
Model-based Software Design Tools for the Cell Processor

Nicholas Lowell
Institute for Software Integrated Systems

Vanderbilt University
Box 1829, Station B
Nashville, TN 37203

lowellns@isis.vanderbilt.edu

ABSTRACT
This paper introduces the larger features of the Cell Pro-
cessor that allow this specialized hardware architecture to
provide a significant amount of increased performance. Spe-
cialized configurations call for specialized programming in
order to harness the available performance increase. Such
high computation configurations are prime targets for signal
processing applications. There exists a tool set for model-
ing the dataflow of a signal processing application. A major
goal exists to allow for generation of code to be used on the
Cell. The first step involves learning the required techniques
for programming by way of porting an example application
to the Cell. This paper shows the first steps of utilizing the
multi-core architecture which yields a significant increase in
performance with room for further improvement in the fu-
ture.

Categories and Subject Descriptors
C.3 [Computer Systems Organization]: Special-Purpose
and Application-Based Systems—Real-time and embedded
systems, Signal processing systems; D.2.2 [Software En-
gineering]: Design Tools and Techniques—User Interfaces

General Terms
Design, Performance

Keywords
Cell processor, System dataflow modeling, Run-time kernel,
Code generation, Automatic target recognition

1. INTRODUCTION
The slowing pace of decreasing transistor size and increas-

ing clock speeds has diverted hardware developers to search
for alternate configurations in which to increase computa-
tional power and speed. One such implementation is the
production of multi-core architectures. The increase in num-
ber of processor units within a system gives way to physical

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACMSE ’09 March 19-21, 2009, Clemson, SC, USA.
Copyright 2009 ACM 1-58113-000-0/00/0004 ...$5.00.

Figure 1: The Cell Broadband Engine Architecture

parallel processing, yielding higher throughput than single-
core architectures with both operating at similar speeds. A
major difficulty in using such specialized hardware is the
call for specialized programming, in both technique and the
adoption of a hardware-specific API. Thus, adapting exist-
ing applications to these architectures either neglect to seize
the computational advantage or require a significant amount
of rewrite in order to realize the performance increase. The
collaborative efforts from IBM, Sony, and Toshiba resulted
in the fabrication of the Cell Broadband Engine Architec-
ture (or simply the Cell). I have adopted this architecture
and have ported an Automatic Target Recognition (ATR)
application as the first steps in porting an existing signal
processing tool set to take advantage of the specialized con-
figuration and potential increased performance.

2. THE CELL PROCESSOR
The Cell Broadband Engine Architecture is mainly com-

posed of a PowerPC Processing Element (PPE), eight Syn-
ergistic Processing Elements (SPEs), and an Element Inter-
connection Bus (EIB). A top level diagram of the architec-
ture is in Figure 1.

2.1 The PPE
The PPE is a dual-threaded, 64-bit, big-endian, RISC pro-

cessor that complies with the PowerPC architecture with
Single-Instruction-Multiple-Data (SIMD)/vector extensions.
It is composed mainly of a PowerPC processor unit (PPU)
and a PowerPC processor storage subsystem (PPSS).

The PPU consists of separate 32 KB L1 instruction and
data caches and six execution units for instruction execu-
tion. The PPSS handles memory requests from the PPU

and memory-coherence from the EIB. Ports between the
two components produce a capability for loading 32 bytes
and storing 16 bytes independently per processor cycle. The
PPSS has a unified 512 KB L2 instruction and data cache
with a cache-line size of 128 bytes (same for the L1 caches).
Notable registers for the PPE are 32 64-bit general purpose
registers (GPRs), 32 64-bit floating-point registers, and 32
128-bit vector registers. Running at 3.2 GHz, the PPE is
capable of its own intense processing, however, its main role
is a system controller-running the operating system for the
applications executing on the PPE and SPEs.[2].

2.2 The SPE
Each SPE is a 128-bit RISC processor with a new SIMD

Synergistic Processing Unit Instruction Set specialized for
data-rich and compute-intensive applications. Its composed
of two main components-a synergistic processor unit (SPU)
and a memory flow controller (MFC).

2.2.1 The SPU
The SPU has a 256 KB local store (LS) for both instruc-

tion and data, 128 128-bit GPRs, and no cache. It has
four execution units, a direct memory access (DMA) inter-
face, and a communication channel interface. Because a SPE
does not have direct access to main memory, it must transfer
any desirable data into its LS. It does this by sending DMA
transfer requests to the MFC through the communication
channel. The MFC then uses the DMA controller for the
transfer.

