
Model Transformations in the Model-Based Development of Real-time

Systems

Tivadar Szemethy, Gabor Karsai, Daniel Balasubramanian

Institute for Software Integrated Systems

Vanderbilt University

Nashville, TN 37235, USA

{tiv,gabor,daniel}@isis.vanderbilt.edu

Abstract

In this paper we argue for UML-based

metamodeling and pattern-based graph transformation

techniques in computer-based systems development

through an illustrative example from the domain of

embedded systems. We present a tool that uses

advanced graph-rewriting techniques to generate a

schedule that satisfies hard real-time constraints for

multi-modal systems. The input is a time-triggered

system specification (using the Giotto language); the

output is an instruction sequence for the E-machine: a

virtual machine for hard real-time embedded systems.

The resulting model may be refined into a) system

implementations (E-code programs) through a trivial

synthesis process and b) development-time analysis

models expressing the properties of the system

implemented over different execution platforms.

Furthermore, we identify the next steps to be taken

towards generating analysis models using explicit

platform models.

1. Introduction

Model-driven development supports the synthesis,

the construction, and the design-time analysis of

computer-based systems (CBS). However, modeling

languages used to capture designs are often far

removed from the languages of the actual

implementation or analysis. Here, by ―language‖ we

mean not only a programming language, but also the

constructs provided by an execution platform (e.g. a

real-time operating system) one has to use in the

implementation phase. Note that for design-time

analysis we often use specialized tools (e.g. model

checkers) that use yet another language based on a

sound mathematical framework.

There is typically a conceptual gap between the

concepts available in design languages and those

available in platforms and/or analysis tools. Designers

like working with domain-specific abstractions [9],

design patterns [2], and aspects [8], and yet

considerable knowledge and skill is required to map

these into the conceptual resources provided by an

implementation or analysis platform provided by a

traditional computer platform. This is especially

relevant for embedded system development, where

safety and economic concerns mandate assurances that

the design will work as expected in a physical

environment.

In short, there is a significant need for relating

design models to implementation and analysis models,

in order to fulfill the vision of model-driven

development. This need can be answered with the help

of model transformation techniques, and in this paper

we give an illustrative example —from the domain of

embedded systems— to show how it can be done. After

brief description of the modeling and transformation

framework being used, we introduce the example that

shows how to extend an earlier, simpler translator

(discussed in [13]) with support for multi-modal

systems. Finally we summarize the results and examine

the further steps necessary for generating platform-

specific analysis models using explicit platform

models.

2. Modeling and model transformation

framework

The Generic Modeling Environment (GME [7]) is a

meta-programmable toolkit based on a sophisticated

visual model editor. The meta-model (or paradigm in

GME) for each domain-specific modeling language

(DSML) is defined using the UML-based MetaGME

modeling language. Then, the GME toolkit is

configured for the manipulation of paradigm-specific

DSMLs.

 Apart from the visual model editor, GME provides an

API to access the models by paradigm-specific

programs (called model interpreters). This API exposes

the internal representation of the models, which is a

network of object instances and links (associations). A

typical interpreter explores this network in a graph-

traversal fashion and extracts the information it needs

or manipulates the model. Each node (model object)

and link (association) has a specific type defined in the

metamodel, and attributes can also be associated with

them.

Defining a DSML (meta-modeling) in GME consists

of the following steps:

(1) Defining the structure and elements of the models

in UML using MetaGME.

(2) Specifying visualization rules (for the model

editor) by defining model aspects and visual

representations (icons).

(3) Specifying well-formedness and consistency rules

for the DSML via OCL constraints attached to the

metamodel.

The GME toolkit incorporates the Graph Rewriting

and Transformation Language (GReAT) [6][7] as a

way of visually specifying model interpreters. GReAT

uses pattern-based graph rewriting to manipulate

(match, create, modify, delete) objects of the target

model.

Rules are the basic production units, specifying

graph patterns in terms of the source and target

metamodels. Rules are explicitly sequenced.

Rule blocks provide the means to organize rules

into higher-level hierarchies. Within a rule block, rules

are chained (and thus sequenced) by passing previously

matched elements from rule to rule. Using rule block

constructs, a complex transformation can be

decomposed into a sequence of simpler rules. GReAT

also provides non-deterministic rule execution.

Block/ForBlock units provide the primary means

for grouping rules and organizing rule blocks into

hierarchy.

Test/Case constructs provide conditional rule

invocation similar to ―if-else‖ statements in textual

programming languages.

References can be used to implement recursion and

code re-use. Rule inheritance is also supported.

