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Simulation

Rapid synthesis of high-level
architecture-based heterogeneous
simulation: a model-based
integration approach

Graham Hemingway, Himanshu Neema, Harmon Nine,
Janos Sztipanovits and Gabor Karsai

Abstract

Virtual evaluation of complex command and control concepts demands the use of heterogeneous simulation environ-

ments. Development challenges include how to integrate multiple simulation engines with varying semantics and how to

integrate simulation models and manage the complex interactions between them. While existing simulation frameworks

may provide many of the required run-time services needed to coordinate among multiple simulation engines, they lack

an overarching integration approach that connects and relates the interoperability of heterogeneous domain models and

their interactions. This paper outlines some of the challenges encountered in developing a command and control

simulation environment and discusses our use of the Generic Modeling Environment tool suite to create a model-

based integration approach that allows for rapid synthesis of complex high-level architecture-based simulation

environments.

Keywords

domain-specific modeling language, distributed simulation, heterogeneous simulation, high-level architecture, model-

based integration, multi-paradigm modeling

1. Introduction

The evaluation of emerging command and control
(C2)1 concepts necessitates a sophisticated modeling
and simulation infrastructure that allows for the con-
current modeling, simulation and evaluation of (1) the
C2 system architecture (advanced system-of-systems
modeling), (2) the battle space environment (scenario
modeling and generation), and the (3) human organi-
zations and (group and individual) decision-making
processes (human performance and man–machine
interaction modeling). Using simulated C2 environ-
ments to evaluate design concepts, validate new systems
and components, and explore hazardous, as well as
ambiguous, scenarios is easily justified from both a
cost and a practicality perspective. However, complex
C2 environments have many disparate facets that need
to be orchestrated, all of which cannot be handled
by a single simulation engine. As a result, a heteroge-
neous collection of integrated simulations, all acting

in a tightly coordinated environment, must be
employed. This collection is referred to as a simulation
federation.

In a federation, individual simulations are composed
of two parts: an underlying simulation engine, such as
Simulink, and a domain-specific model, such as an
automatic flight control system, designed to run on
the engine. In addition, each simulation engine may
have its own unique execution semantics that need to
be accounted for. All of the engines and models in a
federation must be coordinated in a meaningful way in
order for the larger C2 simulation environment to
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be useful. Issues encountered in developing these envi-
ronments relate to integrating simulations at both the
engine and model levels.

Existing frameworks, such as the high-level architec-
ture (HLA),2,3 provide application programming inter-
faces (APIs) that have helped to reduce the complexity
of integrating multiple different simulation engines, but
many challenges remain in such environments. HLA,
for example, does not specify any tools to design or
deploy a federation. It primarily standardizes run-
time support for various tasks, such as coordinated
time evolution, message passing, and shared object
management. As a result, these frameworks require a
significant amount of tedious and error-prone hand-
developed integration code.

Additional complications stem from the fact that
existing frameworks typically do not have centralized
repositories for the configuration of the entire environ-
ment. Ideally, this repository would include configura-
tion data for each of the individual simulation engines
and models involved, as well as for the deployment and
execution of the overall simulation. Lacking such a
repository leads to the possibility of conflicting or
inconsistent configurations. These types of problems
can be difficult to diagnose and can greatly increase
the burden of manually coordinating the design,
deployment, and execution of the simulation
environment.

In this paper, we present the C2 wind tunnel
(C2WT), a graphical environment for designing and
deploying heterogeneous C2 simulation federations.
Its primary contribution is to facilitate the rapid devel-
opment of ‘integration models’, and to utilize these
models throughout the lifecycle of the simulated envi-
ronment. An integration model defines all the interac-
tions between federated models and captures other
design intent, such as simulation engine-specific param-
eters and deployment information. This information
can be leveraged to streamline and automate significant
portions of the simulation lifecycle.

The C2WT uses a custom developed domain-specific
modeling language (DSML) for the definition of inte-
gration models. This language facilitates the easy cap-
ture of all of the design details for the simulation
environment. C2WT integration models follow the con-
ceptual architecture depicted in Figure 1. A simulation
environment is composed of multiple ‘federates’, each
of which includes a simulation model, the engine upon
which it executes, and some amount of specialized glue
code to integrate the engine with the simulation bus.
Both the engine configuration and the integration (or
‘glue’) code needed for each federate is highly depen-
dent upon the role the federate plays in the environ-
ment, as well as the type of simulation engine being
utilized.

While manually developing the glue code is possible,
by leveraging the integration model, the C2WT is able
to synthesize all of the code, greatly reducing errors and
effort. We developed a suite of tools, called model inter-
preters, integrated directly with the DSML, that auto-
matically generate engine configurations and glue code,
as well as scripts to automate simulation execution and
data collection. The integration model DSML com-
bined with our generation tools provides a robust envi-
ronment for users to rapidly define complex,
heterogeneous C2 simulations.

The remainder of this paper is organized as follows.
The next section discusses background material.
Section 3 details the C2WT DSML and our approach
for model integration using the C2WT environment.
Section 4 reviews the details of the integration of sev-
eral simulation engines. Section 5 discusses our inte-
grated approach to simulation deployment and
execution. Section 6 covers results from using the
framework in a real-world scenario. Section 7 discusses
some of the decisions and factors that drove the tool
suite’s development. Section 8 reviews work related to
our research. Section 9 concludes the paper and out-
lines planned future work.

2. Background information

One of the primary contributions of our effort is our
focus on developing a completely model-based integra-
tion approach. Our efforts leverage the Generic
Modeling Environment (GME)4 tool suite for design-
ing the integration model DSML and a customizable
HLA integration and configuration framework to
provide run-time support as the ‘simulation bus’.