2.2.2 The MFC
The MFC executes these DMA commands autonomously,

allowing the SPE to continue execution during transfers. It
can initiate up to 16 independent DMA transfers. The MFC
serves as the SPU’s sole interface to the external world:
main-storage, system devices, and other processor elements.
It handles communication (mailboxes and signal-notification
messages) between the SPE and the PPE or other SPEs.
Having two (odd and even) execution pipelines, the SPU
is capable of completing two instructions per cycle, if the
instruction types allow for it. It supports single-precision
floating-point operations with a fully pipelined 4-way SIMD
execution while double-precision operations are half pipelined.
This includes combinational multiply-add operations for sin-
gle precision, which means that two single-precision floating-
point operations can be performed on four values per cycle,
allowing for a theoretical performance at 3.2 GHz of 2 x 4 x
3.2 = 25.6 GFLOPS for each SPE.[2]

2.3 The Playstation 3
An easy source for obtaining the Cell processor is Sony’s

Playstation 3. With the supported functionality to partition
the internal hard drive and install a Linux Operating System
(Fedora Core 6 in this case), the privilege to develop on
the Cell is readily available. One downside with using the
Playstation 3 is the limitation to only six of the eight SPEs
due to the setup of the system.

3. THE SIGNAL PROCESSING PLATFORM
There has been recent work to develop a Signal Processing

Platform (SPP)[6] which supports model-based designing of
high-performance signal processing applications. It consists
of a modeling environment, a design-space exploration tool,

analysis tools, a synthesis tool, and a heterogeneous dataflow
execution platform. The work that is being presented here
mainly dealt with the execution platform.

The synthesis tools map a signal processing model to this
dataflow execution platform. It includes a light-weight real-
time non-preemptive kernel and is associated with a build
tool that can synthesize necessary glue and configuration
artifacts such as communication maps, schedule tables, and
interface specifications for the platform. If the target hard-
ware calls for it, these generations (such as the kernel) come
in the form of C source files that can be compiled with a
set of Makefiles included with the execution platform. The
first step for the current work was to modify the Makefiles
and light-weight kernel so that it could compile and execute
signal processing applications in a concurrent manner in a
Linux environment, specifically: the Cell processor in the
Playstation 3 running Fedora Core 6.

4. THE CELL-SUPPORTED SPP
EXECUTION ENVIRONMENT

The Makefiles for compiling the various environment sup-
port packages now include rules for the Cell that link the
SPP makefiles with those provided with IBM’s Cell Soft-
ware Development Kit (SDK)[4, 5] by way of some target
addition, variable renaming, and special scripting to force
the SDK makefiles to produce output in a file structure that
matches the results if one was to compile with, say, Microsoft
Visual Studio on an ix86 machine.

Previously, the run-time kernel scheduled and ran the sig-
nal processing blocks in a round-robin, sequential manner.
Now, to support developing applications for the Cell, the
kernel supports concurrency. It does this by creating a
POSIX thread (pthread) upon the first execution of each
process. These threads run the signal processing blocks,
which now require a simple infinite loop that wraps the ex-
ecution code. This proved to be a wise decision because
when tasks are loaded and run on SPEs (these tasks are
called contexts), this is done with a blocking function call.
Therefore, this thread setup is the only way to run multiple
contexts.

Lastly, in order for data to safely flow through the con-
current system, the communication streams between the
threads are now synchronized and treated as critical re-
sources. Mutexes nicely control the access to the interpro-
cess communication streams and produce thread stalls upon
denied requests, as opposed to wasteful polling loops. With
the updated execution environment, I present a sample sig-
nal processing application developed for the Cell.

5. AUTOMATIC TARGET RECOGNITION
EXAMPLE

The example system used for monitoring the adaption of
the SPP kernel is an embedded real-time Automatic Target
Recognition (ATR) system as taken from [1], whose dataflow
model is in Figure 2. This image-processing system finds
and classifies the objects in the input images that belong to
a set of target classes. Main processing involves correlation
filtering, where each image is correlated with template filter
images associated with different target classes, producing a
set of peak locations that pinpoint potential targets. These
locations form the center of regions of interest (ROIs) that

Figure 2: Dataflow Model of ATR

Figure 3: Internal Structure of Pipe in ATR

are processed further and identified using a Distance Classi-
fier Correlation Filtering (DCCF) algorithm, which increase
the confidence level of the identified peaks.

