
Toward Native XML Processing Using Multi-paradigm Design in C++

Sumant Tambe and Aniruddha Gokhale
Department of EECS, Vanderbilt University, Nashville, TN, USA

{sutambe, gokhale}@dre.vanderbilt.edu

Abstract

XML programming has emerged as a powerful data
processing paradigm with its own rules for abstracting,
partitioning, programming styles, and idioms. Seasoned
XML programmers expect, and their productivity depends
on the availability of languages and tools that allow us-
age of the patterns and practices native to the domain
of XML programming. The object-oriented community,
however, prefers XML data binding tools over dedicated
XML languages because these tools automatically generate
a statically-typed, vocabulary-specific object model from
a given XML schema. Unfortunately, these tools often
sidestep the expectations of seasoned XML programmers
because of the difficulties in synthesizing abstractions of
XML programming using purely object-oriented principles.
We demonstrate how this prevailing gap can be significantly
narrowed by a novel application of multi-paradigm pro-
gramming capabilities of C++. In particular, we demon-
strate how generic programming, metaprogramming, gen-
erative programming, strategic programming, and operator
overloading supported by C++ together enable native and
typed XML programming.

Keywords: XML Processing, Object-oriented Program-
ming, Generic Programing, Meta Programming, Generative
Programming, C++.

1 Introduction
There is little doubt that XML has evolved from just

a human readable serialization format to a sophisticated
data description, storage, and processing technique used
in a wide range of applications. XML programing – the
paradigm that is native to the domain of XML processing –
has its own type system (e.g., regular types, repeating sub-
sequences), data model (e.g., XML information set con-
stituents such as, elements, attributes, processing instruc-
tions), schema languages for document description (e.g.,
XSD, DTD, RELAX NG), programming languages (e.g.,
XPath [9], XSLT, XQuery), and styles and idioms (e.g.,
child, descendant, sibling axes in XPath, pattern matching

in XSLT). Naturally, the conceptual richness of XML pro-
cessing has led many to identify it as a distinct paradigm in
itself.

Listing 1 An XML document (catalog.xml) containing a
book catalog.

<catalog>
<book>

<title>Hamlet</title>
<price>9.99</price>
<author>
<name>William Shakespeare</name>
<country>England</country>

</author>
</book>
<book>...</book>

...
</catalog>

To reify this fact, consider the XML document shown
in Listing 1 that we will use as a running example in the
rest of this article. Suppose we need to extract the names
of authors who lived in England. A solution using XPath
would be

"//author[country/text() = ’England’]/name/text()"

The succinctness and expressiveness of this solution is
due to the idiomatic uses of XPath’s child and descendant
axes denoted by ‘/’ and ‘//’ respectively. The child axis
selects immediate children elements whereas the descen-
dant axis selects the specified element nodes (“author”) any-
where in the XML tree, irrespective of their depth from the
root (“catalog”).

While a XML aficionado would appreciate the succinct-
ness of the above solution, an object-oriented (OO)-biased
developer would be reluctant to use this approach for sev-
eral reasons. First, contemporary XPath libraries available
to the OO programmers use strings to represent queries,
which leaves no opportunity for static type checking. It may
also be argued that such an approach may lead to malicious
code injection attacks analogous to the SQL injection tech-
nique. Second, the results of such a query often require type
casting to appropriate types, which is often computationally
expensive.



Listing 2 C++ classes generated by a typical XML data
binding tool for the catalog object-model

class title {...};
class price {...};
class name {...};
class country {...};
class author { // Constructors are not shown.

private: name name_;
country country_;

public: name get_name() const;
void set_name(name const &);
country get_country() const;
void set_country(country const &);

};
class book { // Constructors are not shown.

private: title title_;
price price_;
std::vector<author> author_sequence_;

public: title get_title() const;
void set_title(title const &);
price get_price() const;
void set_price(price const &);
std::vector<author> get_author() const;
void set_author(std::vector<author> const &);

};
class catalog {...}; // Contains a std::vector of books.