The HLA is a standardized architecture for distrib-
uted computer simulation systems. Communications
between different federates is managed via the run-time
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Figure 1. Conceptual command and control wind tunnel

architecture. HLA: high-level architecture.
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infrastructure (RTI) layer – an implementation of
the HLA standard. The RTI provides a set of services,
such as time management, data distribution, message
passing, and ownership management. Other compo-
nents of the HLA standard are the object model tem-
plate (OMT) and the federate interface specification
(FIS).

The HLA standard focuses on three primary areas.
First is time coordination throughout the federation.
The evolution of time is a key thread through each of
the integrated simulators. Each simulation engine must
slave its progression of time to that of the overall HLA
clock. The HLA standard provides several methods to
accomplish this. Second is coordination of inter-federate
messages and shared data objects. The HLA standard
provides a publish-and-subscribe mechanism for passing
messages and object updates throughout the federation.
Thirdly, the HLA standard provides for basic simula-
tion execution control. A limited ability to start, pause,
and stop the execution of a simulation is built directly
into the HLA standard. The C2WT relies upon the ser-
vices provided by the RTI during run time.

As HLA is an accepted standard, a number of com-
mercial, academic, and alternate RTI implementations
are available. Currently, we use the Portico RTI,5

which provides support for both Cþþ and Java clients
and is compliant with version 1.3 of the HLA standard.

The GME is a meta-programmable model-inte-
grated computing (MIC)4 toolkit that supports the cre-
ation of rich domain-specific modeling and program
synthesis environments. Configuration is accomplished
through meta models, expressed as unified modeling
language (UML)6 class diagrams, specifying the model-
ing paradigm of the application domain. Meta models
characterize the abstract syntax of the DSML, defining
which objects (i.e. boxes, connections, and attributes)
are permissible in the language and how they compose.
Another way to view this is that the meta model is a
schema or data model for all of the possible models that
can be expressed by a language. Using finite state
machines as an example, the DSML would support
states and transitions. From these elements any state
machine can be realized. The inherent flexibility and
extensibility of the GME via meta models make it an
ideal foundation for the C2WT environment. Alternate
meta modeling frameworks, such as AToM3,7

MetaCase,8 and Microsoft DSL,9 exist but extensive
prior experience with the GME led to its selection for
the C2WT.

3. Model-based integration
environment

Complex C2 simulations require coordination between
multiple heterogeneous simulation engines. The HLA

provides a standard for the RTI that supports the coor-
dinated execution of distributed simulations. However,
designing the model integration, coding the engine-to-
RTI glue code, and testing and deploying all of the
various run-time components across multiple engine-
specific simulation tools remains a challenging prob-
lem. Our project introduces a new approach for the
simulation integration problem. The primary contribu-
tions of this effort are the development of a compre-
hensive modeling and management environment built
around a custom DSML, implemented in the GME,
and a related suite of model interpreters to coordinate
between the integration model and the engine-specific
simulation tools involved in the overall environment.

3.1. Integration overview

A common problem with developing large-scale hetero-
geneous simulations is the complexity and effort
required to integrate distinct simulation tools into the
larger environment. In the case of a HLA-based envi-
ronment, not only does the RTI require a common fed-
eration definition, but each involved simulation tool
must also be integrated (via simulation engine-to-RTI
glue code) and configured (in an engine-specific way)
according to its role in the environment. Existing
approaches treat the definition and creation of these
artifacts as separate, but not necessarily related, steps.
Our custom DSML is able to capture all of this inte-
gration information and provide a single view of the
entire simulation environment. In this section, we will
discuss the design of the DSML, our approach for cre-
ating integration models, and the execution semantics
of these models.

Throughout this paper we will refer to an example
scenario we have modeled using the C2WT, illustrated
in Figure 2. It involves the deployment of one or more
unmanned aerial vehicles (UAVs) (simulated using
Simulink10 models) into a combat zone. The deploy-
ment zone and the physical positioning of the ground
and aerial vehicles are modeled using a custom Java
federate and visualized using Google Earth.11 The
UAVs may have objectives including: data collection,
target acquisition and engagement, or battle damage
assessment. Video sensors (implemented and simulated
using custom-written Java federates) mounted on the
UAVs must collect information and relay it via a com-
munications network (implemented in OMNeTþþ12)
back to a centralized decision-making organization
(implemented as a colored Petri-net (CPN) model in
CPN Tools13). The organization must react appropri-
ately to the information and provide guidance to the
vehicles. In addition, the UAVs are themselves highly
autonomous and must utilize collected sensor data to
pursue their given objectives.

Hemingway et al. 3
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3.2. Integration model DSML

Fundamental to the C2WT environment is the over-
arching model integration DSML. This language is
considered overarching in the sense that it provides
all of the modeling primitives required to specify the
integration, deployment, and execution of the federated
simulation. Once the integration model has
been defined for a given environment, a set of reusable
model interpreters are executed to automatically
generate engine-specific glue code and all deployment
and execution artifacts. All generation and deploy-
ment steps directly rely upon the initial integration
model.

Figure 3 shows the primary portion of the DSML
that defines the universe of composition elements. The
three primary elements in a federation (defined by the
model FOMSheet) are Interaction (on right-hand side
of Figure 3), Object (on the left-hand side), and
Federate (in the center), representing a HLA-interac-
tion, HLA-object, and a HLA-federate respectively.
Note that proxy elements are simply references to
their respective target model elements and can be
used in place of their targets to help structure or orga-
nize a model. As defined by the HLA standard, feder-
ates in a federation communicate among each other
using HLA-interactions and HLA-objects – both of
which are managed by the RTI.

