files Fs
REMOVE the Includes for the Alternative Features from the framework files Fs
REMOVE other Alternative Features from the build configuration using FORMS
return Ms
end

complex middleware implementation OO language being used.
In case of other less complicated languages like C#, Java, etc.,
the algorithms will be much simpler and easier to implement.
For example, unwanted indirections (virtual hook methods)
in the Strategy pattern can be removed by collapsing class
hierarchies, whereas dynamic dispatching (to concrete strate-
gy/feature classes) in the Bridge Pattern can be eliminated by
replacing with concrete instances of the strategy/feature im-
plementations. On the other hand, the redundant computations
in the middleware call processing path can be optimized by
applying layer folding and memoization optimizations.

The GeMS generic advice generation algorithm 1 gen-
erates rules at two levels: (1) the middleware framework
level and (2) the constituent design patterns that implement
the framework. The framework-specific transformations are
performed to accommodate their corresponding constituent
patterns-specific transformations. These include specializing
the use of the pattern features in the other framework source
code, particularly callbacks, feature instantiations and their
usages, and the compilation of the framework code. Thus, the
algorithm basically performs three major tasks by leveraging
and extending the FORMS tool - (1) Determines all the
framework implementing classes that utilize the feature to
be specialized and leverages the corresponding specialization
advice provided by the middleware developer, (2) It delegates
the pattern specializations to the respective specialization plug-
ins as described in algorithm 2, and (3) Specializes the build
configuration files for compilation. We have developed similar
algorithms for other commonly occurring design patterns
within middleware frameworks such as Strategy, Adapter,



Template Method, etc. which haven’t shown in this paper due
to lack of space.

Algorithm 2 Bridge Pattern Specialization Plug-In
{Eliminates Indirections - Removes Virtual Method Dispatches}
Input - Ps, Ms
begin
for each concrete Feature Class Headers h ∈ Ps do

ADD Forward Declarations & Public Methods from the Bridge Impl Class
REMOVE Base Inheritance
REMOVE all ’virtual’ keywords
CREATE Concrete Feature Class within the main class Constructor
REMOVE all Alternative Feature references

end for
REPLACE the Bridge Impl Class occurrences with the Concrete Feature Class {also
replaces the #includes} in all relevant files
return Ms
end

Any specialized code/data for the transformations is pro-
vided by the middleware developer since they can best deter-
mine how to optimize a particular code path within a particular
framework. These rules are ultimately fed to the source trans-
formation tools like FOCUS [13] whose Perl scripts execute
the transformations on the sources and subsequently FORMS
build specialization tools generate the specialized middleware
source build configurations.

IV. EVALUATING THE GEMS MIDDLEWARE
SPECIALIZATION PROCESS

Since GeMS is a software engineering process, we demon-
strate its applicability and evaluate its merits along the fol-
lowing dimensions: (1) We first show how GeMS can be
applied to specialize middleware for a representative DRE
system case study; (2) We show the savings in effort (and
hence improvement in productivity) on the part of a DRE
system developer accrued by using GeMS in contrast to
manually performing the specializations; and (3) We show
the improvement in latencies and static and runtime memory
footprints of the specialized middleware version compared to
traditional middleware.

A. Illustrating GeMS on a DRE Case Study

We now show how GeMS is applied to specialize middle-
ware for a representative DRE system case study using the
specializations cataloged in the knowledge base SP-KBASE
shown in Table I.

1) Avionics: The Boeing Boldstroke Basic Single Processor
(BasicSP) Product-Line:

Scenario Description: BasicSP (Basic Single Processor)
is a scenario from the Boeing Bold Stroke avionics mis-
sion computing product-line [20], which is a component-
based, publish/subscribe platform built atop the TAO Real-
time CORBA Object Request Broker (ORB) [21]. Figure
2 illustrates the BasicSP application scenario, which is an
assembly of avionics mission computing components reused
in different Bold Stroke product variants.

BasicSP involves four avionics mission computing compo-
nents that periodically send GPS position updates to a pilot
and navigator cockpit displays at a rate that is configurable.

Fig. 2. The Basic Single Processor (BasicSP) Application Scenario

The time to process inputs to the system and present output
to cockpit displays should thus be less than the rate, which as
shown in the figure is a single 20 Hz frame.

