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Abstract 
 

In this paper we argue for UML-based 

metamodeling and pattern-based graph transformation 

techniques in computer-based systems development 

through an illustrative example from the domain of 

embedded systems. We present a tool that uses 

advanced graph-rewriting techniques to generate a 

schedule that satisfies hard real-time constraints for 

multi-modal systems. The input is a time-triggered 

system specification (using the Giotto language); the 

output is an instruction sequence for the E-machine: a 

virtual machine for hard real-time embedded systems. 

The resulting model may be refined into a) system 

implementations (E-code programs) through a trivial 

synthesis process and b) development-time analysis 

models expressing the properties of the system 

implemented over different execution platforms. 

Furthermore, we identify the next steps to be taken 

towards generating analysis models using explicit 

platform models. 

 

1. Introduction 
 

Model-driven development supports the synthesis, 

the construction, and the design-time analysis of 

computer-based systems (CBS). However, modeling 

languages used to capture designs are often far 

removed from the languages of the actual 

implementation or analysis. Here, by ―language‖ we 

mean not only a programming language, but also the 

constructs provided by an execution platform (e.g. a 

real-time operating system) one has to use in the 

implementation phase. Note that for design-time 

analysis we often use specialized tools (e.g. model 

checkers) that use yet another language based on a 

sound mathematical framework.  

There is typically a conceptual gap between the 

concepts available in design languages and those 

available in platforms and/or analysis tools. Designers 

like working with domain-specific abstractions [9], 

design patterns [2], and aspects [8], and yet 

considerable knowledge and skill is required to map 

these into the conceptual resources provided by an 

implementation or analysis platform provided by a 

traditional computer platform. This is especially 

relevant for embedded system development, where 

safety and economic concerns mandate assurances that 

the design will work as expected in a physical 

environment. 

In short, there is a significant need for relating 

design models to implementation and analysis models, 

in order to fulfill the vision of model-driven 

development. This need can be answered with the help 

of model transformation techniques, and in this paper 

we give an illustrative example —from the domain of 

embedded systems— to show how it can be done. After 

brief description of the modeling and transformation 

framework being used, we introduce the example that 

shows how to extend an earlier, simpler translator 

(discussed in [13]) with support for multi-modal 

systems. Finally we summarize the results and examine 

the further steps necessary for generating platform-

specific analysis models using explicit platform 

models. 

 

2. Modeling and model transformation 

framework 
 

The Generic Modeling Environment (GME [7]) is a 

meta-programmable toolkit based on a sophisticated 

visual model editor. The meta-model (or paradigm in 

GME) for each domain-specific modeling language 

(DSML) is defined using the UML-based MetaGME 



modeling language. Then, the GME toolkit is 

configured for the manipulation of paradigm-specific 

DSMLs. 

 Apart from the visual model editor, GME provides an 

API to access the models by paradigm-specific 

programs (called model interpreters). This API exposes 

the internal representation of the models, which is a 

network of object instances and links (associations). A 

typical interpreter explores this network in a graph-

traversal fashion and extracts the information it needs 

or manipulates the model. Each node (model object) 

and link (association) has a specific type defined in the 

metamodel, and attributes can also be associated with 

them. 

Defining a DSML (meta-modeling) in GME consists 

of the following steps: 

 

(1) Defining the structure and elements of the models 

in UML using MetaGME. 

(2) Specifying visualization rules (for the model 

editor) by defining model aspects and visual 

representations (icons). 

(3) Specifying well-formedness and consistency rules 

for the DSML via OCL constraints attached to the 

metamodel. 

 

The GME toolkit incorporates the Graph Rewriting 

and Transformation Language (GReAT) [6][7] as a 

way of visually specifying model interpreters. GReAT 

uses pattern-based graph rewriting to manipulate 

(match, create, modify, delete) objects of the target 

model.  

 

Rules are the basic production units, specifying 

graph patterns in terms of the source and target 

metamodels. Rules are explicitly sequenced. 

Rule blocks provide the means to organize rules 

into higher-level hierarchies. Within a rule block, rules 

are chained (and thus sequenced) by passing previously 

matched elements from rule to rule. Using rule block 

constructs, a complex transformation can be 

decomposed into a sequence of simpler rules.  GReAT 

also provides non-deterministic rule execution. 

Block/ForBlock units provide the primary means 

for grouping rules and organizing rule blocks into 

hierarchy. 

Test/Case constructs provide conditional rule 

invocation similar to ―if-else‖ statements in textual 

programming languages.   

