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Abstract—Experiences developing a sensor network-based 
acoustic shooter localization system are presented. The system is 
able to localize the position of a shooter and the trajectory of the 
projectile using observed acoustic events, such as the muzzle 
blast and the ballistic shockwave. The network consists of a large 
number of cheap sensors communicating through an ad-hoc 
wireless network, which enables the system to resolve multiple 
simultaneous acoustic sources, eliminate multipath effects, 
tolerate multiple sensor failures while providing good coverage 
and high accuracy, even in such challenging environment as 
urban terrain. The paper describes the hardware and software 
platform developed for this application and summarizes the 
lessons learned during the development of the system. 
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I. INTRODUCTION 
A common feature of existing countersniper systems is that they 

contain only a few sensor units deployed around or near a protected 
area. Our alternative approach was made possible by the emergence of 
wireless sensor networks. In contrast to current solutions, our system 
contains a large number of inexpensive sensors. Thus, the system can 
provide much better coverage and it is robust against multipath effects 
prevalent in urban environments. Furthermore, our system can resolve 
multiple, simultaneous shots which no other existing system can do. In 
addition to these technical advantages, a sensor network-based 
approach also have several other favorable properties in military 
operations: speed and ease of deployment in hostile environments, 
independence of potentially unreliable civilian infrastructure (power 
and communication network), and robustness against node failures. 

Figure 1. depicts the acoustic events generated by a typical rifle 
shot. The muzzle blast produces a spherical wave front, traveling at 
the speed of sound from the muzzle of the gun. The shock wave is 
generated in every point of the trajectory of the supersonic projectile 
producing a cone-shaped wave front (assuming the speed of the bullet 
is constant). The angle of the shockwave cone is determined by the 
ratio of the speed of the projectile and the speed of sound. The sensors 
autonomously detect the shockwave and/or the muzzle blast, measure 
their times of arrival (TOA), and send the measured results to a base 
station through the ad-hoc wireless sensor network (WSN). A fusion 
algorithm running on the base station determines the location of the 
shooter and the trajectory of the projectile. The sensor network utilizes 
several middleware services to maintain communication between the 
base station and the sensors, synchronize the clocks of the sensors, and 
perform self-localization.  

 

Figure 1.  System concept 

The 3D localization accuracy of the developed prototype system is 
1 meter on average. The latency of a sixty-node six-hop setup is below 
2 seconds. Furthermore, the system can accurately localize several 
shots per second. This rate is limited primarily by the low 
communication bandwidth available on the current sensor network 
platform. 

 We reported on the first generation of the system in [1]. Time 
synchronization and message routing was discussed in detail in [2] 
and [3], respectively. The aim of this paper is to share the many 
lessons we learned during the development of this successful sensor 
network application. In addition, we describe the new techniques we 
applied in the second generation system including a new sensor board, 
new detection algorithm, a novel time synchronization approach and a 
new shockwave fusion algorithm. The remainder of the paper is 
organized as follows. In the next two sections we describe the 
hardware and software platform we developed and applied. Then we 
briefly present and evaluate the results. Finally, we detail the most 
important lessons we learned. 

II. HARDWARE PLATFORM 
The hardware platform is built upon the UC Berkeley MICA2 

mote device running the TinyOS embedded operating system [6], a 
widely used component-based architecture targeting wireless sensor 
network applications. Open interfaces at the software and hardware 
levels made it possible to integrate specialized smart sensor elements 
and supporting middleware services. Each MICA2 mote is furnished 
with an ATmega 128L 8-bit microcontroller with 128 Kbytes 
instruction memory, 4 Kbytes data memory and typical embedded 
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peripherals built in. The on-board radio transceiver operates in the 433 
MHz ISM band and has a maximum transfer rate of 38.4 Kbits/sec 
with the maximum range of about 300 feet.  

Real-time detection, classification and correlation of acoustic 
events require processing power and buffer sizes not present in 
standard microcontroller-based embedded devices. To overcome these 
limitations, application-specific sensor boards have been designed and 
built at Vanderbilt University. The different architectures reflect the 
current dilemma faced by many signal processing engineers today.  