Problems: The real-time concerns are orthogonal to the
traditional horizontal middleware decomposition. In the Ba-
sicSP scenario the real-time requirements of predictable la-
tency of 20Hz is desired by each of the individual components
so that the aircraft pilots receive their location in real-time. At
the same time, these application invariants are not known in
advance so they cannot be automatically used to deduce the
specializations that can be potentially performed. Moreover,
the system requirements may change if the system is deployed
in a different physical domain or a different aircraft. For
example, a different variant of this scenario for different
customer requirements, however, may use different framework
components or may send different events to consumers or
may service operations via different request dispatchers or
may run on nodes with different byte orders, but with the
same compiler/middleware implementation, in which case data
need not be aligned. These changing requirements render point
specialization solutions useless and therefore the need for a
systematic, extensible and reusable specialization approach
becomes even more apparent.

2) Applying GeMS to Specialize Middleware for BasicSP:
We show how the GeMS model interpreters traverse the
BasicSP model to realize the specializations.

Applying GeMS Step 1 (Deducing the Context): Struc-
tural Invariants - The BasicSP case study uses a “push-event,
pull-data” communication model, which forms the basis of
the structural composition of the system. On receiving an
event, the Airframe and Nav_Display components repeatedly
use the same get_data() operation to fetch new GPS and Dis-
play updates, respectively. In a connection between GPS and
Airframe components, therefore, the get_data() operation is
sent and serviced by the same request dispatcher.

Configuration Invariants - In BasicSP, the connection prop-
erties such as the pulse rate of 20 Hz, and corresponding
data delivery deadlines form the application QoS configuration
model. In this case study, the processing rate is fixed at a
maximum latency rate of 20 Hz, the transport protocol used is
VME backplane, and the request demultiplexing mechanism
within the middleware is reactive.

Deployment Invariants - The target nodes on which the
BasicSP components are deployed (not shown in the Figure)
have the same byte order (endianess) since the processors used
in this case study are homogeneous.

Applying GeMS Step 2 (Inferring the Specializations):
Structural Invariants - The BasicSP push-event, pull-data com-
munication model imposes the need for features that support



event communication as well as request-response semantics
from the underlying middleware. Since there are no concurrent
requests, no concurrency support is needed of the middleware,
and hence we can deduce only a single request dispatcher is
involved which translates to the ’S4’ specialization in Table I.

Configuration Invariants - In BasicSP, the constant pulse
rate of 20 Hz indicates the periodic nature of events and the
rate at which data will be pulled. It also indicates the deadline
for communication and computation for the periodic task. Peri-
odicity maps to the ’S1’ specialization. Since the period of the
end-to-end task is fixed, such hard real-time requirements call
for features that support fixed priority scheduling translating to
the ’S2’ specialization. In RTCORBA, the feature that supports
this requirement is the SERVER_DECLARED model. Since no
other priorities and concurrent requests are involved, it needs
a simple reactive event demultiplexing and single threaded
event processing model within the underlying middleware.
Hence, it calls for a single threaded Select Reactor-based [22]
request handling. For RTCORBA, this property indicates there
is no need for the thread pool mechanisms. Moreover, since
only one transport mechanism is used, there is no need
for sophisticated software solutions that support pluggable
transport protocols, such as the extensible transport mechanism
in RTCORBA. Both these invariants translate to the the ’S5’
specialization.

Deployment Invariants - In BasicSP, since there is no need
for byte order checking and codeset negotiations (by virtue of
using a homogeneous set of processors), there is no need for
marshaling data according to the byte order and data encoding
rules including those involving alignment of data along word
boundaries. Similarly, there is no need for mapping priorities
between sending and receiving components. All these translate
to the ’S3’ specialization.

Applying GeMS Step 3 (Identifying Joinpoints): The
identification of specialization joinpoints for the middleware
through optimizing the design patterns is automatically per-
formed by the generic inspection engine as described in
Section III-B3. The necessary annotations get automatically
inserted in the pattern implementation sources which are
recognized by the FOCUS source code manipulation tool.
However, for the other non-structural specializations, the an-
notations need to be manually defined by the middleware
developer since those require explicit specification of the
specialized advice that may exhibit different behavior from
the original code at which it is applied.

Applying GeMS Steps 4 and 5 (Advice Generation and
Execution): For lack of space we do not show the complete
generated specialization advices. Instead, Listing 1 shows a
snippet for the rules that get generated for the bridge pattern
corresponding to the steps specified in the Algorithm 2. The
FOCUS tool subsequently specializes the middleware code.