Interactions and objects, in an analogy with inter-
process communications in operating systems, corre-
spond to message passing and shared memory respec-
tively. As seen in Figure 3, the meta model fully
supports the key HLA-defined attributes of these com-
munication elements, such as delivery method, message
order (timestamp or receive order), and parameters.
Also notable is that via the InteractionInheritance and
ObjectInheritance connection elements, interactions and
objects can form inheritance trees where derived types

inherit the parameters or attributes respectively of base
types. The ParameterType attribute on the Parameter
and Attribute elements defines the data type of that
element (i.e. float, int, string). The Interaction and
Attribute elements also support the HLA-defined
attributes of Delivery and Order. The Delivery attribute
specifies the desired method of delivering the interac-
tions (and attribute updates), such as reliable or best-
effort. The Order attribute specifies the order in which
the interactions (and attribute updates) must be deliv-
ered, such as time-stamped, or receive. When time-
stamped order is used, the RTI maintains a time-
stamped queue of interactions (and attribute updates)
and delivers them in that order. When the receive order
is used, the RTI forwards the interactions (and attrib-
ute updates) as soon as it receives them without guar-
anteeing the order in which they will be finally received
by the recipient federates.

The Federate element directly corresponds to any
single instance of a simulation tool involved in the fed-
eration. The primary attribute of a federate, as far as
HLA-based synchronization is concerned, is its
Lookahead – the interval into the future during which
that federate guarantees that it will not send an inter-
action or update an object.

We have sub-classed the Federate element with
CPNFederate and OmnetFederate elements. These ele-
ments are used to represent two supported simulation
engines that benefit from having more detailed federate
models. Places and EndPoints represent contained ele-
ments within larger CPN Tool and OMNeTþþ
models, respectively. These ‘children’ elements appear
as ports on their parent container, see Figure 4, and
allow the federate to relate interactions or objects
directly to the child elements. For many federate
types, such as Matlab/Simulink or Java/Cþþ, children
elements do not have a semantic equivalent, and as
such do not need specific support in the meta model.

Lastly, the attributes of the FOMSheet element cap-
ture the names and locations for configuration code
that enables the integration of supported simulation
engines. We will describe this capability in detail in
Section 4.

Collectively, these language elements are required to
define the relationships between all federate types.
Developing an actual integration model using these spe-
cial simulation elements is discussed in the subsequent
section.

Figure 5 shows additional portions of the C2WT
DSML. The top portion of the figure shows the lan-
guage elements necessary to model federates publishing
and subscribing interactions, objects, and attributes.
A Federate (bottom center of the top portion)
can be related to an interaction (inherited
via the InteractionBase element – bottom right).

Figure 2. Example simulation. UAV: unmanned aerial vehicle.
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Two relationships are possible, publish (via a
StaticInteractionPublish connection – middle right) or
subscribe (via a StaticInteractionSubscribe connection –
top right). Similar relationships exist between objects
(via the ObjectBase element) and federates. Since the
HLA standard allows federates to subscribe to individ-
ual object attributes, the Attribute element supports the
subscribe connection to federates. The PubSubFilter
element provides a simple means to organize publish-
and-subscribe relationships.

The lower two portions of Figure 5 are extensions
specific to the CPN Tools and OMNeTþþ engines inte-
grated into the C2WT. The middle portion of the model
captures publish-and-subscribe links with Place ele-
ments. Similarly, the model at the bottom of the

figure captures the connection with special-purpose
EndPoint elements for the integration of OMNeTþþ
federates.

This language, and its set of modeling elements, is
very closely related to the HLA standard for future
extensions to other RTIs in addition to the one cur-
rently supported (viz. Portico RTI5). With these ele-
ments a designer is able to completely specify the
integration model of the entire federation and its con-
stituent simulation engines. Federates define the
details of the engine-specific models that are involved,
and their relationships are captured via publishing
and subscribing to various interactions and objects.
Further extensions to the language have been imple-
mented that include primitives for specifying

Figure 3. Integration model meta model.
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deployment and execution. These extensions are dis-
cussed in Section 5.

3.3. Creating integration models

The semantic relationship between federates can be
defined primarily using two main aspects: the data rep-
resentation and the data flow. These are common ele-
ments of most simulation modeling paradigms, and we
have adopted these as the key concepts of our integra-
tion models. An integration model describes both data
representation and data flow elements, and, in some
cases, includes special elements as the placeholders for
concepts specific to particular simulation engines.

Data representation models consist of interaction
and object models. Interactions are stateless, and can
have parameters, while objects have states, which are
represented as a set of attributes. Both interactions and
objects are permitted to have inheritance hierarchies.
These data representation models directly map to the
HLA federation object model (FOM).

Figure 6 shows two data representation models from
our example: an interaction class-inheritance tree on
the top (elements not shaded), and an object class-
inheritance tree on the bottom (elements shaded). All
interactions must initially inherit from the

InteractionRoot element; likewise, all objects must
inherit from the ObjectRoot element. While root inher-
itance is mandated in the HLA standard, we have
directly incorporated this concept into the DSML to
both clarify the visual representation and to simplify
the interpretation of the model tree. Deriving elements
via inheritance is an intuitive approach readily under-
stood by modelers.

Once the data representation models are created, the
modeler must define publish–subscribe data flow rela-
tions with federates. This is accomplished by connect-
ing federates to interactions or object attributes with
directional links. Federates publish and subscribe to
any set of interactions or objects, dictated solely by
the desired operational semantics. Federates can also
publish or subscribe to entire data elements or to a
subset of their attributes. Figure 4 shows a simple
data flow from our example specifying the publish-
and-subscribe relationships between federates (elements
shaded) and interactions (elements not shaded).

Integrating engine-specific models together in the
central modeling environment is simply a matter of
connecting federates to those interactions and objects
with which they have a publish or subscribe relation-
ship. This greatly simplifies the designer’s job,
since they no longer need to directly incorporate

Figure 4. Example publish/subscribe relationships.
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engine-specific considerations and can focus solely on
the high-level interactions of the model. The lower-level
integration details, such as clock management and mes-
sage passing, are addressed once and for all when the
simulation engine is integrated into the general C2WT
environment.