To overcome these limitations, OO-biased developers of-
ten use XML data binding tools [6, 1], which generate a
statically-typed, vocabulary-specific object model from a
description of the object structure in a schema language
(e.g., XSD, DTD, RELAX NG). Listing 2 shows such an
object model that reflects the structure of the book cata-
log XML. Well-known OO programming idioms are used
to encapsulate the data behind intuitive classes and natural
ways are provided for inspection/manipulation of the data
through member functions only.

The downside to the OO-based approach are manifold
stemming primarily from the fact that it leaves no oppor-
tunity to express the solution as succinctly as XPath. First,
obtaining children requires invocation of member functions,
which cannot be composed as in the ‘/’ operator of XPath.
Although Method chaining can be exploited to a certain ex-
tent, its use is not anticipated in most XML data binding
tools. Second, explicit loops are necessary to iterate over
the containers of children, which is clearly low-level and
tedious compared to XPath. Finally, the XPath query de-
couples itself from the concrete XML structure by omitting
the “book” and “catalog” tags. Such decoupling reduces
maintenance should the XML structure change in future.
This commonly used XPath idiom is nowhere to be found
in the generated classes. In fact, there is no way to bypass
catalog and book objects before reaching the author ob-
jects.

To alleviate this technical gap between the two ap-
proaches and thereby alleviate the “disappointment” of the
XML programmer, we ask ourselves the question: “Is it
possible to achieve the expressiveness of XPath and the

type-safety of OO all at once?” As we will show in the
rest of this article, C++ is a true multi-paradigm language
that rises to the complexity of this problem, which is oth-
erwise inaccessible using the OO paradigm alone. In par-
ticular, we demonstrate how generic programming, static
metaprogramming [2], generative programming [3], and
strategic programming [8, 5] in combination with opera-
tor overloading can coexist in a single framework to re-
solve the gap between XPath-like notation and OO type-
safety. The following solution is presented using our pre-
vious work on the Language for Embedded quEry and
traverSAl (LEESA) [7].

bool from_england(author a){ return a.get_country()=="England"; }
std::vector<name> author_names =
catalog_root >> AllDescendantsOf(catalog(), author())

>> Select(author(), from_england)
>> name()

In the above code snippet, a key observation is that the
C++ compiler type-checks the expression because it is not
encoded as a string. The return value of the expression is
a standard container of names, where name is a C++ type
derived from the schema. AllDescendantsOf is LEESA’s
manifestation of the descendant axis, which serves a pur-
pose simular to that of “//” in XPath. Finally, a user-defined
predicate function from_england is used to filter authors.

2 XML Programming Concerns
In this section, we identify the key concerns of XML

programmers that are left unresolved by contemporary OO-
biased XML data binding tools. Figure 1 shows a decom-
position of these concerns that we are interested in. Several
other XML programming concerns, such as construction of
XML literals, modularization of type-specific actions, and
the dreaded problem of X/O impedance [4] remain impor-
tant but are not discussed further.

2.1 Representation and Data Access

Contemporary XML data binding tools aptly represent
XML’s tree-shaped data using the Composite design pat-
tern. Each element type is represented by a class that is spe-
cific to the XML vocabulary in question as shown in List-
ing 2. These classes, however, are hard to use in generic
algorithms. Syntactically, vocabulary-specific accessors/-
mutators of the generated classes have little, if any, com-
monality. The types of the children elements are encoded in
the member function names (e.g., get_country, get_name
etc.), which force usage of OO’s dot notation.

In contrast, a more generic way to access the children
could be via a generic accessor that can be parameterized by
the desired children types. A key benefit of the generic type-
driven access to data is that we can abstract the vocabulary-
specific interface behind a uniform interface without los-
ing type-safety. Furthermore, this approach is significantly
more amenable to composition than classic OO dot notation

2



Figure 1: Major concerns of the XML programming
paradigm and the proposed multi-paradigm solutions

as discussed in Section 2.2. Unfortunately, such a generic
use is often not anticipated by the OO-centric XML data
binding tools and hence the generic APIs are not synthe-
sized.