B. Improvements in Developer Productivity through Auto-
Generation

We leverage FOCUS [13] to execute the generated special-
ization advice on the middleware source code. The FOCUS

Listing 1 Generated Transformation Rules for Bridge Specialization
<module name="ACE/ace">
<file name="Select_Reactor_Base.h">
<add>
<hook>REACTOR_SPL_INCLUDE_FORWARD_DECL_ADD_HOOK</hook>
<data>class ACE_Sig_Handler; </data>

</add>
<remove>virtual</remove>
<remove>: public ACE_Reactor_Impl</remove>
<remove>#include "ace/Reactor_Impl.h"</remove>
<substitute>
<search>ACE_Reactor_Impl</search>
<replace>ACE_Select_Reactor_Impl</replace>

</substitute>
</file>
<file name="Reactor.cpp">
<add>
<hook>REACTOR_SPL_CONSTRUCTOR_COMMENT_HOOK_END</hook>
<data> ACE_NEW (impl, ACE_Select_Reactor); </data>

</add>
</file>

</module>

source transformation rules for specializing the design patterns
and middleware frameworks are represented in XML. Manu-
ally writing these rules by the middleware developer on a per
instance basis is not only cumbersome and excessively tedious
but also complex to maintain as the middleware source code
evolves. Auto-generating them using the GeMS algorithms
as described in Section III-B4 alleviates the burden on the
developers as well as makes them easy to extend and maintain.
Table III shows how many lines are auto-generated on a per-
pattern basis and how these translate to cumulative savings for
the entire middleware framework that is implemented using
that pattern.

TABLE III
Middleware Developer Effort Savings

Design Pattern #lines #lines % Savings
(Middleware Framework) Generated Handwritten

Bridge (Reactor) 115/443 17 96.16 %

Strategy (Flushing) 29/201 4 98.01 %

Strategy (Wait On) 29/141 4 97.16 %

Template Method 172/974 25 97.43 %
(Pluggable Protocol)

However, developers will still need to provide the special-
ized code if they wish to specialize a particular middleware
call path in their own way. This specialized code is applied
like an aspect advice at the code joinpoints specified through
annotations. As shown, the auto generation almost completely
eliminates the burden of manually writing the transformations
and figuring out the specialization joinpoints with savings in
excess of 9̃7%. For the sake of terseness, we have only shown
a few of the frameworks that were optimized.

C. Empirical Evaluations

We evaluated the outcome of applying the GeMS spe-
cialization process by measuring the following criteria: (1)
the static footprints of the middleware binaries, (2) dynamic
footprints of the BasicSP applications, (3) the average la-
tencies of requests, and finally (4) the overall throughput



of the application components. We have applied the GeMS
specialization process to the widely used TAO Real-time
ORB implementation for DRE systems software. Table IV-C
reveals that the resultant savings are substantial for DRE
applications meant to be deployed on resource constrained
embedded devices. The dynamic footprints are a lot higher
(5x) than the static footprints of the middleware binaries since
the specialized middleware binaries were generated for each
BasicSP application components.

TABLE IV
Middleware Performance Improvement Metrics

Metrics Before After % Savings
Specialization Specialization

Footprint (Static) 3,226 KB 2,082 KB 35.4 %
Footprint (Dynamic) 13,588 KB 10,657KB 21.57 %

Average Latency 3367 µs 2160 µs 35.84%
Throughput 0.26 reqs/s 0.41 reqs/s 36.59%

V. CONCLUSIONS

General-purpose middleware has been incrementally op-
timized over the period of time to efficiently handle the
expected application functionality as well as provide the
flexibility and adaptability to handle changing requirements
and changing runtime conditions. However, the primary goal
behind middleware design being generality and portability, it
lacks finer customization and tunability to specific application
requirements. To resolve this generality and specificity tension,
middleware is usually specialized (customized and adapted) on
a case-by-case basis. However this process becomes tedious
and non-repeatable as the application requirements change
as well as underlying platforms evolve. It is important that
any modification to the middleware sources be retrofitted with
minimal to no changes to the middleware portability, standard
APIs interfaces, application software implementations, while
preserving interoperability wherever possible. Otherwise such
specialization approaches obviate the benefits accrued from
using standards-based middleware. Additionally the accidental
complexity from manually applying such approaches to ma-
ture middleware implementations renders the specializations
tedious and error prone to implement.

In this paper, we presented an automatic, systematic and
reusable process for specializing general-purpose middleware
that enables the vertical decomposition of middleware along
the domain concerns by deducing the invariant properties,
inferring the specializations and generating the transformations
required to specialize middleware sources. Our approach is
realized within the GeMS tool. We also provided detailed
evaluation of the process by quantifying the developer pro-
ductivity improvements and reduction in latency, response time
and memory footprint of the resulting specialized middleware.
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