3.4. Federation execution semantics

The integration model defines all of the relationships
between federates via publish-and-subscribe mecha-
nisms on interactions and objects. We have purpose-
fully not included any timing-related information into
the integration model beyond the Lookahead parameter
within each Federate object.

The HLA standard provides numerous schemes for
coordinating time among federates. These can range
from completely lacking time synchronization, where
one federate can execute arbitrarily far into the
future, to completely synchronized, where all federates
evolve time within a tightly bound window. Our inte-
gration models always assume that time is strictly con-
trolled. Using HLA terminology, all federates must be
both ‘time regulating’ and ‘time constrained’. A time-
regulating federate’s progression constrains all time-
constrained federates. Likewise, a time-constrained fed-
erate’s advance is controlled by all time-regulating fed-
erates. Because within the C2WT framework all
federates are both time regulating and time constrained,
time progresses only when all federates are ready to

Figure 5. Command and control wind tunnel meta model continued.
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proceed and then only as far as the smallest permissible
time step across all of the federates. Without both char-
acteristics for all federates, the overall behavior of the
simulation can become non-deterministic due to reor-
dering of events in time. Determinism is necessary if
scenarios must be executed multiple times without var-
iance in the events or outcomes, such as for scenario
analysis. While our envisioned scenarios rely upon
determinism, other uses, such as for training purposes,
may not, and therefore the requirement for federates to
be both time constrained and time regulating could be
relaxed.

The C2WT environment also assumes that all inter-
actions and object updates are strictly time ordered and
must have timestamps. The HLA standard specifies
that messages can be sent at any time but may only
be received while the federate is waiting for a time
advance request to be granted. This ensures that all

incoming messages will have a timestamp greater than
or equal to a federate’s current time, that is, no time-
stamps are allowed on a message that make a message
appear that it was received in the past. Once a time
advance request is granted a federate can simulate for-
ward in time and processes incoming messages accord-
ing to their timestamp order.

Given these assumptions, the operational semantics
of a federation become straightforward. Each federate
operates in a loop consisting of two steps: request a
time advance from the RTI and wait, receive a time
advance grant from the RTI, and simulate up to that
time. The glue code generated from the C2WT integra-
tion model must be able to control the simulation
engine execution to abide by this scheme. In the next
section, we will provide several examples of how vari-
ous simulation engines are controlled.

A complete C2WT integration model does not con-
tain information about the detailed execution of each
federate. Nor does it replace in any way the internal
operational semantics of any simulation engine. Every
federate references an engine-specific model (e.g. our
Simulink-based UAV model) and it is within this
model that the details of the internal semantics of the
federate are contained. The C2WT only builds upon the
standard time management and message passing mech-
anisms provided by the underlying HLA infrastructure.

4. Integrating simulation engines

This section describes the process of integrating several
example domain-specific simulation engines into the
overall C2WT environment. For each engine, we out-
line how the engine aligns with the overall framework
and the primary considerations involved in integration.
The three example engines are OMNeTþþ, Matlab/
Simulink, and CPN Tools. This set was selected as rep-
resentative samples of the stereotypical types of engines
that are incorporated into C2 simulations.

Each integrated simulation engine has its own
unique underlying execution semantics, CPNs for
CPN Tools, synchronous data flow for Simulink, dis-
crete event systems for OMNeTþþ, etc. These execu-
tion semantics directly impact the approach of how an
engine is integrated into the C2WT environment.
Integration approach details, such as how an engine
coordinates clock management or how it passes inter-
simulation interaction events to the HLA, must be
solved for each engine individually.

In addition to those simulation engines covered
below, the C2WT environment currently supports
DEVSJava,14 Delta3D,15 Google Earth, and C/Cþþ
and Java-based custom federates. This set of supported
engines allows for the simulation of quite complex and
diverse scenarios.

Figure 6. Interaction and object hierarchies.
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4.1. OMNeTþþ – communications federate

In a C2 simulation environment it is essential to model
and simulate communication networks in order to
study mission critical situations, such as network fail-
ures or attacks. After evaluating multiple public
domain network simulators, OMNeTþþ was selected
as our network simulation engine. A primary advan-
tage of OMNeTþþ is its modular architecture, which
allows for the event scheduler to be easily replaced – a
requirement for HLA integration.

We developed a tool called NetworkSim, which is a
HLA-compliant reusable communication network sim-
ulator based on OMNeTþþ. NetworkSim provides a
set of high-level communication protocols (e.g. reliable
send, streaming) while internally maintaining a faithful
simulation of the full network stack. A key advantage
of NetworkSim is its ability to utilize communications
network models built using the standard OMNeTþþ
modeling tools. It simply handles the translation of
messages from the RTI into appropriate network
actions, and vice versa, and injects these messages
onto the correct simulated network node. In addition
to maintaining the underlying semantics of
OMNeTþþ, this mechanism also serves to isolate gen-
eral RTI traffic from traffic on the simulated network.

Each OMNeTþþ model deployed onto
NetworkSim must have some code synthesized for inte-
gration with the RTI. All OMNeTþþ models are com-
posed of connected nodes that form a communications
network. When simulated via NetworkSim, some of
these nodes are end points, responsible for passing mes-
sages between the RTI and the OMNeTþþ engine. The
code that implements these nodes must be generated.

A GME-based model interpreter traverses the
C2WT integration model and generates the Cþþ
code needed for end-point nodes within an
OMNeTþþ model. The integration model provides
all of the information to understand, for a given
OMNeTþþ federate, which interactions may be sent
or received and which objects attributes may be pub-
lished or updated. As seen in the bottom center of
Figure 3, an OMNeTþþ federate contains a set of
end-point atoms. In addition, as demonstrated in
Figure 4, any federate may be related to a set of inter-
actions and objects. The interpreter understands these
relationships and synthesizes code for each end point in
an OMNeTþþ federate. The generated code builds
upon the OMNeTþþ API and is compiled directly
into the model-independent NetworkSim tool.