The example system uses images of 128x128 resolution
and can extract up to eight ROIs (of size 32x32) while search-
ing for three possible target classes. This computation-
intensive ATR algorithm involves a pre-processing step in-
volving a 2D FFT on the image in order to correlate the
images in the frequency domain. Multiple copies of the cur-
rent image pass through one computational pipe, as mod-
eled in Figure 3, for each possible target class with which
the image can be correlated. A Hmach filter provides these
target classes. Before leaving the pipe, the distance to the
other target classes are calculated according to the DCCF
algorithm. Finally, the locations of the targets (if any) are
located in the image after the outputs from the pipelines are
merged and post-processed.

5.1 Adapting Algorithm Kernels for the Cell
With the new SPP kernel in place, producing threads for

each block and using synchronized communication queues,
an application that is functional on another supported plat-
form, like an ix86 PC, requires minimal modification to
simply achieve proper execution (I will worry about perfor-
mance later). The main update is each task’s source code is
wrapped in an infinite loop, since now it will only be called
one time as a thread and expected to run continuously and
concurrently with the other tasks. It is also very impor-
tant to remember that the PPE is a 64-bit, big-endian core.
Thus, additional changes to the algorithm dealt with the
storage model of the data. It is impossible to give universal
specifics for adapting any application because these types
of changes are application specific. In the case of the ATR,
the byte order of the input files (the images, Hmach filter
data, and DCCF filter data) have to be reversed for proper
reads. Furthermore, the ATR performs queue size checks for
zero instead of depending on a null return from dequeuing
on an empty stream, which no longer occurs but now stalls.
Compiling the updated kernel and ATR project, I was able

to successfully run the application on the PPE of the Cell
processor. Next, I present more adjustments to the ATR in
order to move the computation-heavy tasks to the SPEs. In
preparation for this step, deeper analysis of the system was
necessary.

5.2 Memory Consumption
It was important to look at the amount of memory re-

quired by the system at the high computation moments (the
pipelines of the system) because the necessary resources for
the computational steps must fit onto an SPEs LS along
with the corresponding code. Walking through the pipeline
blocks from Figure 3, ”Multiply“ receives an image and the
Hmach filter data. Each pixel of an image is stored as a com-
plex (real and imaginary parts) value as a single-precision
floating-point type (size of four bytes for the Cell). There-
fore, with an image of size 128x128, it consumes 128*(128*2)*4
= 128 KB of memory-half an SPE’s LS! What’s worse is that
the Hmach filter data is the same size. These two data struc-
tures alone would completely consume an SPE’s 256 KB LS,
leaving no room for code and other miniscule data.

Copies of the processed image continue through the pipeline
to the 2D-IFFT, ”Calc Mean Std“, and ”Calc PSR“, none of
these tasks really needing much more memory for large data
other than the image. The traveling image actually ends
its journey in the “Calc PSR” task which sends out peak-to-
sideloab ratios for the detected peaks (up to eight peaks).

The final block in the pipe, ”Calculate Distance“, is a
rather hefty task. In order to extract and normalize the
ROIs and calculate their distances (which involve multiple
FFTs and IFFTs among other steps), the task calls for a
copy of the original image, a place to store the ROI, another
area for storing intermediate results, and the Hdccf filter
data. Fortunately, this filter data is only 8 KB rather than
the 128 KB size of the Hmach filter data. Unfortunately,
the image, the ROI, and the buffer are 128 KB each. The
amount of data sums to more than 384 KB-far exceeding
that of an SPE’s LS-and the larger-than-average code still
must be included.

Being able to move these computation intensive tasks to
the SPEs required an analysis and search for the truly essen-
tial resources as well as potential for segmented processing
steps. Furthermore, with the initial design, with three pipes,
each consisting of five blocks, there are 3*5 = 15 individual
tasks and only six SPEs. The methods used for eliminating
these dilemmas are discussed in the next section.