 

Figure 2.  FPGA acoustic sensor board 

Our first design (see Figure 2. ) utilizes a Xilinx XC2S100 FPGA 
chip with three independent analog channels exploiting the inherent 
parallelism of the hardware. The algorithms – implemented in VHDL 
– are focusing on time domain analysis of acoustic signals captured at 
high sample rates (1 MSPS). Hardware and software interfaces (I2C 
bus, interrupts, led display and serial A/D) are implemented as custom 
IP cores in the same gate array. While this approach completely 
avoids the instruction-fetch, load/store bottlenecks of traditional 
processor architectures and provides efficient resource utilization, the 
size of the FPGA component severely constrains the complexity of 
our algorithms. Suboptimal power consumption of the processing unit 
is another handicap in the sensor network domain. 

To overcome these limitations another sensor board has been 
developed, where customized analog signal paths and an energy-
efficient, powerful DSP processor make the unit uniquely suitable for 
power constrained applications. At the heart of our second platform 
(Figure 3. ) is a low-power fixed point ADSP-218x digital signal 
processor running at 50Mhz. Its internal program (48KB) and data 
(56KB) memory buffers with advanced addressing modes and DMA 
controllers enable sophisticated signal processing and advanced power 
management methods. 

 

Figure 3.  DSP-based acoustic sensor board 

Two independent analog input channels with low-cost electret 
microphones pick up the incoming acoustic signals utilizing a 2-stage 
amplification with software programmable gain (0-54dB). The A/D 
converters sample at up to 100kSPS at 12-bit resolution. Analog 
comparators with software adjustable thresholds can be used to wake 
up the signal processor from low-power sleep mode, enabling 
continuous operation for weeks on two AA batteries. 

The signal processing board can be used as a stand-alone device 
or connected to other embedded hardware using standard and custom 
communication interfaces. Programmable interrupt and 
acknowledgement lines and a standard I2C bus connection enable 
integration with the MICA2 mote [6, 8]. The board also provides a 
standard asynchronous serial interface, perfectly suited for PC, laptop 
or PDA connections.  

The combination of computational power, energy efficiency and 
specialized circuits made it possible to utilize more sophisticated 
frequency and time domain analysis detecting and classifying acoustic 
events more precisely. 

The FPGA and the DSP boards running the detection algorithms 
continuously draw 30 and 31 mA, respectively. While we have not 
implemented the power saving mode on the DSP board yet, we expect 
this number to drop to 1-5mA in various sleep modes. For 
comparison, the Mica2 mote draws 15 mA running the countersniper 
application. 

III. SOFTWARE PLATFORM 
An earlier version of the system was described in detail in [1]. Here 

we present a summary of the software architecture (Figure 4. ). The 
Muzzle Blast and Shockwave Detector is implemented in VHDL on 
the FPGA of the first generation sensor board and in C on the DSP of 
the new board. The TOA data from either board is sent through the 
I2C interface to the mote. The Acoustic Event Encoder assembles a 
packet containing the TOA data and passes it to the Message Routing 
service.

 

Figure 4.  Software Architecture 

In addition to transporting the packets to the base station through 
multiple hops, the Message Routing service also performs implicit 
time synchronization. Additional software components running on the 
mote include a Remote Control service enabling the 
configuration/polling of a single node, a group of or all of the nodes 
from the base station. A Stack Monitor makes sure that the limited 
memory of the mote is not exhausted. 



The Base Station runs the Sensor Fusion algorithm utilizing the 
known sensor positions and displays the results on the User Interface. 
The accuracy and/or range of existing sensor self-localization methods 
(including our own [4]) are not satisfactory for the shooter localization 
application. Hence, up-till-now all tests of the system were performed 
utilizing hand-placed motes on surveyed points.  

The next three sections summarize the key components of the 
system. 

A. Detection 
The first version of the sensor board was designed with three 

independent acoustic channels allowing on-board Angle of Arrival 
(AoA) estimation using time of arrival (ToA) estimates of the three 
channels. Since the microphones of the individual channels were 
located two inches apart, the resolution and accuracy requirements 
were in the microsecond range. Hence, the incoming signal is sampled 
at 1MHz and then it is compressed using Zero-Crossing (ZC) coding. 
ZC coding provides large compression rate enabling real-time 
processing in the latter stages of the signal processing chain. Although 
the coding is lossy, those features of the signal between zero crossings 
that are necessary to achieve high precision ToA estimates are 
preserved: start time, min/max amplitude, length, rise time, and 
previous average amplitude. The ZC-coded signal is used to detect 
possible occurrences of shockwave and muzzle-blast patterns.  