In addition to inter-federate communication, evolu-
tion of the OMNeTþþ internal simulation clock must
also be synchronized with the RTI. NetworkSim
includes a reusable class that extends the basic
OMNeTþþ scheduler. Figure 7 shows the key

scheduler function that implements RTI time synchro-
nization. The function is called by OMNeTþþ to deter-
mine the next event, originated either internally or
externally. If the timestamp on the next message
places it outside of the window of time granted by the
RTI, then a time advance is requested using rti-
>advanceTime().

An internal dispatch mechanism routes all RTI
interactions to the appropriate OMNeTþþ protocol
module, which interprets them and can schedule new
internal OMNeTþþ messages. A similar mechanism
interprets and routes OMNeTþþ messages bound for
external dispatch into the RTI. Using these mecha-
nisms, both the evolution of time and message passing
within an OMNeTþþ federate is tightly coordinated
via the RTI with the federation.

4.2. Matlab/Simulink – plant and
controller federate

Matlab/Simulink10 is a widely used simulation environ-
ment for dynamic and embedded systems, such as com-
munications, controls, and signal processing. It is a
visual language that uses a set of pre-built block librar-
ies for designing and controlling the simulation.

Integration of the Simulink simulation engine is sim-
ilar to that of the OMNeTþþ engine in that all of the
engine-specific glue code is generated based on the over-
arching integration model. The GME-based model
interpreter generates code that, in conjunction with sev-
eral generic classes, is used to directly integrate any
Simulink model with a C2WT federation. The generic
classes are completely reusable Java code and provide
all of the fundamental RTI integration requirements:
providing interfaces for converting between Simulink
types and RTI types, encapsulating interfacing with
the RTI for initializing the federate, synchronizing the
Simulink engine’s simulation clock, and managing any
publish-and-subscribe relationships with other feder-
ates. The automatically generated Java and Simulink
files for the engine integration depend on this reusable
code.

Figure 7. OMNeTþþ scheduler function.
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Within any given Simulink model the user must
insert an S-function block (a visual block that calls
some textual code, specified in a ‘.m’ file, for execution)
for each interaction or object to which the model either
publishes or subscribes. It is via these blocks that the
Simulink engine interacts with the remainder of
the federation. The modeler must specify whether the
block either publishes or subscribes an interaction or
object. This is done by instantiating the corresponding
sender or receiver S-function from those that were gen-
erated from the integration model. The modeler must
also tell the S-function block which interaction or
object it should call. This is done by passing the name
of the interaction or object via a string parameter to the
block. The naming convention of the. m files and of
the parameters is standardized and easily derived
from the primary C2WT model. Once the S-function
blocks have been incorporated and their values set, no
further manual steps are typically necessary to prepare
the model to be integrated. Some effort may have to
be spent to properly order the signals entering and
exiting the S-function blocks so that they correspond
to the attribute ordering of the corresponding RTI
interaction.

The key mechanism for synchronizing the clock pro-
gression of the Simulink model with that of the RTI is
the basic time-progression model for S-function blocks.
During its execution, the Simulink engine consults each
block in a model about when it can generate an output.
With all S-function blocks, code must be supplied, via
an implementation of the mdlGetTimeOfNextVarHit()
method, to respond to this request from the engine. For
our integration, the synthesized integration code in an
S-function block uses this method to synchronize the
model with the RTI and allow simulation time within
Simulink to progress only when the RTI allows it to
proceed. Until the RTI allows federation time to prog-
ress, we do not return from the method call within the
S-function block, thus not allowing the Simulink engine
to progress. We keep the Simulink engine step size low
(typically �0.1 seconds) to minimize any event timing
errors due to the passing of input and output events
between the Simulink model and the HLA. For incom-
ing events, the glue code uses a polling scheme at every
time step to check if the federate has received an input
from the remainder of the federation.

General experience shows that very small step sizes
in any Simulink model can lead to a significant slow-
down in simulation speed. In the context of the C2WT,
possible performance penalties due to having small step
sizes must be weighed against minimizing timing errors
due to overly large time steps. After thorough evalua-
tion, we found that the performance penalty is negligi-
ble in comparison to the basic lock-stepped simulation
we use for synchronizing federates.

4.3. CPN – organizational decision-making
federate

A very important goal in C2 simulations is to evaluate
the response of decision makers to the evolving situa-
tion. The C2WT environment integrates CPNs to
model and simulate human decision-making
organizations.

We use CPN Tools augmented with the BRITNeY16

extension. This extension provides a low-level bridge
between the native CPN Tools API and Java, which
simplified integration with our Java-based RTI.

The primary challenge involved in integrating the
CPN Tools engine into the C2 environment was correct
time synchronization. In order to ensure that the CPN
model execution stops at desired times one extra place
and a transition, which is set to fire with a predefined
frequency of 1 kHz, are added into a CPN model. The
CPN Tools engine optimistically progresses ahead of
the HLA clock, but when needed, it can be rolled
back to a desired time. This save and restore function-
ality might be useful for increasing performance using
an optimistically large step size and lookahead.
However, with our experiments, we found that the per-
formance penalty incurred by using the small step size
and lookahead was negligible. Thus, we currently use a
step size of �1 second and lookahead of �0.1 seconds
for the CPN federate. Internally, while executing the
CPN model via the BRITNeY Java library, the CPN
clock moves forward 1 millisecond at a time. While
time progresses internal to the CPN simulation, we
compare its current time with the time granted by the
RTI to the CPN federate. If the CPN cannot proceed in
time, it requests the RTI to advance time and waits
until it receives a time advance grant. While the small
internal time step of CPN federates has the potential to
generate significant HLA communications (if there was
an interaction every time step for example), our expe-
rience has shown that typical CPN models do not need
to interact with the HLA every time step and thus do
not incur a significant overhead.