5.3 Algorithm Analysis
In order to fit the high-computation pipelines of the ATR

application onto the six available SPEs, a deep analysis of
the inner workings of the tasks and the detailed flow of the
involved data was required. The two major obstacles to
be handled were task allocation-how the several task blocks
should be placed on the SPEs-and resource management-
how the required data could fit onto the limited LSs along
with code

5.3.1 Task Allocation
For task allocation, the apparent solution to fitting three

pipes (of five tasks each) onto six SPEs was providing two
SPEs per pipe and actually merging the five tasks in a pipe
into two larger tasks. The desired result of these mergers
would be two tasks of an equal computational load. Be-

Table 1: Run Time and FLOP Count of Pipe Tasks
Task Run Time (µsec) FLOP Count
Multiply 984 193548
TwoDIFFT 4490 1179648
Calc Mean Std 261 49159
Calc PSR 1326 195440
Calculate Distance 7889 1948448

Figure 4: Structure of Merged Pipe in ATR

cause of the synchronized queues employed in the system,
if one task executes longer than the other, the shorter task
will end up stalling as it waits for data to be pulled from
the interconnecting queue. Analysis of both the execution
times (on the PPE) and number of floating-point operations
(FLOPs or FLOP count) for each block provided an idea for
the best division of labor. The values are listed in Table 1.

Based on these values, if the first four tasks were merged
into a single task, it would theoretically execute 193548 +
1179648 + 49159 + 195440 = 1617795 floating-point opera-
tions in 984 + 4490 + 261 + 1326 = 7061 microseconds. The
first four tasks combined are still not as hefty as the “Calcu-
late Distance” task. However, it is the best attempt to bal-
ance the load. Thus, the pipes were redesigned to contain
only two task blocks, as seen in Figure 4, and the correspond-
ing source files for the (originally) first four tasks were glued
together into one task, called“Mult TwoDIFFT Calc Mean
PSR”. This satisfied the task allocation requirements for
porting to the SPEs.

5.3.2 Resource Management
With sufficient task allocation, the more difficult job of re-

source management required a deep look into what data was
required and where in the two tasks. Because of the modu-
larity of the system, the two task blocks can be viewed sep-
arately, starting with “Mult TwoDIFFT Calc Mean PSR.”
Note that though this is one source and one task, the four
components it is composed of remain separated within the
code. Therefore, the single task or the four separate tasks
of which it is composed may be referred to interchangeably.

Recall that the large data structures existent in the first
four tasks are the image and the Hmach filter data, both 128
KB each. Furthermore, originally a copy of the progressively
processed image was passed through each task because they
were threads operating on an image concurrently with the
other tasks, actually consuming 128 * 4 = 512 KB. Obvi-
ously, this is impossible for the SPE, and fortunately, this
is no longer required because these four tasks now operate
sequentially. Thus, a single image can be passed through the
algorithm and data processing is in place. However, there is
still 256 KB of data. Because the image travels through a

majority of the task, it is preferable to keep this structure in
the LS. Looking at the Hmach filter, it is realized this data
structure is only necessary during the“Multiply”processing,
the first part of the task. Furthermore, there is a one-to-one
relationship between the filter values and the image values.
This situation allowed me to use part of the Hmach filter
data on part of the image and then write over with another
part of the filter data for processing the next corresponding
part of the image. It is sufficient to store half the Hmach fil-
ter (64 KB) at a time, resulting in data storage size of about
192 KB, leaving 64 KB for code (which was also sufficient).

As mentioned earlier, the lengthy “Calculate Distance”
task originally required over 384 KB of data: the image, a
ROI image structure, and an intermediate ROI buffer. This
task’s algorithm involves acquiring a ROI from a section of
the image, and through several stages of computation (where
the intermediate ROI buffer is required) the distances are
calculated. This is repeated eight times, writing a different
ROI from the image each time. Because of the repeated
use of the image, it is desired to once again retain it in the
LS. Furthermore, recall that a ROI has a resolution of only
32x32. The full image structure is used because it matches
the necessary structure for the ROI, however, the ROI uses
1/16th of the structure. The necessary size for an ROI struc-
ture is only 32*(32*2)*4 = 8 KB, significantly smaller. By
implementing this new data structure for the ROI and the
intermediate ROI buffer, the amount of data required for the
“Calculate Distance” was reduced to about 144 KB, leaving
plenty of room on the LS for the other necessary components
(i.e. code). With the methods for task allocation and re-
source management fully defined, I present the performance
achieved from running the ATR on the Cell, looking at be-
fore and after SPE support.

5.4 Preliminary Performance Analysis
I first provide a performance point of reference of the sys-

tem when running solely on the PPE of the Cell. Then the
steps taken to implement the pipe tasks to the SPEs will be
detailed, followed by the complete implementation’s perfor-
mance results.