References can be used to implement recursion and 

code re-use. Rule inheritance is also supported. 

Guards and AttributeMappings are small 

procedural code segments that can also be included in 

rules; either for manipulating object attribute values by 

using the GME model API, or as guard conditions in 

matches. 

Pattern elements in rules refer to source and target 

metamodel objects, implying typing. Specifically, 

pattern objects of a given metamodel type will match 

instances of the same type in the models being 

transformed, and if a base type is specified in the 

pattern, instances of its derived types will also match. 

GReAT transformations can also specify objects and 

associations not explicitly present in the input or output 

metamodels, including cross-metamodel associations. 

These entities are called CrossLinks and their instances 

exist only while the transformation is being performed. 

Defining a GReAT transformation consists of the 

following steps: 

 

(1) Importing the source and target GME metamodels.  

(2) Specifying the graph rewriting rules using the 

imported metamodel objects. 

(3) Defining (implicit and explicit) sequencing for the 

rules by grouping them into rule blocks. 

(4) Configuring the transformation by specifying 

source and target models (files) and specify the 

starting rule (or rule block). 

 

One important advantage of using GReAT is that it 

allows us to specify our model transformations using 

the same framework in which our models were created, 

so that a single framework is used throughout the entire 

development process. 

 

3. Example: a Giotto → E-code translator 
 

An important area of embedded (control) systems is 

the area of (hard) real-time systems, where the system 

has to respond to external stimuli before a deadline. 

Hard real-time systems are the ones where missing the 

deadline is considered to be a catastrophic failure of 

the system (e.g. safety-critical systems).  Such systems 

are often designed according to the time-triggered 

paradigm [11] to ensure (timing) correctness by 

construction. In a time-triggered system, each activity 

is invoked exactly at a predefined point in time. 

Many embedded control systems can be defined as a 

(periodically repeating) sequence of time-triggered 

activities (e.g. read sensor; compute control response; 

drive actuator). These systems are often complex, 

involving many interdependent sensors, actuators and 

control laws to be run at different frequencies 

according to the physical environment the system is 

designed for. 



An example for a high-level language to describe 

such systems is the Giotto language [3] [4], featuring 

concepts such as sensors, actuators and control 

computations associated with read/update frequencies 

in real time. Such languages are implemented over 

lower-level execution platforms, which provide 

concepts and primitives closer to traditional CBS (e.g. 

functions, tasks, device drivers, memory locations etc.). 

In [13] we showed the feasibility of a DSML → 

Platform transformation in GME / GReAT, namely 

how to translate the high-level model of a time-

triggered system (written in  Giotto), into E-code: an 

abstract code for a virtual machine [5] that schedules 

tasks in such a way that timing constraints are always 

satisfied. This schedule is platform-independent in the 

Giotto sense: the externally provided functionality 

implementations are assumed to be ―well-behaving‖, 

i.e. they do not violate their deadlines, provided that 

the scheduler releases them at the beginning of their 

time slot (which the E-machine can guarantee). 

The E-code is similar to the schedules typically used 

in cyclic executives [10]. Below, we describe how to 

extend our previous transformation in order to support 

multi-modal Giotto systems. We begin by giving a very 

brief introduction to the Giotto and E-code languages 

(concentrating on the issues relevant to multi-modal 

systems), followed by the description of the 

transformation extension. A more detailed introduction 

(relevant to this context) to Giotto and E-code can be 

found in [13], showing the UML metamodels 

developed and discussing the single-modal 

transformation. 

 

 

Figure 1 Simple multi-modal Giotto system in GME 

 

 

3.1 The Giotto time-triggered language 
 

Giotto is a hard real-time embedded systems 

design language. It is designed for control 

applications requiring periodic activities such as 

sensor readings, control law computations and 

actuator updates. According to the time-triggered 

paradigm, each activity of the system must be strictly 

periodic. Giotto allows multiple operating modes for 

the system: in each mode, a different (possibly 

overlapping) subset of activities is executed 

periodically. Different modes might have different 

periods and each activity is run with a frequency 

relative to the mode period. 

In the above case study, a GME metamodel for 

Giotto systems was created, and the main concepts of 

the language modeled: 

 

Tasks are the basic functional entities, 

implemented by external (Java or C++) code. Tasks 

are expected to run periodically, with a fixed period 

per mode.  

Ports are memory locations (typed variables) 

facilitating inter-task communication and carrying 

system state. Sensors and actuators are also 

represented as ports. 