Listing 3 Automatically generated overloaded functions for
type-driven data access

name children (author a, name const *) {
return a.get_name();

}
country children (author a, country const *) {

return a.get_country();
}
title children (book b, title const *) {

return b.get_title();
}
price children (book b, price const *) {

return b.get_price();
}
std::vector<author> children (book b, author const *) {

return b.get_author();
}
std::vector<book> children (catalog c, book const *) {

return c.get_book();
}

To address this limitation we have developed a Python
script that generates a set of overloaded functions that al-
low generic type-driven access to the composite data, as
opposed to the common style of member function invoca-
tion. A sample of global (namespace-level) functions is
shown in Listing 3. All the overloaded functions are named
children, where the second formal parameter is a dummy
pointer used to resolve ambiguities and also to provide type-
driven access. Thus, for every parent-child pair one over-
loaded function is synthesized which maps the child type to
the appropriate member function of the parent object.

Alternatively, a semantically equivalent interface can be

synthesized using C++ member templates, where a generic
member function, children, is made parameterizable us-
ing C++ templates mechanism. In fact, this technique has
been employed in our earlier work where the type parame-
ter serves the same purpose as the second parameter in List-
ing 3. We choose overloaded functions here primarily for
their simplicity.

Despite the simplicity of our approach, a new problem
arises that must be handled. For example, XML data bind-
ing tools use mapping optimizations where simple content
nodes such as attributes and simple elements are repre-
sented using standard library or the language’s built-in types
instead of vocabulary-specific types. Such optimizations,
however, are unable to distinguish objects that logically be-
long to different parts of the XML tree at the type level.
For instance, title and name would be indistinguishable
if they are both represented using std::string. Never-
theless, such optimizations cause ambiguities in our type-
driven approach when two or more types of children ele-
ments are represented using the same C++ class.

To address this limitation, our Python script provides
two alternatives. The script can be used to transform the
given XML Schema Definition (XSD) – without affecting
its data semantics – such that XML data binding tools are
forced to generate vocabulary-specific types for simple con-
tent nodes. This is achieved by inserting a combination of
xsd:simpleType and xsd:restriction elements in the data def-
inition of the simple content nodes. Alternatively, the script
can be instructed to drop the ambiguous set of functions al-
together.

2.2 Axis-oriented Fixed-depth Traversal

XPath programmers visualize every XML document as
being conceptually partitioned along the so-called XML
axes (e.g., child, parent, sibling, ancestor, descendant) and
the self-describing data organized around these axes. These
axes represent a commonality, i.e., an opportunity for reuse,
that is central to the domain of XML programming which,
however, is not recognized by the OO principles alone.
These axes determine not only how data is structured but
also how different variations in traversal allow access to the
data. For instance, Figure 2 shows two variations: breadth-
first and depth-first, along the child axis.

Complementing the axes, there exist numerous element
tags, which capture the actual data in every XML document.
Since the element tags are vocabulary-specific, the classes
that correspond to element tags in the corresponding object
model become the source of variability. Such an identifica-
tion of the common and variable parts provides a significant
opportunity to introduce a reusable mechanism that can cap-
ture the commonality of axes while leaving the richly-typed
objects a mere matter of vocabulary-specific policy.

We achieve this desired goal using the generic program-

3



Figure 2: Variations in child axis traversal: (A) breadth-first
(B) depth-first

ming paradigm and operator overloading in C++ to con-
struct a highly intuitive, composable, and reusable notation
for child axis that is well beyond the expressiveness of the
OO paradigm alone.

Listing 4 A reusable, generic infrastructure in (simplified)
C++ simulating XPath-like child axis notation

1: template <class Kind>
2: class Carrier : public std::vector<Kind> {
3: // Default and copy-constructor are trivial.
4: Carrier (const Kind &k) {
5: this->push_back(k);
6: }
7: using std::vector<Kind>::push_back; // Accepts one Kind.
8: void push_back(std::vector<Kind> const &v) {
9: this->insert(this->end(), v.begin(), v.end());

10: }
11: };
12: template <class Parent, class Child>
13: Carrier<Child>
14: operator >> (Carrier<Parent> carrier, Child const &c)
15: {
16: Carrier<Child> all_children;
17: foreach parent in carrier {
18: all_children.push_back(children(parent, &c));
19: }
20: return all_children;
21: }

Listing 4 shows the implementation of a generic class,
Carrier<Kind>, and a generic function, operator �,
that allows us to express type-safe queries using a notation
that aligns itself along the spirit of XPath. For instance,
the following program implements the breadth-first traver-
sal shown in Figure 2(A).