As illustrated in Figure 8, CPN models are
imported into a C2WT integration model via an auto-
mated interpreter. Upon importing a CPN model, a
CPNFederate element is created within the integration
model and the CPN places become corresponding ports
on this federate. The ports on this element can then be
connected to either interactions or objects to specify
inputs and outputs for the CPN model, as discussed
in Section 3.2. This graphical step is the only integra-
tion effort necessary for CPN models. All of the engine-
specific code to communicate via the RTI and to syn-
chronize the CPN federate with the rest of the federa-
tion is automatically generated from the GME
integration model.
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A custom GME output interpreter generates an
extensible markup language (XML) file that describes
all of the input–output bindings. The run-time CPN
execution engine reads this file and simulates the CPN
according to its specification. The set of places to mon-
itor during execution can also be specified. Tokens on
these monitored places are shown during run time in a
simple Java graphical user interface (GUI) provided by
the C2WT framework.

5. Simulation deployment and
execution

The deployment and execution of large-scale heteroge-
neous simulations can be quite complex. Typically,
deployments span multiple computers and execution
requires the coordination of many independent
processes.

The HLA specification does not provide any man-
date for how simulations are to be deployed or con-
trolled, and available RTIs also do not provide such
facilities. As C2 scenarios grow larger they must span
multiple computers and the deployment of multi-
domain simulations can impose a significant adminis-
trative burden. Manual approaches, such as hand-
crafted batch files, tend to not scale well and are typi-
cally not well suited to highly dynamic environments
where deployment parameters change frequently. Our
team has made additional contributions in this area in
order to ease the administrative burden imposed by
these complex environments.

5.1. Deployment modeling

Our team encountered numerous deployment-related
hurdles as we tried to execute scenarios built upon
our environment. As the complexity of our scenarios
grew, manual deployment processes quickly began to

consume more time than the actual execution of scenar-
ios. Our solution to this problem was to incorporate a
model for deployment and execution directly into our
central modeling environment. Figure 9 shows several
additional elements that augment the C2WT meta
model: Experiment, Host, Computer, Network, and
Deployment. Now a single model incorporates both
the federation integration design and the deployment
information. With this extension, a model interpreter
automatically generates all of the necessary scripts and
files, copies the files to the appropriate computers, and
prepares the environment for execution.

As discussed in previous sections, the overall simu-
lation model is a composition of federates and their
relationships via interactions and objects. For any
given experiment, a simulation scenario may only uti-
lize a subset of the federates defined in the model.
Similarly, each engine-specific model involved may be
parameterized to allow for run-time flexibility. Example
parameters are the duration of a network attack (for
the network simulator engine) or the weight a given
command decision may be given (for the CPN Tools
engine). An experiment is the set of federates included
in a specific deployment and their run-time
parameterization.

Frequently, an experiment is run on more than one
hardware setup. A designer may run the entire simula-
tion on one machine during development, while deploy-
ing the simulation onto a cluster for full-scale
demonstrations. The network element of the language
extension is the physical set of computers involved in a
specific deployment.

The deployment element is where an experiment
configuration is mapped to a network configuration.
Specific federates are assigned to hosts in the network,
thus allowing complete flexibility in defining which sim-
ulation tools execute on which hardware.

A model interpreter reads the deployment configu-
ration from the model and generates all of the script
files necessary to support the deployment. In cases
where modeling deployments may only be partially spe-
cified, for example in very large-scale or rapidly chang-
ing environments, the interpreter generates the
deployment for whatever portion is defined. Once gen-
erated, the environment is fully prepared for experi-
ment execution.

Finally, the generated scripts manage the actual
movement of files and code to the various hosts being
used. Upon invocation, the scripts remotely connect to
each machine and create local copies of all necessary
files before the simulation begins execution. The scripts
then coordinate the execution of all federates. After the
experiment is concluded, the scripts remotely stop all
processes, collect output files, and clean all local copies
to restore the hardware to its original state.

Figure 8. Integration model workflow.
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5.2. Federation manager

The HLA standard prescribes basic methods for con-
trolling the execution of a simulation: start, stop, and
pause. However, the C2WT environment extends much
greater control and coordination of federate execution
throughout a simulation. This is achieved by using a
special federate called the federation manager (FM).

The FM is a generic federate, and so can be used as a
part of any federation. It coordinates a simulation
by: (1) waiting for all federates in an experiment to
join the federation before allowing it to begin simula-
tion; and (2) making sure all federates are initialized
and ready to begin the simulation before allowing it
to proceed.

The first item above is achieved by listing which fed-
erates are part of the simulation in a configuration file
that is read by the FM upon its initial execution. Using
this information, along with the HLA’s built-in
‘FederateObject’ class, the FM can detect when each
federate joins the federation, and allow the simulation
to proceed only when all federates have joined.

Making sure all federates are fully initialized is nec-
essary to avoid one or more federates proceeding with
simulation execution before others are ready. Such
behavior can corrupt an execution and therefore inval-
idate the simulation. The FM uses ‘synchronization
points’, as specified by the HLA standard, to guarantee
that all federates are ready to proceed with the simula-
tion before any of them begin execution. In particular,
it registers a synchronization point to allow federates to
report when they are initialized and ready to proceed

with the simulation. Once all federates have reported
that they have reached the synchronization point, the
FM allows the simulation to proceed.

The coordination the FM exerts over a simulation is
extremely important in that it allows simulations to be
precisely repeated. Without the FM, for any sufficiently
complex simulation, it would be nearly impossible to
guarantee that all federates are always initialized and
begin simulation simultaneously. The FM also allows
the user to exercise greater control over the execution of
the simulation. This is realized via several different
mechanisms.

