TRANSAX: Blockchain-based Middleware for Transactive Energy Systems

    Agency: NSF, Siemens, CT
    PI: Abhishek Dubey
    Funding: $1.2 million
    PoP: 2016-2021
    Collaborators: University of Houston

    The availability of distributed energy resources (DER) in communities have presented novel opportunities, as these resources are located closer to loads and can significantly reduce transmission losses and carbon emissions, relative to traditional power sources. However, their intermittent and variable nature often results in spikes in the overall demand on distribution system operators (DSO). To manage these challenges, there has been a surge of interest in building decentralized control schemes, where a pool of DERs combined with energy storage devices can exchange energy locally to smooth fluctuations in net demand. Building a decentralized market for transactive microgrids is challenging because even though a decentralized system provides resilience, it also must satisfy the requirements of privacy, efficiency, safety, and security, which are often in conflict with each other. As such, existing implementations of decentralized markets often focus on resilience and safety but compromise on privacy. Our platform, called TRANSAX, enables participants to trade in an energy futures market, which improves efficiency by finding feasible matches for energy trades, enabling DSOs to plan their energy needs better. TRANSAX provides privacy to participants by anonymizing their trading activity using a distributed mixing service, while also enforcing constraints that limit trading activity based on safety requirements, such as keeping planned energy flow below line capacity.