The signal processing algorithm running on the second generation 
board uses time-frequency analysis combined with time-domain 
feature extraction. In the first stage, possible events are detected using 
the signal’s energy distribution in the frequency domain. This stage 
has a high false positive ratio, but successive stages eliminate false 
candidates based on the changes of the energy distribution in time. 
The next stage utilizes a signal-to-noise-ratio-like quantity (SNR), 
calculated as the ratio of the signal energy in certain frequency ranges 
of interest. The amplitude, slope and width of the SNR peaks are used 
to eliminate the majority of false positives. The next stage determines 
the exact starting point of a candidate in time domain, and further tests 
involving the shape of the signal are performed. The candidates are 
then time-stamped, and a quality descriptor (QD) is assigned to them. 
The QD contains confidence values, describing the ‘muzzle blast’-
ness or ‘shock wave’-ness of the detected event. Based on the QD, 
either a local decision is made whether the event is to be reported at 
all, or the decision is left to the central fusion algorithm, where the 
time-stamp along with the QD is used to determine the location of the 
shot. 

Both of the boards and the detection algorithms worked well 
under a variety of circumstances. Depending on the type of gun and 
ammunition, the muzzle blast detection range was between 30 and 150 
meters. The shockwave detection range is between 30 and 50 meters. 
Note that this is not as critical because if the projectile does not go the 
near the sensor field, then the shot is not interesting from an 
application standpoint. There were hardly any false positives for either 
muzzle blast or shockwave. Vehicle noise, engine backfire, training 
grenades and regular urban noise did not cause any detections. The 
only false detections were due to raindrops hitting the microphone 
directly. As these are events limited to a single microphone at a time, 
light to moderate rain did not affect system performance at all, 
because the sensor fusion immediately determined that no single 
source could have produced the events within a few tenths of a 
second. 

B. Routing-Integrated Time Synchronization 
The Message Routing service utilizes the Directed Flood Routing 

Framework [3]. However, in addition to the sensor reading, a radio 
message includes an age field, which contains the elapsed time since 
the event detection. Each intermediate mote measures the elapsed time 

from the reception of a data packet till its retransmission. The age field 
is updated upon transmission using a precise time stamping method 
described in [2]. When the sensor reading arrives at the destination, 
the age field contains the sum of the offsets measured by each of the 
motes along the path. The destination node can determine the time of 
the event by subtracting age from the time of arrival of the message. 
In essence, the clock of the base station becomes the global clock. The 
average accuracy of this approach implemented on MICA2 motes is 
tens of microseconds depending on the number of hops and other 
factors. As the speed of sound is approximately one foot per 
millisecond, this time synchronization error may cause a shooter 
localization error that is well under an inch in the worst case. 

C. Sensor Fusion 
The sensor network delivers the measured shockwave and muzzle 

blast TOA data to the base station after each detected shot. The data 
set contains correct measurements that are detections of primary (line-
of-sight) acoustic events, and they may also contain erroneous data, 
typically due to multipath effects. Multiple shots may occur at 
different locations, but close in time, resulting in mixed measurements 
containing correct measurements of multiple shots and also erroneous 
data. The task of the sensor fusion algorithm is to estimate the shooter 
location and the trajectory of the projectile, in spite of the possibly 
large number of incorrect measurements. Furthermore, it has to deal 
with two more sources of error: (1) imprecisely known sensor 
locations and (2) time synchronization error.  

 

Figure 5.  Muzzle Blast Sensor Fusion 

The traditional Time Difference of Arrival (TDOA) approach is 
not able to handle either multipath effects or multiple simultaneous 
shots. Our fusion algorithm is based on a search on a surface defined 
by a consistency function. The global maximum of the surface defines 
the estimated shooter position. Multiple shots are shown as multiple 
local maxima on the surface. A formal definition of the consistency 
function and the search to find its maxima are given in [1]. Here we 
present a conceptual description.  

