@proceedings{313, author = {Heath LeBlanc and Xenofon Koutsoukos}, title = {Consensus in Networked Multi-Agent Systems with Adversaries}, abstract = {In the past decade, numerous consensus protocols for networked multi-agent systems have been proposed. Although some forms of robustness of these algorithms have been studied, reaching consensus securely in networked multi-agent systems, in spite of intrusions caused by malicious agents, or adversaries, has been largely underexplored. In this work, we consider a general model for adversaries in Euclidean space and introduce a consensus problem for networked multi-agent systems similar to the Byzantine consensus problem in distributed computing. We present the Adversarially Robust Consensus Protocol (ARC-P), which combines ideas from consensus algorithms that are resilient to Byzantine faults and from linear consensus protocols used for control and coordination of dynamic agents. We show that ARC-P solves the consensus problem in complete networks whenever there are more cooperative agents than adversaries. Finally, we illustrate the resilience of ARC-P to adversaries through simulations and compare ARC-P with a linear consensus protocol for networked multi-agent systems.}, year = {2011}, journal = {Hybrid Systems: Computation and Control}, month = {04/2011}, }