Carrier<catalog> catalog_root(getRoot("catalog.xml"));
std::vector<name> names =
catalog_root >> book() >> author() >> name();

Carrier<Kind> is an abstraction that hides whether it is
carrying a single Kind or a collection of Kinds. The over-
loaded member function, push_back, treats a singular Kind

object and a collection of Kinds uniformly. This uniformity
is exploited on line #18 in the generic operator � func-
tion. Depending upon the return type of the children func-
tion, appropriate overloaded method of push_back is cho-
sen. The Child type is automatically deduced by the com-
piler, which subsequently selects an appropriate overloaded
children function from Listing 3. Finally, the operator
� function itself is reminiscent of the conventional over-
loaded extraction (�) operators used for I/O, which can be
chained to an arbitrary length.

Using the above data access technique realized in
LEESA, we provide generic, reusable functionality for
traversal along child, parent, and sibling axes. In particular,
� and �= operators are used for breadth-first and depth-
first traversal of child axis whereas � and �= operators
are used for breadth-first and depth-first traversal of the par-
ent axis. For instance, the following query implements the
depth-first traversal shown in Figure 2(B).

catalog_root >>= book() >>= author() >>= name()

It uses the depth-first (�=) operator that executes the
expression to its right in the context of a single object. In
our example, �= book() selects one book at a time and
continues execution in the context of that book object. Sub-
sequently, �= author() and �= name() do the same for
authors and their names respectively. As a result, depth-
first operators provide highly expressive notation for nested
loops.

LEESA also supports different variations of the sibling
axis to query children at the same level. We present a vari-
ation of sibling axis that allows on-demand creation of tu-
ples containing objects of different types. For example, the
following LEESA query creates a collection of tuples con-
taining every author’s name and his/her country.

std::vector<tuple<name, country> > tuples =
catalog_root >> book() >> author() >>

ChildrenAsTupleOf(author(), tuple<name, country>()))

These examples indicate that the ability to combine axes
is a powerful technique for expressing complex queries suc-
cinctly and intuitively. To enable such expressiveness na-
tively in C++, LEESA implements these operators using
the sophisticated operator overloading idiom of Expression
Templates. Details of LEESA’s design appear in [7].

2.3 Axis-oriented Structure-shy Traversal

XPath supports the descendant axis, which allows omis-
sion of the element tags between the document root and the
elements of interest resulting in the so-called structure-shy
queries. For instance, "/*/*/country" and "//country"
are two structure-shy XPath queries that omit the “book”
and “author” tags indicating interest in the “country” ele-
ments only. While the former query looks for the “coun-
try” elements at the third level from root, the latter looks

4



for the same at any nested level in the XML tree. Such a
decoupling from the concrete structure of the XML tree is
highly desirable to write flexible queries that are resilient to
changes in the schema.

Although the OO paradigm can exhibit structure-shyness
in the form of information hiding and encapsulation, realiz-
ing XPath-style structure-shyness poses a significant chal-
lenge using only the OO features of C++. However, by
leveraging the Strategic Programming (SP) [8, 5] and Gen-
erative Programming [3] paradigms supported by C++, we
can achieve support for structure-shyness that rivals XPath.

Sidebar 1: Strategic Programming in a
Nutshell

Strategic Programming (SP) began as a general-
purpose program transformation [8] technique, which later
evolved into a paradigm [5] for generic tree traversal that
supports reuse of the traversal logic while providing com-
plete control over traversal. It warrants the status of
a paradigm because it has been incarnated in disparate
programming disciplines such as term rewriting, func-
tional programming, logic programming, object-oriented
programming (visitors). It is based on a small set of combi-
nators (Identity, Fail, Sequence, Choice, All, and One) that
can be composed to construct complex traversal schemes.
For instance, FullTopDown traversal scheme, composed us-
ing the Sequence and All combinators, descends into a tree
and visits every node in depth-first manner.