In order to have a feel for the improvement achieved when
the ATR system makes use of the SPEs, performance of
the “before” setup needed to be acquired. Data in terms of
millions of floating-point operations per second (MFLOPS),
throughput of data, and even frame rate (due to the image-
processing nature of this example) were calculated by mea-
suring the run times for processing 1000 images and taking
the average. Knowing the number of floating-point opera-
tions (FLOPs) per image and the size of an image allowed
me to compute the various performance parameters. The
breakdown of FLOPs for each block in Figure 2 (with the
pipes expanded to show the two internal blocks) is shown in
Table 2.

The ATR with the now two-task pipes were run on the
PPE of the Cell in the traditional serial manner with the
old kernel (and some slight hacking) and also with the tasks
looping within pthreads, labeled as “Serial” and “Pthreads”,
respectively. The resulting average run-times for processing
a single image on the PPE and the calculated performance
parameters are found in Table 3.

Though it may be considered minor, the mere implemen-
tation of concurrency provided some improvement over the
original behavior of the kernel. Taking advantage of the

Table 2: FLOP Count for ATR Tasks
Task FLOP Count
ImgSource 0
Hmach Filter Src 0
Hdccf Filter Src 0
RawImgSplitter 0
PreProcess Split Image 1146880
FloatSplitter 0
Mult TwoDIFFT Calc Mean PSR 1617795
Mult TwoDIFFT Calc Mean PSR 1617795
Mult TwoDIFFT Calc Mean PSR 1617795
Calculate Distance 1948448
Calculate Distance 1948448
Calculate Distance 1948448
Merge Compare Distances 0
Post Processing 47
Target Overlay 0
UI 0
TOTAL FLOP COUNT 11845656

Table 3: Reference Pre-SPE Performance
FLOP Count 11845656
Image Size (bits) 1048576

Task Serial Pthreads
Avg Run Time (msec) 46.40 40.01
MFLOPs 255.29 296.05
Throughput (Mbits/s) 22.60 26.21
Framerate (frames/s) 21.55 25.00

powerful SPEs greatly increases this performance. With
these foundational performance bases in place, I now cover
the process of moving the computational pipes to the SPEs
and then present the performance results.

5.5 Using the SPEs
Originally, each task’s computational core was surrounded

with the necessary data acquisitions and preparations, mainly
consisting of the retrieval and placement of the data from
and onto the communication queues, respectively. The PPE
tasks continue to perform these jobs. However, now the
computational cores of the “Mult TwoDIFFT Calc Mean
PSR” and “Calculate Distance” tasks reside on the SPEs.
The corresponding PPE tasks have the added responsibility
of setting up and running the SPE contexts–passing in the
effective addresses of the data required by the SPEs. Upon
running the SPE context, the PPE simply blocks until the
SPE has completed processing. This is the chosen method
for letting the PPE-side know when the data has been pro-
cessed and can be added to the output queue.

Along with the computational cores now SPE code, all
pertinent data must be moved from main memory to the
SPE’s LS during execution. Analogous to the PPE data
preparation steps, the SPEs perform DMA operations, with
a 16-byte alignment (optimally 128-byte aligned), before
processing to acquire the necessary data and afterwards to
place the newly processed data back into main memory for
the PPE to pass through the system. With these wrapping
instructions in place, the only remaining step to building
our SPE-supported ATR application was implementing the

Table 4: Performance Comparisons
FLOP Count 11845656
Image Size (bits) 1048576

Task Serial Pthreads SPEs
Avg Run Time (msec) 46.40 40.01 10.09
MFLOPs 255.29 296.05 1174.31
Throughput (Mbits/s) 22.60 26.21 103.95
Framerate (frames/s) 21.55 25.00 99.13

changes to the computational cores discussed earlier.
Now, the algorithm for the“Mult TwoDIFFT Calc Mean

PSR”diverges when it comes to using the Hmach filter data.
The filter is used for complex conjugate multiplication with
the image data, in a one-to-one data entry correspondence.
The necessary resource management of using half the Hmach
filter at a time is implemented through a DMA of the first
half of the data and using it in conjunction with the first
half of the image. After returning, a second DMA places
the second half of the filter data in the same LS location
as the first half. Then the multiplying core executes again,
with an added parameter indicating the second call to this
function, telling it to use the second half of the image this
time. In summary, originally a single call to this multiply
core would carry out the processing for all 128 rows of the
image, but this segmentation now has it performing on only
64 rows at time (either the first half or second), requiring
a second call. Following this step, the remaining computa-
tional cores are called as usual, the only difference being the
elimination of any copying of the image but instead using
the same location throughout the entire task.