Consider the right hand side of Figure 5. The four blue circles 
represent four sensors that detected a shot. Let us assume that the shot 
was fired from the red position. Since we know the sensor positions 
and the speed of sound, we can plot the timeline of events when the 
shot had to be fired according to the sensor readings (bottom of Figure 
5. ). If the position is the correct shooter position, then all line-of-sight 
sensors will agree on the time of the shot. That is, these detections will 
fall within a narrow window whose width is determined by the 
possible detection errors that are dominated by the sensor position 
errors. So, if we know the sensor positions to one foot of accuracy 
then all line-of-sight detections will fall within a millisecond wide 
window on the timeline at the correct shooter position. Non-line-of-



sight detections, on the other hand, will show up as outliers. Consider 
the first sensor in Figure 5.  whose detection time was t1. The sound of 
the shot traveled longer then the distance we use in our computation, 
hence, it will result in a larger estimated shot time. 

The consistency function is defined for every point in the three 
dimensional area of interest as the maximum number of sensor 
detections that fall within a narrow time window. The estimated shot 
position will be the global maximum of this function. Note that 
multiple shots will show up as multiple peaks. Also note that a 
consistent echo, that is, an echo from the same obstruction measured 
by multiple sensors, shows up as a local maximum also. However, it 
can be shown that the estimated absolute time of a real shot and a 
corresponding consistent echo are the same. As long as more sensors 
detect the real shot than the echo, peaks due to echoes can be easily 
eliminated. This assumption proved to be realistic in our field 
experiments.  

A multi-resolution search procedure based on interval arithmetic 
finds the global maximum rapidly [1]. Sensor readings contributing to 
this position are then removed from the list of unclassified acoustic 
events and the procedure is repeated to find subsequent shots.  

The above description applies to muzzle blasts only. Recently, we 
have generalized the approach to shockwaves as well. In this case, 
three more dimensions are added to the original four dimensions (x, y, 
z spatial coordinates and the shot time). These are the azimuth and 
elevation of the projectile trajectory (estimated as a line) and the speed 
of the bullet (estimated as constant). However, the search in this 7 
dimensional space proved to be computationally infeasible using a 
current desktop class computer. Instead, we applied a genetic 
algorithm-based approach to determine projectile trajectories. [10] 
provides a detailed description of the approach. 

IV. RESULTS 
To evaluate the performance of the shooter localization system, 

multiple field experiments were conducted in US Army Military 
Operations in Urban Terrain (MOUT) facilities. A typical setup 
utilized 60 motes deployed in the central area of the facility covering 
an approximately 100m by 50m area with mean node spacing distance 
of 5m. 
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Figure 6.  Experimental results 

In one particular test scenario, 40 shots were fired of which 18 
were blanks and 22 were short range training ammunition (SRTA). 
Since the performance of the system was equivalent for both types of 
ammunition, only the unified results are presented. In the following 
summary, we refer to (x,y) localization error as 2D error (elevation is 
not considered), and (x,y,z) localization error as 3D error. Figure 6.  

shows the histogram of the 2D and 3D errors for the set of test shots. 
The position error (in meters) and the number of shots are shown on 
the horizontal and vertical axes, respectively. The average 2D error 
was 57cm, while the average 3D error was 98cm. These numbers are 
exceptional. 

As one can see, a single shot had more than one meter 2D error, 
while two more had 3D errors in the 3-meter range. One of these shots 
was taken near the edge of the sensor field and only a handful of 
sensor detected it. The other two created a relatively flat consistency 
function around the true location possibly due to echoes. In general, 
the 3D accuracy is worse than the 2D because most of the sensors 
were on the ground and the vertical resolution of the system, therefore, 
was not as good. 

These results were obtained utilizing only the muzzle blast 
information in the sensor fusion. Recently, we conducted our last field 
experiments to evaluate the shockwave-based sensor fusion for long 
range shots. We applied a genetic algorithm-based shockwave fusion 
[10] and a novel range estimation method [10] when some muzzle 
blast detections were also available. The results were very 
encouraging. In one particular test, 12 shots were fired through the 
middle of the network, so there where sensors on each side of the 
trajectory. The shooter was approximately 100 meters from the edge 
of the sensor field. The average azimuth error was 0.66 degrees, the 
average elevation error was 0.61 degrees, and the average range error 
was 2.56 meters. In another test, 11 shots were fired from the same 
distance near the edge of the network, so there were no or only a few 
sensors on one side of the trajectory. The average error increased to 
1.41 degrees in azimuth, 1.11 degrees in elevation and 6.04 meters in 
range. These numbers are comparable to those of existing centralized 
countersniper systems.  