Guards and AttributeMappings are small

procedural code segments that can also be included in

rules; either for manipulating object attribute values by

using the GME model API, or as guard conditions in

matches.

Pattern elements in rules refer to source and target

metamodel objects, implying typing. Specifically,

pattern objects of a given metamodel type will match

instances of the same type in the models being

transformed, and if a base type is specified in the

pattern, instances of its derived types will also match.

GReAT transformations can also specify objects and

associations not explicitly present in the input or output

metamodels, including cross-metamodel associations.

These entities are called CrossLinks and their instances

exist only while the transformation is being performed.

Defining a GReAT transformation consists of the

following steps:

(1) Importing the source and target GME metamodels.

(2) Specifying the graph rewriting rules using the

imported metamodel objects.

(3) Defining (implicit and explicit) sequencing for the

rules by grouping them into rule blocks.

(4) Configuring the transformation by specifying

source and target models (files) and specify the

starting rule (or rule block).

One important advantage of using GReAT is that it

allows us to specify our model transformations using

the same framework in which our models were created,

so that a single framework is used throughout the entire

development process.

3. Example: a Giotto → E-code translator

An important area of embedded (control) systems is

the area of (hard) real-time systems, where the system

has to respond to external stimuli before a deadline.

Hard real-time systems are the ones where missing the

deadline is considered to be a catastrophic failure of

the system (e.g. safety-critical systems). Such systems

are often designed according to the time-triggered

paradigm [11] to ensure (timing) correctness by

construction. In a time-triggered system, each activity

is invoked exactly at a predefined point in time.

Many embedded control systems can be defined as a

(periodically repeating) sequence of time-triggered

activities (e.g. read sensor; compute control response;

drive actuator). These systems are often complex,

involving many interdependent sensors, actuators and

control laws to be run at different frequencies

according to the physical environment the system is

designed for.

An example for a high-level language to describe

such systems is the Giotto language [3] [4], featuring

concepts such as sensors, actuators and control

computations associated with read/update frequencies

in real time. Such languages are implemented over

lower-level execution platforms, which provide

concepts and primitives closer to traditional CBS (e.g.

functions, tasks, device drivers, memory locations etc.).

In [13] we showed the feasibility of a DSML →

Platform transformation in GME / GReAT, namely

how to translate the high-level model of a time-

triggered system (written in Giotto), into E-code: an

abstract code for a virtual machine [5] that schedules

tasks in such a way that timing constraints are always

satisfied. This schedule is platform-independent in the

Giotto sense: the externally provided functionality

implementations are assumed to be ―well-behaving‖,

i.e. they do not violate their deadlines, provided that

the scheduler releases them at the beginning of their

time slot (which the E-machine can guarantee).

The E-code is similar to the schedules typically used

in cyclic executives [10]. Below, we describe how to

extend our previous transformation in order to support

multi-modal Giotto systems. We begin by giving a very

brief introduction to the Giotto and E-code languages

(concentrating on the issues relevant to multi-modal

systems), followed by the description of the

transformation extension. A more detailed introduction

(relevant to this context) to Giotto and E-code can be

found in [13], showing the UML metamodels

developed and discussing the single-modal

transformation.

Figure 1 Simple multi-modal Giotto system in GME

3.1 The Giotto time-triggered language

Giotto is a hard real-time embedded systems

design language. It is designed for control

applications requiring periodic activities such as

sensor readings, control law computations and

actuator updates. According to the time-triggered

paradigm, each activity of the system must be strictly

periodic. Giotto allows multiple operating modes for

the system: in each mode, a different (possibly

overlapping) subset of activities is executed

periodically. Different modes might have different

periods and each activity is run with a frequency

relative to the mode period.

In the above case study, a GME metamodel for

Giotto systems was created, and the main concepts of

the language modeled:

Tasks are the basic functional entities,

implemented by external (Java or C++) code. Tasks

are expected to run periodically, with a fixed period

per mode.

Ports are memory locations (typed variables)

facilitating inter-task communication and carrying

system state. Sensors and actuators are also

represented as ports.

Drivers perform data copying between ports and

implement device access (for sensors and actuators).

Drivers execute in zero logical time, i.e. the

environment does not change while a driver runs.

Drivers can also have an associated guard condition,

which can be evaluated in zero logical time as well.

Modes group periodic task invocations and

actuator updates along with their associated driver

calls. The system can transition between modes if a

mode switch driver guard conditions evaluates true.