Firstly, the FM is capable of pacing the simulation
in synchronization with the wall clock, or allowing the
simulation to run as fast as possible. This is accom-
plished by coding the FM to monitor the wall clock
and to use RTI calls to keep the wall clock and the
simulation clock synchronized. The FM is time regulat-
ing and time constrained, similar to all other federates,
and can therefore restrict or allow federation-wide time
evolution through control of its own virtual clock. This
behavior can be turned on and off using the FM’s GUI.
Turned off, the FM allows the simulation to proceed as
fast as hardware and network speeds allow.

Secondly, the FM provides fine-grained controls to
allow for the simulation to be paused for examination
(and subsequently resumed), or terminated, at any
point in the simulation. This works by placing
‘Pause’, ‘Resume’, and ‘End’ interactions directly into
the integration model. The FM sends out ‘Pause’,
‘Resume’, and ‘End’ interactions either on demand

Figure 9. Command and control wind tunnel deployment and execution meta model.
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(via GUI buttons) or at times pre-specified in its con-
figuration file. Each federate is prepared to respond to
these interactions automatically by way of the automat-
ically generated glue code.

Thirdly, the FM also allows federation-specific inter-
actions to be injected into the simulation at pre-speci-
fied times. This is very useful for both debugging and
quick ‘what if’ considerations. The FM is automatically
configured to publish every interaction in the integra-
tion model. Interaction injections are controlled by spe-
cifying in the FM configuration file which interactions
are to be injected with what parameter values and at
what times. When the appointed time arrives the FM
publishes the interaction to the rest of the federation.

Finally, the FM allows interactions to be monitored
and logged as they are sent by federates during a sim-
ulation. This is also specified in the FM configuration
file. Monitored interactions, as they occur, are dis-
played in a text box in the FM’s GUI.

6. Experimentation with the framework

The C2WT project’s goal is to create a heterogeneous
simulation environment tailored towards scenarios
involving, for instance, the interaction of multiple
UAVs, their operating conditions, and the associated
C2 organization and infrastructure. Rapid evolution of
scenario details and easy evaluation of C2 effectiveness
are key motivators.

Our first goal was to demonstrate that we could rap-
idly synthesize such simulations using our model-based
integration environment involving all the domain-spe-
cific simulation engines described above. For demon-
stration purposes, we used an urban scenario with two
‘good-guy’ UAVs, and two ‘bad-guy’ ground vehicles
that must be tracked in order to prevent an attack.
Each UAV has video sensors and continuously trans-
mits video data to the control station. The control sta-
tion remotely controls the UAVs in a formation flight
and assesses the targets one by one based on the initial
position estimates of the targets.

All network communications are simulated using an
OMNeTþþ federate. We tested how a denial-of-service
network attack affects mission performance. The
abstraction of low-level physical layer communication
in OMNeTþþ makes it straightforward to implement
various types of network attacks.

Using a collection of ‘zombie’ nodes in dedicated
sub-networks, either parameterized or controlled by a
master node, any type of ‘dumb’ or non-adaptive
attacks can be simulated. For our purposes, a distrib-
uted denial-of-service (DDoS) attack was sufficiently
disruptive. Each zombie machine sends, at specified
intervals, service requests to every discovered valid
node. As communications degrade, the effect on UAV

formation flight is pronounced. The formation flight
does not loosen: rather it collapses altogether. The
UAVs continue in their individual directions, entirely
uncoordinated. Sensor information is lost, so the oper-
ator becomes unable to repair the flight formation
manually.

The impact of these attacks on the C2 of the UAVs
closely mirrors predicted theoretical consequences. This
gives the experimenters confidence that the results of
simulation can be directly applied to the modeled
scenarios.

Table 1 captures the engine type and update rate for
each of the federates involved in our simulation. Our
hardware configuration used during demonstrations
consists of six dual-core 3.0GHz-class machines net-
worked via a dedicated 100 Mb/s switch all with
nVidia GTX 280 graphics cards. In a typical deploy-
ment, each machine had between one and three feder-
ates running on it. Despite highly complex engine-
specific models, we have not experienced any significant
performance bottlenecks during simulations lasting an
average of 30minutes. If our scenarios are deployed
entirely onto one of our typical development machines
(a clone of those in our demonstration cluster) perfor-
mance is acceptable but noticeably slower. This is espe-
cially true if multiple visualization federates are present.

Using our framework, new scenarios can be created
relatively quickly. It took our team less than three
weeks to create a new scenario as compared to anec-
dotal evidence from our sponsors that, prior to our
framework, individual scenarios could take between
one and two years to develop. It is important to note
that our scenario did not necessitate the integration of
any new simulation engines and was able to leverage
portions of existing custom Java federates.

7. Discussion

The design of the C2WT has evolved considerably over
the three years it has been under development.

Table 1. Model information for experimental scenario

Federate Engine Update rate

UAV dynamics Simulink 100 Hz

UAV operators Simulink 100 Hz

Controller attack Java 10 Hz

Physics Java 10 Hz

Visualization G. Earth 10 Hz

Comm. Network OMNeTþþ 20 Hz

Decision making CPN Tools 1 Hz

UAV: unmanned aerial vehicle.
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A primary driver of its evolution has been to see how a
model-based approach can reduce the effort required to
develop distributed simulations. Generally, with each
iteration of the tools, previous functionality was refined
and new automation was added. Our approach of refine
and extend has allowed us to incrementally build a tool
suite that would likely have been difficult to arrive at in
a first attempt.

Our initial focus for the tool suite was on creating
scenario models that captured the HLA configuration,
namely the interaction and object hierarchies.
Manually creating the federation configuration file
(the. fed file) was tedious and error prone even for
simple scenarios. With the core meta model in place,
a very basic model interpreter was created to synthesize
the. fed file. These tools made configuring the HLA
very simple. At this point the largest burden in creating
a scenario was integrating each simulation engine-spe-
cific model that would partake in the scenario.