Drivers perform data copying between ports and 

implement device access (for sensors and actuators). 

Drivers execute in zero logical time, i.e. the 

environment does not change while a driver runs. 

Drivers can also have an associated guard condition, 

which can be evaluated in zero logical time as well. 

Modes group periodic task invocations and 

actuator updates along with their associated driver 



calls. The system can transition between modes if a 

mode switch driver guard conditions evaluates true. 

Figure 1 shows a multi-modal Giotto system: 

mode m1 (shown on the left, with a period of 600ms) 

runs task invocations t1 and t2 (at ω1 = 1 and ω2 = 3) 

and evaluates mode switch guard m1→2 at ω1→2 = 3. 

Mode m2 (shown on the right, with the same period of 

600ms) runs task invocations t1 and t3 (same 

frequency for t1 and ω3 = 2) and evaluates mode 

switch guard m2→1 at ω2→1 = 2. 

Observe that both mode switch guards (m2→1 and 

m1→2) run at higher frequencies than t1 (in both 

modes). This means that the system might switch 

modes while t1 is logically running. The mode switch 

in this case is said to logically interrupt the execution 

of t1. In such cases, the compiler has to make sure that 

the end of any logically interrupted task’s period 

coincides with the end of its periods in the destination 

mode. In a well-formed Giotto system, logically 

interrupted tasks must be contained by both the 

source and destination modes, and their respective 

frequencies should be compatible (i.e. the above rule 

should be satisfied). This rule is explained in detail in 

Part II. Section ―Mode switches‖ in [4]. 

 

3.2 The E-Machine and its language the E-

code 
 

The E-Machine virtual machine governs the 

interactions between the software tasks; the real-time 

OS running the system and the environment. The 

concepts of Giotto and the E-Machine are related, 

with the E-Machine having a more general scope (not 

restricted to periodicity and time-triggered behavior). 

However, the E-Machine guarantees predictable 

timing and behavior. 

The main functional concepts of the E-Machine 

have very similar Giotto counterparts (Task, Drivers 

and Ports). Drivers are separated into two distinct 

entities, a Guard and an (E-Machine) Driver. 

The E-code language defines the following 

instruction set: 

 

if conditional branching according to the 

associated guard 

call execute a driver, in zero logical time (the E-

Machine blocks until the call finishes) 

schedule place a task instance into the Ready 

queue of the host OS (annotated by its deadline). It is 

the responsibility of the OS to execute the task on 

time. The E-Machine resumes execution immediately 

jump an unconditional branching instruction 

future ―delayed  jump‖: the E-Machine yields 

control to the host OS until the associated timer 

guard evaluates true, and then transfers control to the 

designated E-code instruction 

 

In GME models, arrows (directed connections) 

indicate instruction sequencing (Next) and dashed 

arrows show a Then branch (after an if). 

 

3.3 Extending the Giotto→E-code translator 
 

As mentioned in the Introduction, mapping from 

the high-level system models to an executable at the 

implementation platform level is not a trivial task. 

This is well illustrated by our particular example: a 

Giotto system is essentially defined as a set of 

periodic timing constraints, and the E-machine 

accepts an imperative program (instruction sequence). 

The translator generates a schedule (composed of E-

code instructions) that satisfies the timing constraints. 

 

3.3.1 Concepts of the single-mode translator 

 

In [13], questions regarding establishing the 

modeling framework, metamodeling Giotto and E-

code were discussed. Additionally, a limited 

prototype Giotto→E-code translator was specified. In 

summary, the following contributions were made: 

 

(1) GME Metamodels were created for the input 

(Giotto) and output (E-code) languages,  

(2) A GReAT transformation was built to map the 

Giotto models into sequenced E-code 

instructions for single-mode Giotto systems.  

 

The main problem for this transformation was to 

map a single mode onto a repeating E-code 

instruction chain.  The basic idea is as follows: 

Determine when the task/drivers need to be 

executed based on their frequencies, and generate 

synchronous (zero logical time) instructions (if, 

call, schedule) to evaluate/execute the required 

actions, then suspend the E-machine using a future 

until the next action needs to be taken. During this 

time the host OS executes the scheduled tasks. 

The smallest duration to be spent between these 

zero-logical-time instruction chains is characteristic 

to the mode (as discussed in [13]), and is called ―unit 

size‖ or ―time slot length‖. 