Sidebar 1 presents an overview of SP. In our ear-
lier work [7] we have demonstrated how LEESA imple-
ments basic strategic combinators using C++ templates.
Commonly used traversal schemes such as FullTopDown
are also provided out-of-the-box like most SP incarna-
tions do. LEESA’s manifestation of the descendant axis,
AllDescendantsOf(Ancestor, Descendant), uses Full-
TopDown traversal scheme to emulate XPath’s ’//’ operator.

Specifically, the FullTopDown traversal scheme is pa-
rameterized with a Collector<Descendant> object that
identifies the Descendant type objects and accumu-
lates them as the recursive strategy descends into the
XML tree. For instance, AllDescendantsOf(catalog(),
country()) collects all the “country” objects irrespective
of their depth. Therefore, AllDescendantsOf presents
an opportunity for XML programmers to express typed
structure-shy queries.

In spite of the generality of strategic programming, con-
structing LEESA queries that emulate wildcards (’/*/’) re-
mains a challenge to the XML programmer. LEESA re-
solves this challenge using LevelDescendantsOf, which
is an intuitive facade that mimics XPath’s wildcards. For
instance, the following expression is a typed equivalent of
earlier presented query "/*/*/country":

std::vector<country> countries =
catalog_root >> LevelDescendantsOf(catalog(), _, _, country())

LevelDescendantsOf makes use of the All strate-
gic combinator, which applies its nested strategy to the
immediate children of its input datum. For instance,
when All<All<All<Collector<country> > > > com-
posite strategy is applied to the root of the catalog object
model, it collects the country objects found exactly at the
3rd level. Note that in the case of LevelDescendantsOf,
the number of times All is composed is not known a priori
but instead determined at compile-time based on the num-
ber of wildcards specified by the programmer. Such auto-
matic compile-time composition of strategies is the novelty
of LEESA’s incarnation of SP. This technique of synthesiz-
ing complex types from basic types at compile-time is well-
known in the C++ community as generative programming.

2.4 Compile-time Schema Conformance Checking

Although all the LEESA queries are type-checked by the
compiler, it could be argued that the axis-oriented traver-
sal is an over-generalization of OO’s member access idiom
leading to a possibility of writing unsafe or illegal XML
queries. For instance, catalog() � book() � book()
is an illegal query because “book” elements do not contain
other books. The possibility of such illegal queries ques-
tion the usefulness of the type-driven data access approach
we presented earlier. We address these limitations using the
static metaprogramming paradigm supported by C++.

We exploit the C++ compiler to check LEESA expres-
sions at compile-time based on the meta-information of
the XML object structure that is automatically external-
ized in a form understood by the C++ compiler. The Boost
Metaprogramming Library (MPL) is used as the represen-
tation format for the externalized meta-information for the
child and descendant axes. Sidebar 2 presents an overview
of Boost MPL, which provides sophisticated facilities for
static metaprogramming in C++.

We have developed a Python script that automatically ex-
ternalizes the meta-information in the schema in the form
of MPL sequences. Listing 5 shows the automatically gen-
erated meta-information for the catalog object model. For
every class that has at least one child, a specialization of
the SchemaTraits is generated that contains a MPL se-
quence of the children types. For other simple classes,
the list of children is empty, represented by the generic
SchemaTraits template (lines 1-3) in Listing 5.

The descendant axis information is represented using the
specializations of IsDescendant<A,D> template. For ev-
ery type D (for descendant) that is contained directly or in-
directly under type A (for ancestor), an IsDescendant spe-
cialization is generated that inherits from the True type. For
all other pairs, the generic IsDescendant template (line
#13) inherits from False, indicating that the descendant re-

5



Sidebar 2: C++ Metaprogramming and
Boost MPL

C++ templates, due to their support for specialization,
give rise to a unique, purely functional (no side effects al-
lowed) computation system that can be used to perform
compile-time computations. It has become well known as
C++ template metaprogramming and has been exploited
in countless applications including scientific computing,
parser generators, functional programming among others.

