@inproceedings{14, author = {Yue Zhang and Scott Eisele and Abhishek Dubey and Aron Laszka and Anurag Srivastava}, title = {Cyber-Physical Simulation Platform for Security Assessment of the Transactive Energy Systems}, abstract = { Transactive energy systems (TES) are emerging as a transformative solution for the problems that distribution system operators face due to an increase in the use of distributed energy resources and rapid growth in scalability of managing active distribution system (ADS). On the one hand, these changes pose a decentralized power system controls problem, requiring strategic control to maintain reliability and resiliency for the community and for the utility. On the other hand, they require robust financial markets while allowing participation from diverse prosumers. To support computing requirements of TES with required flexibility while preserving privacy and security, a distributed software platforms is required. In this paper, we enable the study and analysis of security concerns by developing Transactive Energy Security Simulation Testbed (TESST), a TES testbed for simulating various cyber attacks. In this work, the testbed is used for TES simulation with centralized clearing market, highlighting weaknesses in a centralized system. Additionally, we present a blockchain enabled decentralized market solution supported by distributed computing for TES, which on one hand can alleviate some of the problems we identify, but on the other hand may introduce newer issues. Future study of these differing paradigms is necessary and will continue as we develop our security simulation testbed.}, year = {2019}, journal = { Modeling and Simulation of Cyber-Physical Energy Systems}, address = {Montreal, Canada}, }