The next iteration of the tool suite focused on inte-
grating various simulation engines into the modeling
environment. Integrating engine-specific models
directly is not very reusable, so we instead focused on
integrating as deeply as possible with the simulation
engines themselves. Our first attempt at engine-specific
integration led us to make numerous extensions to the
meta model, namely sub-classing of the Federate ele-
ment, as discussed in Section 3.1. The integration
model interpreter was extended for each engine so
that engine-specific glue code could be generated, as
discussed in Section 4. Now the HLA configuration
and all of the engine-specific code was being synthesized
automatically from the integration model.

At this point, creating a new scenario was simpler
but the repeatability of scenario execution was proving
problematic. Our RTI did not offer tools to coordinate
starting or stopping numerous federates. Depending on
the order in which, and even the relative time at which,
federates were started the scenario outcome would
vary. We needed a means to allow arbitrary initializa-
tion of federates and then a coordinated means to start
progression of the simulation. At the same time we
needed a means of injecting interactions into a simula-
tion at specific times. This functionality was needed to
support debugging of individual engine-specific models
and to take the place of models that were not yet ready
to be incorporated into the federation. The FM was
created to solve both of these problems. The integration
model interpreter was again extended to synthesize a
simple XML file that was used to configure the FM.
With the FM in place, scenarios could be executed
repeatedly with perfect consistency and we gained
very flexible control over interaction injection.

The most recent iteration of the C2WT tool suite
sought to alleviate a problem we had been experiencing

since the project began. Individuals developing engine-
specific models tended to run the entire federation on
their local machine, while production runs of the fed-
eration were performed on a dedicated cluster of
machines. Developers sacrificed absolute performance
for the convenience of having the federation running
locally. This approach worked well but developers
were spending significant amounts of time manually
creating scripts to run their local instance of the feder-
ation. Each developer’s local setup was different, but
they all relied upon a common scenario definition in a
repository. A change in even a small scenario parameter
often forced every developer to have to manually
rework their scripts. It occurred to the team that if
deployment configurations were directly incorporated
into the scenario model then each developer could
maintain a separate configuration but a common inter-
preter could generate all of the necessary deployment
scripts. The core meta model was extended, as discussed
in Section 5.1, and a new deployment-specific inter-
preter was developed. With these changes in place,
the current C2WT automates many formerly manual
processes and allows developers to focus on creating
engine-specific models and the overall integration
model.

8. Related work

There is prior research on the integration of multiple
diverse simulation packages, both incorporating and
not incorporating HLA. Multi-paradigm modeling
(MPM)17,18 addresses the methods, tools, and applica-
tions related to engineering problems involving the
modeling of multiple different domains. Similar to
MPM, the most challenging problem for distributed
heterogeneous simulation is composing domain-specific
models.

One of the previous efforts that relates to heteroge-
neous simulation, at our institute, is the MILAN frame-
work.19 MILAN provides multi-domain simulation of
system-on-chip (SoC) designs and integrates several
simulation tools in order to optimize performance
versus power consumption. This approach is very
SoC specific and is not a general engine for heteroge-
neous simulation. Co-simulation20–22 also involves
many similar aspects of heterogeneous simulation,
although all specifically focused on hardware/software
systems.

Other efforts exist that relate to integrating simula-
tion packages via HLA, including OPNET,23

MATLAB-HLA,24 SLX,25 JavaGPSS,26

DEVSJAVA,27,28 and PIOVRA.29 As mentioned ear-
lier, the HLA APIs provide run-time support but the
problem of model integration is not addressed in these
efforts.
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Relevant commercial integration software does exist,
such as the HLA Toolbox30 for MATLAB federates by
ForwardSim Inc.31 and MATLAB and Simulink inter-
faces32 to HLA and driver information system (DIS)-
based distributed simulation environments by MÄK
Technologies.33 These products focus on integration
of models running on the same simulation engine and
do not provide support for heterogeneous simulations.

In addition, there have also been some efforts on
enhancing HLA support by complementary simulation
methodologies, such as in Sarjoughian and Zeigler34

and Lu et al.35 However, these efforts, similar to
those above, pursue HLA integration of isolated simu-
lation tools. Moreover, these efforts, except MILAN,
do not have any support for model-based rapid inte-
gration of simulation tools, and limited, or no, support
for automated deployment and execution of the result-
ing simulation environment. All of these are facilities
the C2WT environment natively provides.

9. Conclusion and future work

Integration of complex C2 simulations composed of
numerous heterogeneous engines is a challenging prob-
lem. Each simulation engine may have its own opera-
tional semantics and requires integration at not only
the engine level but also at the engine-specific model
level.

Pervasive use of models throughout simulation
engines opens the door to the use of model-integrated
methodologies for defining integration among
these tools. In this paper, we discussed the use of a
custom DSML-driven modeling environment for het-
erogeneous simulation. In this environment, it is possi-
ble to rapidly integrate domain-specific models
from diverse simulation engines and to dynamically
generate all of the needed configuration and integration
code. The environment also provides automated facili-
ties to manage the deployment and execution of the
simulation itself. Together these tools greatly reduce
the time required to design, modify, and test C2
scenarios.

In the future, we expect to integrate additional sim-
ulation engines to expand the range of possible scenar-
ios. Consequently, new simulation engines will require
expanding the existing integration DSML and infra-
structure. These enhancements should allow for greater
scenario flexibility and reduced development, configu-
ration, and operational costs. In addition, we are
exploring alternatives to include capabilities in the
C2WT framework to alter and configure the entire sim-
ulation during run time, and to capture and analyze
additional performance statistics during execution.
The public distribution of the C2WT code is available
at http://wiki.isis.vanderbilt.edu/OpenC2WT.
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