Boost MPL [2] is a general-purpose C++ metapro-
gramming library with a collection of extensible compile-
time algorithms, typelists, and metafunctions. Typelists en-
capsulate zero or more C++ types in a way that can be ma-
nipulated at compile-time using MPL metafunctions. For
example, consider a typelist called Integral, which is rep-
resented using a compile-time MPL sequence mpl::vector
(not to be confused with std::vector).

typedef mpl::vector<int, long, short, unsigned> Integral;

MPL provides several off-the-shelf capabilities to ma-
nipulate such a list of types at compile-time. For instance,
a MPL metafunction called mpl::contains can be used to
check existence of a type in a MPL sequence.

mpl::contains<Integral, int>::value; // value = 1
mpl::contains<Integral, float>::value; // value = 0

Listing 5 Automatically generated meta-information (par-
tial) for the catalog object model

1: template <class Kind> struct SchemaTraits {
2: typedef mpl::vector<> Children;
3: };
4: template <> struct SchemaTraits <catalog> {
5: typedef mpl::vector<book> Children;
6: };
7: template <> struct SchemaTraits <book> {
8: typedef mpl::vector<title, price, author> Children;
9: };

10: // Similarly SchemaTraits<author> contains name, country.
11: struct True { enum { value = 1 }; };
12: struct False { enum { value = 0 }; };
13: template<class A, class D> struct IsDescendant : False {};
14: template<> struct IsDescendant<catalog,book> : True {};
15: template<> struct IsDescendant<catalog,title> : True {};
16: template<> struct IsDescendant<catalog,price> : True {};
17: template<> struct IsDescendant<catalog,author> : True {};
18: template<> struct IsDescendant<catalog,name> : True {};
19: template<> struct IsDescendant<catalog,country>: True {};
20: // Similar specializations for book (5) and author (2).

lationship does not hold. Essentially, IsDescendant is a
transitive closure of the child relationship.

LEESA leverages this meta-information to catch any il-
legal query expression at compile-time. LEESA imple-
ments generic, reusable compile-time assertions in its over-
loaded operators to disallow illegal queries along all the
supported axes. For instance, the following compile-time
assertion is used in the implementation of operator �

function (Listing 4).

typedef SchemaTraits<Parent>::Children Children;
BOOST_STATIC_ASSERT(mpl::contains<Children, Child>);

Using the Boost static-assert library and the external-
ized meta-information, it constrains the formal parameter
types of the function such that only those types that sat-
isfy the parent-child relationship yield a successful com-
pilation of the program. Similar static assertions are
used in the implementation of AllDescendantsOf and
LevelDescendantsOf based on the IsDescendant<A,D>
meta-information. Such compile-time assertions are
generic but still schema-aware. They act like vocabulary-
specific extensions to the language’s type system ensuring
that the existential constraints in the schema are satisfied at
compile-time.

3 Performance Evaluation
To determine whether our approach can be used in prac-

tice for industrial strength XML documents, we report
on the performance comparisons between LEESA’s multi-
paradigm approach and the pure object-oriented approach
used by contemporary XML data binding tools.

3.1 Compile-time Performance

LEESA’s reliance on C++ template metaprogramming
requires us to evaluate metrics such as compilation times,
source code size, and the object code size. Table 1 shows the
comparison of code sizes for one small (10 types) and one
large (300 types) schema. We evaluated a single LEESA
expression of each query type shown in the table against
equivalent programs written using OO abstractions only.

Schema Query type Lines of Object code
size code (Megabytes)

(A) (B) (A) (B)

Small
Child-axis,

AllDescendants, 3 13 0.38 0.35
LevelDescendants

Large
Child-axis 3 39 7.42 7.15

AllDescendants 3 136 7.46 7.19
LevelDescendants 4 88 7.49 7.18

Table 1: Comparison of the static metrics. (A) = LEESA
and (B) = Object-oriented solution

The difference in the lines of code (LOC) in Table 1
clearly shows that LEESA expressions are highly expres-
sive and succinct compared to the OO-centric solution.
Pure OO code is not only verbose but also unable to ex-
press XML idioms of structure-shyness. Data for the object
code sizes reveals that LEESA’s generative programming
approach does not result in object-level code bloat.