In [13], this interval was appropriate for the whole 

system, since the transformation supported single-

mode systems only. Using this result, the translator 

generated the appropriate synchronous 



if
then

→call→schedule E-code sequences 

implementing the system activities. These 

synchronous (zero logical time) sequences were 

―separated‖ in time by delays of ―unit size‖ duration 

implemented by future instructions. 

The concept can be seen in Figure 2 (the model 

contains additional code to implement multiple 

modes, explained below). 

In order to extend the above translator for multi-

modal systems, the following steps need to be taken: 

 

(1) this interval has to be calculated for each mode, 

and separate E-code blocks implementing each 

mode have to be generated 

(2) Giotto mode switches have to be implemented as 

conditional jumps between these code blocks to 

facilitate mode changes 

 

The first task can be trivially accomplished by re-

using the previous transformation.  Additionally, a 

jump instruction needs to be generated as the first 

instruction of the program (after initialization) 

pointing at the code block implementing the initial 

mode. 

The second task is slightly more difficult. Mode 

switches in Giotto are specified as periodic activities 

within a mode: the mode switch guard needs to be 

evaluated with the specified frequency, and when it 

evaluates true, control needs to be transferred to the 

code block implementing the appropriate mode. 

As we have seen in the previous section, Giotto 

allows tasks to be logically interrupted by mode 

switches. If the task is present in both the current and 

next modes, its time slot has to be aligned with both 

modes’ periods (i.e. it has to ―logically finish‖ at the 

right time in the next mode even if it was started in 

the previous one). 

This has two consequences:  

a) the destination (within the next mode) of the 

jump implementing the mode change has to be 

calculated accordingly (i.e. it is not always the first 

instruction of the mode’s code block) and  

b) the actual jump might have to be delayed in 

order to synchronize the two modes. 

 

Figure 2 (with some details omitted) illustrates this 

by showing the generated E-code for the Giotto 

system from Figure 1.  Marked arrows indicate 

(possible) mode switches. At Δ0 = 0ms (both modes) 

a mode switch is implemented by a jump. At Δ1 = 

200ms in m1 for example, the effective mode switch 

has to be delayed by 100ms because the E-code 

instruction getting control is intended to run 300ms 

after t1 was scheduled (and 300ms before it is going 

to be scheduled again in m2). The mode switch has to 

accommodate the logically interrupted task instance 

during m1→m2. This is implemented using a future 

instruction. 

Note that the E-code implementation splits m1 into 

three 200ms ―time slots‖ and m2 into two 300ms slots. 

200 and 300 are referred as ―unit sizes‖ for m1 and m2 

respectively. 

 

 

Figure 2 GME Model for E-Code implementing Giotto system from Fig. 1 with mode switches shown 

 



3.4 Implementing the extended translator 
 

The rule block (Giotto2ECode) responsible for 

generating E-code has been extended as shown in 

Figure 3: 

 

 

Figure 3 Rule block Giotto2ECode of the extended 

translator 

 

This chain matches top-level ―System‖ (from the 

Giotto source model) and ―Program‖ (target E-code 

model) objects, and routes them through the rule 

chain shown. 

Rule Modes (Figure 4) matches all modes in the 

system, which are then fed into rule block 

CompileMode. 

 

 

Figure 4 Rule to match all modes in the system 

 

The rule matches inputs System and Program, 

and matches all Mode instances contained by 

System. The results (the Program instance and all 

the Mode instances) are propagated to the next rule. 

 

3.4.1 Setting the program entry point 

 

After the E-code blocks have been generated for 

each mode (rule block CompileMode, discussed 

below), the initial mode needs to be matched (Figure 

5): 

 

 

 

 

Figure 5 Rule selectStartInstr with Guard code 

 

The C++ Guard condition (using the GME API)  

selects the jump instruction named Start from 

Program, and the Mode whose start attribute is 

true. This is also necessary since rule block Modes 

(Fig. 4) matched and propagated all Mode instances. 

Then, the initial jump instruction is set to the first 

instruction of the corresponding E-code block, as 

shown in the next figure. The destination of the jump 

is set to the first instruction of the Mode by creating 

(indicated by a checkmark) a sequencing (Next) 

connection. (The very first instruction of a Mode is 

marked with a ModeBegin crosslink association.) 