After adding the reduced-size ROI data structure to the
system, the only necessary changes to the“Calculate Distance”
computational core were replacing any instances of expect-
ing an Image structure with the ROI structure. The task
performs successfully with this setup. With the computa-
tional cores of the pipes of the ATR system fully imple-
mented on the six SPEs, the performance of the system are
presented next.

5.6 Final Performance Analysis
Table 4 contains the performance references presented ear-

lier along with the measured performance of the ATR sys-
tem that takes advantage of the SPEs, named “SPEs.” As is
shown, using the SPEs of the Cell increases the performance
of the ATR system by 300% over simply using pthreads and
more than 350% over the original sequential execution. A
breakdown of the run times for the SPEs tasks revealed
“Mult TwoDIFFT Calc Mean PSR” taking about 7.5 mil-
liseconds while “Calculate Distance” completed after about
10 milliseconds. When compared to the complete run times
of the system (about 10 milliseconds), notice that “Calcu-
late Distance”, the most computationally intensive task of
the system, is the delaying factor for the system. Never-
theless, this successful model development and implementa-
tion of the ATR system onto the Cell processor within the
Playstation 3, making use of the six SPEs, has proven to be
a significant achievement in improved performance and, in
general, in the work involving the SPP. Future steps in this
work are discussed next.

Figure 5: Benefits of Double Buffering

6. FUTURE OPTIMIZATIONS
Even while achieving more than one billion FLOPS (GFLOPS)

with the initial porting of the ATR system to the Cell, there
are a number of optimization techniques that remain unim-
plemented. Because the speed of the SPE tasks (specifically,
“Calculate Distance”) are the major factors in the comple-
tion time, the focus should be spent on optimizing those
tasks.

Such possible optimizations, as mentioned in [3], are meth-
ods such as double buffering the DMA operations. Instances
where large amounts of data are brought into the LS through
DMA operations and then used for processing could be bro-
ken up into smaller transfers with segmented processing in-
tertwined. Because the DMA operations are handled au-
tonomously by the MFC, it is wasteful to wait for these op-
erations to complete before performing any computations.
Therefore, a DMA operation should commence on future
data before processing the current data begins. Figure 5
shows a comparison of general operations with and without
double buffering.

The current algorithms for the SPEs task do not take ad-
vantage of the SIMD capabilities of the SPUs. The use of
vectors would allow for operations on four single-precision
floating-points at a time, as opposed to single values in the
current model. This implementation would require signif-
icant modifications to the code of the two tasks, however,
performance has the potential to increase four-fold.

Furthermore, loop unrolling has been suggested as a method
for squeezing extra performance out of the SPEs. This
method provides more instructions for the SPU, allowing
for more instruction interleaving and helping to prevent any
stalls that may occur.

Some more general methods for performance improvement
are things such as looking for redundancy, such as if DMA
operations do not need to run every loop. Perhaps there are
instances where the effects of regenerating some data versus
copying (or moving with DMA) need to be analyzed. It
is important to find generalized methods for optimizations
as development moves away from the specific ATR example
and into the general modeling and generation from the SPP.

7. FUTURE WORK AND CONCLUSION
The experience of adapting the ATR example to the Cell

processor has guided us through modifying the SPP kernel
that is associated with its generation tools. Furthermore, it
has provided a look into the techniques needed to run any
type of signal processing system that can be modeled with
the SPP tools. One in particular is the merging of blocks for
proper SPE scheduling. Making this an automated feature
in the modeling environment is a strongly desired featured.
Therefore, a major future task involves incorporating this
and other techniques directly into the tool suite, allowing
for the generation of these techniques based on the modeled
system and eliminating the need for manual adaption.

8. REFERENCES
[1] S. Asaad, T. Bapty, and S. Neema. Performance

modeling for adaptive parallel embedded systems. In
IEEE International Performance, Computing, and
Communications Conference Proceedings, pages 57–64,
April 2002.

[2] IBM. Cell Broadband Engine Programming Handbook,
April 2007.

[3] IBM. Cell Broadband Engine Programming Tutorial,
March 2007.

[4] IBM. Cell Broadband Engine SDK Libraries Overview
and Users Guide, March 2007.

[5] IBM. Software Development Kit 2.1 Installation Guide,
March 2007.

[6] S. Neema, T. Bapty, J. Scott, and B. Eames. Signal
processing platform: a tool chain for designing high
performance signal processing applications. In IEEE
SoutheastCon Conference Proceedings, pages 302–307,
April 2005.