Utilizing the test data, we performed simulations to check the 
sensitivity of the system to sensor localization error. Surprisingly, we 
found that the trajectory estimation accuracy is largely insensitive to 
sensor positions. Even when an extra 2m random error was added to 
the sensor positions, the azimuth error still remained below 2 degrees. 
For more details, refer to [10]. 

V. LESSONS LEARNED 
Developing a non-trivial application on a resource-constrained 

sensor network platform has taught us many lessons. The most 
important one is that there is a very long way from an algorithm on 
paper to a middleware service on the target hardware platform 
working under real-world environmental conditions. What are the 
special characteristics of this computing field that make it especially 
difficult? 

A. Moving Target 
The field of wireless sensor networks is a relatively new domain 

characterized by rapid innovation. As such, the available hardware and 
software platforms evolve at a fast pace. Developing applications for a 
moving target is challenging. For example, the MICA2 mote, the 
successor of the original MICA, became available in early 2003. 
Among other things, it had a new radio chip and required a new radio 
stack implementation in TinyOS. It turned out that collision avoidance 
did not work perfectly, which significantly degraded the 
communication bandwidth. Some of our existing middleware services 
had poor performance on the new platform, which led us to the 
development of algorithms that worked well even in the presence of 
collisions. 

TinyOS itself is an exemplar of a very successful, but rapidly 
evolving system. Version 1.0, which came out in the fall of 2002 and 
was a complete rework implemented in a new language, provided 
great improvements, but required a significant effort in porting all 



existing services and applications. We found that one has to balance 
the stability of the target application and the need of importing parts of 
the latest revisions of the TinyOS development tree. 

There is a rich body of work documented in the sensor network 
literature. However, few proposed algorithms are ever implemented 
on hardware. Those with available implementation become outdated 
very quickly unless the authors remain vigilant about porting their 
code when the hardware and software platforms change. Even then, it 
is not guaranteed that the algorithm works just as well on the new 
platform, as it did on the old one. These factors hinder software reuse 
significantly. 

B. Integration 
Middleware services do not work in isolation. Any meaningful 

application uses multiple middleware services and other application 
components. They must interact and share the limited resources of the 
platform. One of our bugs was traced to the stack overwriting 
statically allocated memory under some rare conditions. This led us to 
the development and religious use of a stack monitoring service. In 
addition to the hardware limitation of 4 kilobytes of available data 
memory, TinyOS itself can run out of resources, such as timers and 
tasks. This has also occurred several times. 

All these observations point in one direction. Middleware services 
must be kept as simple as possible. Simple algorithms typically need 
fewer resources and have fewer interactions that are easier to 
comprehend and hence, debug. This means that general purpose 
protocols that are meant to support a variety of applications are 
usually too heavyweight for the mote platform. In our experience, the 
development of application-specific middleware is the rule rather than 
the exception. For example, there is no message traffic in our network 
until a shot is fired. Then a lot of motes need to send messages to the 
base station almost simultaneously. As many messages as possible 
need to be delivered in the first second, but it does not necessarily 
matter which ones. We developed a simple routing protocol 
specifically optimized for this set of requirements instead of taking an 
existing approach, porting it to the then new MICA2 platform and 
hoping that it’ll perform well in our application. 

C. Simulation 
Embedded systems in general are characterized by their tight 

integration with the physical world. This is especially true for wireless 
sensor networks, since their primary purpose is to measure some 
physical phenomenon, they must operate in an uncontrolled 
environment, and they use wireless communication. These facts limit 
the applicability and usefulness of simulation. Few simulators take the 
physical world into account. For wireless networks that is usually 
limited to the simulation of the radio channel. But how do RF 
multipath effects prevalent in urban environments or draining batteries 
effect radio range? Some of the complex simulator frameworks (e.g. 
ns-2) might be able to be configured to answer some questions like 
these, but the effort required to set up realistic simulations is very 
high.  

The current state-of-the-art in mote simulation presents other 
problems too. TOSSIM, the TinyOS simulator, takes the actual code 
the motes run, but its radio model is very simplistic. More realistic 
simulators [7, 9], on the other hand, require reimplementation of the 
application in their language using their API.  Such simulation can be 
very helpful in the early phases of algorithm development, but does 
not help in debugging the actual code. These difficulties and the tight 
deadlines made us do hardly any simulation in the development 
process. 