 

 

 

Figure 6 Rule SetStart 

 

3.4.2 Implementing mode switches 

 

As mentioned above, a mode switch is a guarded 

periodic activity, thus it can be implemented similarly 

to task invocations. In the Giotto metamodel a 

ModeSwitch is also derived from the abstract 

Periodic, thus it is matched by rule 

PeriodicActions in block 

CompileMode/AddUnits. In order to process it, 

the subsequent rule block AddUnitContent needs 

to be extended with a rule explicitly matching 

ModeSwicthes.  

return 

(Mode.start() 

&& 

Start.name() 

== “Start”); 



This rule block (ModeSwitch) is very similar to 

existing block TaskWithDriver, but rather than 

generating if
then

→call→schedule sequences, it 

creates if
then

→call→jump sequences. 

 At this point, the jump is left unspecified 

(without destination), because the code generation has 

to finish for all modes before the destination point 

can be determined. 

In order to make further processing easier, a 

crosslink (temporary association) is placed between 

model elements representing the jump and the target 

mode. Furthermore, the time elapsed since the 

beginning of the period is encoded with the jump 

instruction.  

This value is stored in the (otherwise unused) 

GME attribute name. This duration is equal to the 

sum of the future delays within the mode so far, 

since all other E-code instructions execute in zero 

logical time. This information is encoded in the name 

of the last Future instruction, which is also matched. 

Rule TargetMode, implementing the above is 

shown in the next figure: 

 

 

Figure 7 Rule TargetMode 

 

This rule works as follows: ModeSwitch and its 

TargetMode are matched, and the jump instruction is 

created (and sequenced in after the driver call by 

creating a Next connection). A checkmark in the 

right bottom corner indicates objects created by the 

rule, and the ―incoming arrow‖ icons on the left 

indicate objects matched by previous rules. 

TargetMode/TargetJump shows the crosslink 

connection. The AttributeMapping C++ code block 

takes care of extracting and encoding (time) values 

from object attributes. 

 

3.4.3 Determining mode switch target instructions 

 

After the CompileMode rule-block has finished (it 

matches matching all modes), in the final 

doModeSwitches rule-block all jump instructions 

(within the main Program) with a crosslink to a Mode 

are matched (i.e. all ―unfinished‖ modeswitch 

sequences identified): 

 

 

Figure 8 Finding "unfinished" mode switches 

 

The schema for processing the modeswitches is 

shown below: 

 

 

 

Figure 9 Schema for resolving mode switch 

destinations 

  

The condition for choosing between a jump or 

future instruction can be formulated as follows: 

Mode switch ms→d, evaluated at time step Δ in s 

(modulo ps, period of mode s) is implemented by a 

jump if the ―unit size‖ of mode d (ud) is a divisor of 

Δ. (i.e. the time of the mode switch coincides with the 

start of a ―time slot‖ in d). 

Otherwise, a future has to be used and the mode 

switch has to be delayed until the start of the next 

time slice in mode d. (Consider Figure 2: All but the 

very first mode switches at Δ = 0 in both modes are 

delayed). 

This decision is implemented in rules Jump and 

Future in Figure 9 by C++ guard conditions 

extracting the timing information from the model 

elements and comparing them. Rule Future also 



takes care of replacing the jump instruction by a 

future: 

 

 

 

Figure 10 Rule Future in doModeSwitch 

 

The Guard condition contains the C++ code for 

the modulo arithmetic, and if it evaluates true, the 

jump instruction is deleted (small x in the right 

bottom) and a future is created (denoted by a 

checkmark) and linked into the model by creating all 

the necessary associations. The temporary 

SrcUnitSize and TargetUnitSize elements 

(on the top and bottom), associated with the source 

and target models are used to store the unit size 

values (in their When integer attribute). They are 

temporary variables, created by the CompileMode 

rule block during the processing of the systems’ 

modes. 

Then, in Rules findTarget / 

findUnitBodyAfterTarget the exact 

instruction to jump to is determined by walking 

through the instructions of the target mode until the 

first instruction of the desired time slot is found, and 

rule LinkInstrIn connects the branching 

instruction to the  appropriate E-code instruction in 

the target mode. 

Extending the transformation required adding or 

modifying approximately 20-25 rules and took less 

than two weeks including preparing test cases and 

verifying the results against the Giotto compiler from 

UC Berkeley. An e-mail exchange with the Berkeley 

team was also necessary to clarify a few minor 

details.  

 

4 Related research  
 

With visual, model-based design languages 

becoming more and more mainstream, model 

transformation is getting more and more research 

attention. Formal model transformation approaches, 

such the declarative, graph-transformation based 

GReAT offer a higher level of abstraction and 

promise better accountability for the transformation 

process itself. 