6



Comparisons of the compilation times for the test pro-
grams written using the large schema are shown in Figure 3.
LEESA-based programs consistently require more time to
compile than pure OO solutions because contemporary C++
compilers are not optimized for heavy metaprogramming.
The increasing compilation-times may lengthen the edit-
compile-test cycles. However, we believe that the succinct-
ness and intuitiveness of LEESA not only requires fewer
key-strokes but also fewer compilations than the equivalent
object-oriented programs.

Furthermore, variadic templates, an upcoming C++ lan-
guage feature that allows arbitrary number of template pa-
rameters will help reduce the compilation overhead dra-
matically. Our initial results (not shown) revealed an or-
der of magnitude improvement in the compilation times
for LEESA’s internal metaprograms written using variadic
templates as opposed to their library-level emulation using
MPL typelists.

Figure 3: Run-time and compile-time comparisons of
LEESA and the pure OO solution

3.2 Run-time Performance

Figure 3 compares the run-time performance of a
LEESA query with an optimized hand-written object-
oriented solution. We compared the time needed to con-
struct a standard container of name objects from a set of

large book catalogs. LEESA’s descendant axis has consis-
tently higher overhead by a factor of 2.5 compared to the
hand-written solution. This abstraction penalty stems from
the construction, copying, and destruction of the internal
dynamic data structures LEESA maintains.

In practice, however, query execution amounts to a small
fraction of the overall XML processing, which involves I/O,
parsing, XML validation, construction of the in-memory
object model, and the execution of business logic. For in-
stance, our 320,000 elements test took over 36 seconds for
XML parsing, validation, and object model construction,
which is nearly two orders of magnitude higher than the
query execution time. Moreover, LEESA’s higher-level of
abstraction allows transparent performance improvements
using the upcoming C++ language features such as rvalue
references and threading facilities for multi-core process-
ing, which may otherwise require costly OO refactoring.

4 Conclusion
Language integrated XML querying has been deployed

successfully in other languages (e.g., Linq in C#). LEESA
is a step forward toward integrating typed XML querying
using multi-paradigm capabilities in C++ but much remains
to be accomplished. We believe that the upcoming C++ lan-
guage standard, C++0x, which dramatically improves the
generic programming support in C++, offers plethora of op-
portunities to further the fidelity and performance of XML
integration in C++. LEESA can be downloaded in open-source
from www.dre.vanderbilt.edu/LEESA.

References
[1] XML Data Binding for C++.

http://codesynthesis.com/products/xsd.
[2] D. Abrahams and A. Gurtovoy. C++ Template Metaprogram-

ming: Concepts, Tools, and Techniques from Boost and Be-
yond (C++ in Depth Series). Addison-Wesley Professional,
2004.

[3] K. Czarnecki and U. W. Eisenecker. Generative Program-
ming: Methods, Tools, and Applications. Addison-Wesley,
Reading, Massachusetts, 2000.

[4] R. Lämmel and E. Meijer. Revealing the X/O Impedance Mis-
match (Changing lead into gold). In In Datatype-Generic Pro-
gramming, volume 4719 of LNCS, 2007.

[5] R. Lämmel, E. Visser, and J. Visser. The Essence of Strategic
Programming. 18 p.; Draft; Available at http://homepages.
cwi.nl/~ralf/eosp, Oct.15 2002.

[6] Ronald Bourret. XML Data Binding Resources.
http://www.rpbourret.com/xml/XMLDataBinding.htm.

[7] S. Tambe and A. Gokhale. LEESA: Embedding Strategic
and XPath-Like Object Structure Traversals in C++. In DSL
’09: Proceedings of the IFIP TC 2 Working Conference on
Domain-Specific Languages, pages 100–124, 2009.

[8] E. Visser, Z. Benaissa, and A. Tolmach. Building Pro-
gram Optimizers with Rewriting Strategies. In Proceedings
of the International Conference on Functional Programming
(ICFP’98), pages 13–26. ACM Press, 1998.

[9] World Wide Web Consontium (W3C). XML Path
Language (XPath), Version 2.0, W3C Recommendation.
http://www.w3.org/TR/xpath20, Jan. 2007.

7