D. Development cycle 
In many ways, developing code for the mote platform is 

reminiscent to the earlier days of computing when memory usage or 
the number of floating point operations in a program were important 
considerations. When you have 4 kilobytes of data memory and 
twenty some useful bytes in a message, literally every bit counts 
again. And you need to (re)learn that you do not multiply or divide, 
only shift.  

Another similarity to the past is the speed of the debug cycle. 
Reprogramming a hundred nodes by plugging them in the 
programming board one by one is not a speedy operation. Thus, we 
needed to make radio reprogramming work somewhat reliably for at 
least the one-hop case. The primary debugging tool we used to have 
was the three LEDs on the mote. Instead, we created a tool that works 
like “printf,” routing the data back to the base station and displaying 
the text there. In this sense, basic tool development is an integral part 
of application development just like in the past. 

Another unique feature of sensor network applications is that a 
small change in the code or a minor new feature will have an impact 
on many parts of the overall application. The primary reason for this is 
the fact that there are typically three or more different hardware 
components working together in a typical WSN application: the 
sensor board, the mote and the base station. For example, when we 
wanted to add a simple data recorder, so that we can analyze the signal 
shapes the acoustic channel records on the sensor board, we needed to 
modify the sensor board code. Then we needed to add the capability 
on the mote side to receive a large data buffer from the sensor board 
through the I2C interface, store it, break it up into small packets and 
send it to the base station using the message routing service. 
Furthermore, the base station Java code needed to be modified to 
receive the packets, assemble them in the correct order and request 
any missing packets from the sender. Finally, the pieces needed to be 
integrated and tested. A relatively simple new feature took a couple of 
manweeks to fully implement and verify. 

E. Testing 
Testing may be the most time consuming task in putting together a 

real world sensor network system, especially, if it is an outdoor 
application. The main problem is that what works using a handful of 
nodes in the lab will almost always not work under real deployment 
conditions. Differing conditions include communication distances 
(and hence, different topology and network diameter), multipath 
effects, weather conditions (temperature, precipitation), noise and 
other miscellaneous environmental factors. And during a field test you 
typically try out things that you do not think of in the lab. For 
example, you may put the motes in tall grass and realize that the 
effective communication range is cut in half. 

Therefore, the system needs to be tested under real deployment 
conditions frequently. In our case that means loading 50 motes and 
sensor boards with the current software, changing the batteries, and 
taking them along with laptops, rifles and ammunition to a farm 
outside of town. Once there, the mote positions need to be surveyed to 
better than 1 foot accuracy, a time consuming task in itself. The whole 
setup needs a handful of people and takes several hours even before 
you start testing. At this point, you do not want to realize that because 
of a trivial error, the system does not really work and you have to 
postpone the test. Therefore, before a field test, you need to test every 
piece of the system and the whole application extensively in the lab. 
You need to find all the problems you possibly can in the lab before 
committing yourself to an expensive field test. Therefore, a complete 
field test of the system can take multiple people several days. 



F. Scalability 
The necessary sensor density and the size of the area that can be 

covered depend on many factors including the density of the urban 
area, overall accuracy requirements and the expected lifetime of the 
system. We estimate that scaling up to system to 100 nodes deployed 
in a typical urban area and covering 200x200 meters could provide the 
accuracy and latency presented in this paper. Beyond such deployment 
area and number of nodes, the network connectivity and the latency 
would become issues. However, this area is hardly more than one 
percent of a square mile. A realistic military application would require 
the coverage of several square miles necessitating orders of magnitude 
larger network size. 

While this particular system has latency and deployment density 
requirements that may be more severe than most WSN applications, 
the limited radio range will constrain the deployment area of any 
sensor network application. As many others have observed, this 
mandates a hierarchical network architecture where groups of motes 
are clustered around more powerful nodes. The main requirement is 
that this “second layer” node has a different communication channel 
to other such “supernodes” providing higher bandwidth and longer 
range. While there are several attempts at creating such hierarchical 
network architecture, significant challenges remain. In particular, the 
power requirement of such supernodes mandates very large batteries 
or results in severely limited lifetime. 

CONCLUSIONS 
The most important lesson we learned is how wide the gap is 

between an algorithm on paper, or even performing satisfactorily in a 
simulator, and working on the actual hardware as an integral part of a 
complex application deployed in the field. The tight integration of 
WSNs and the physical world, the severe resource constraints and the 
wireless communication are the most significant factors responsible 
for this gap. 
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