Pioneering efforts in this area are lead by OMG 

with the QVT standardization efforts [14][15]. The 

OMG advocates declarative and hybrid model 

transformation approaches with the OCL language 

(with extensions) having a key role in the proposed 

standard. GReAT uses C++ code for attribute 

manipulation and match guard predicates, because of 

the availability of existing C++ model manipulation 

APIs. Also, OMG uses the MOF language as opposed 

to UML, but as it was shown in [16] the difference in 

the context of model transformation is not really 

relevant. Nevertheless, important research is being 

done with native MOF and OCL compliant model 

transformation techniques by the ATL [17] group. 

Model transformation also enables creating formal 

analysis models derived from high-level design 

models. Analysis models capture the system’s 

behavior in various abstract formalisms (such as 

timed automata [1]) which enable formal verification 

through model checking. The VIATRA [18] 

framework, relying on the graph transformation of 

UML models into formal analysis models is a good 

and innovative example of such approaches. 

It is quite often a requirement to analyze a design’s 

behavior implemented over different platforms 

(offering the same interface). The (execution) 

platform is a natural choice for abstraction (and 

standardization) – this abstraction is probably best 

described by the Metropolis approach [19]. 

 

5 Future work 
 

Using the platform-level abstraction, in a recent 

paper [13] we argued for the modeling of the 

execution platform that facilitates the component 

interactions in component-based embedded systems. 

Using platform modeling, we showed an example for 

deriving formal analysis models through a model 

transformation incorporating information on the 

implementation platform. 

In the example, we constructed a transformation 

that took a domain-specific system-design model and 

translated it into timed automata that modeled the 

behavior of the design implemented on a specific 

execution platform.  

One important lesson we learned from the 

experiment was that the transformation contained a 

section implementing the DSML→Platform mapping. 

This part translated the DSM onto platform-level 

structures, and then these structures were further 



transformed onto analysis model structures describing 

their behavior. 

We realized that it is worth formally separating 

this transformation, since it could to be re-used if we 

want to construct additional DSML→Analysis model 

transformations either  

 

a) describing a different implementation of the 

same platform, or 

b) generating an analysis model in a different 

analysis formalism, describing the same 

system over the same platform 

 

This was the main motivation behind the work 

described in this paper. 

An additional (very important) benefit of having a 

DSML→Platform mapping is that it can be used for 

system synthesis, as it is demonstrated by the example 

discussed in this paper. Using the resulting E-code 

models, an actual E-code program implementing the 

system could be generated trivially. 

Of course, tools (compilers) already exist to 

perform this task, such as the Giotto E-code compiler 

from Berkeley. 

Having the very same transformation generate 

both the (model of the) implementation code and the 

analysis model guarantees that the two models 

(implementation and analysis) are isomorphic and the 

analysis results are valid. This is the main benefit 

gained by the (re)implementation of the compiler in 

the above model transformation framework. 

Next, we are going to work on formalizing (and 

making it explicit) the platform model: the part of the 

DSML→Analysis model transformation describing 

the platform-level entities (in terms of analysis model 

structures) and their interactions. 

 

6 Conclusions 
 

This paper focused on the first step towards the 

solution of the explicit platform modeling problem 

discussed above:  

We demonstrated an example for the DSM → 

Platform model transformation and showed how it fits 

into the generic modeling and transformation 

framework. For us, this transformation is important 

because it provides a system model at the platform 

level, thus enables incorporating platform 

implementation knowledge into further model 

translations towards analysis models. 

Our work also underlines a very important benefit 

of the model-driven development (MDD) approach: 

The very same transformation can be used in system 

synthesis and analysis model generation, thus 

reducing development effort and – more importantly 

– ensuring the validity of the analysis models for the 

actual implementation. 

Model-driven engineering techniques are a prime 

source for innovation and management of complexity 

in embedded system development. In this paper we 

have given an illustrative example that shows how 

model transformation (specified in a high-level, 

formal language that uses graph rewriting techniques) 

can be used to solve non-trivial mapping problems 

between domain-specific models and platforms. The 

example is meant to emphasize the opportunity a 

model transformation system can provide, and are not 

necessarily optimized for performance.  

We believe the next major research problems in 

this area include (1) developing the technology for 

the more general, platform-model-driven 

transformations for analysis, and (2) developing the 

technology for correctness-preserving 

transformations. Both of these require further, 

significant research efforts.  
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