Figure 1 shows a multi-modal Giotto system:

mode m1 (shown on the left, with a period of 600ms)

runs task invocations t1 and t2 (at ω1 = 1 and ω2 = 3)

and evaluates mode switch guard m1→2 at ω1→2 = 3.

Mode m2 (shown on the right, with the same period of

600ms) runs task invocations t1 and t3 (same

frequency for t1 and ω3 = 2) and evaluates mode

switch guard m2→1 at ω2→1 = 2.

Observe that both mode switch guards (m2→1 and

m1→2) run at higher frequencies than t1 (in both

modes). This means that the system might switch

modes while t1 is logically running. The mode switch

in this case is said to logically interrupt the execution

of t1. In such cases, the compiler has to make sure that

the end of any logically interrupted task’s period

coincides with the end of its periods in the destination

mode. In a well-formed Giotto system, logically

interrupted tasks must be contained by both the

source and destination modes, and their respective

frequencies should be compatible (i.e. the above rule

should be satisfied). This rule is explained in detail in

Part II. Section ―Mode switches‖ in [4].

3.2 The E-Machine and its language the E-

code

The E-Machine virtual machine governs the

interactions between the software tasks; the real-time

OS running the system and the environment. The

concepts of Giotto and the E-Machine are related,

with the E-Machine having a more general scope (not

restricted to periodicity and time-triggered behavior).

However, the E-Machine guarantees predictable

timing and behavior.

The main functional concepts of the E-Machine

have very similar Giotto counterparts (Task, Drivers

and Ports). Drivers are separated into two distinct

entities, a Guard and an (E-Machine) Driver.

The E-code language defines the following

instruction set:

if conditional branching according to the

associated guard

call execute a driver, in zero logical time (the E-

Machine blocks until the call finishes)

schedule place a task instance into the Ready

queue of the host OS (annotated by its deadline). It is

the responsibility of the OS to execute the task on

time. The E-Machine resumes execution immediately

jump an unconditional branching instruction

future ―delayed jump‖: the E-Machine yields

control to the host OS until the associated timer

guard evaluates true, and then transfers control to the

designated E-code instruction

In GME models, arrows (directed connections)

indicate instruction sequencing (Next) and dashed

arrows show a Then branch (after an if).

3.3 Extending the Giotto→E-code translator

As mentioned in the Introduction, mapping from

the high-level system models to an executable at the

implementation platform level is not a trivial task.

This is well illustrated by our particular example: a

Giotto system is essentially defined as a set of

periodic timing constraints, and the E-machine

accepts an imperative program (instruction sequence).

The translator generates a schedule (composed of E-

code instructions) that satisfies the timing constraints.

3.3.1 Concepts of the single-mode translator

In [13], questions regarding establishing the

modeling framework, metamodeling Giotto and E-

code were discussed. Additionally, a limited

prototype Giotto→E-code translator was specified. In

summary, the following contributions were made:

(1) GME Metamodels were created for the input

(Giotto) and output (E-code) languages,

(2) A GReAT transformation was built to map the

Giotto models into sequenced E-code

instructions for single-mode Giotto systems.

The main problem for this transformation was to

map a single mode onto a repeating E-code

instruction chain. The basic idea is as follows:

Determine when the task/drivers need to be

executed based on their frequencies, and generate

synchronous (zero logical time) instructions (if,

call, schedule) to evaluate/execute the required

actions, then suspend the E-machine using a future

until the next action needs to be taken. During this

time the host OS executes the scheduled tasks.

The smallest duration to be spent between these

zero-logical-time instruction chains is characteristic

to the mode (as discussed in [13]), and is called ―unit

size‖ or ―time slot length‖.

In [13], this interval was appropriate for the whole

system, since the transformation supported single-

mode systems only. Using this result, the translator

generated the appropriate synchronous

if
then

→call→schedule E-code sequences

implementing the system activities. These

synchronous (zero logical time) sequences were

―separated‖ in time by delays of ―unit size‖ duration

implemented by future instructions.

The concept can be seen in Figure 2 (the model

contains additional code to implement multiple

modes, explained below).

In order to extend the above translator for multi-

modal systems, the following steps need to be taken:

(1) this interval has to be calculated for each mode,

and separate E-code blocks implementing each

mode have to be generated

(2) Giotto mode switches have to be implemented as

conditional jumps between these code blocks to

facilitate mode changes

The first task can be trivially accomplished by re-

using the previous transformation. Additionally, a

jump instruction needs to be generated as the first

instruction of the program (after initialization)

pointing at the code block implementing the initial

mode.

The second task is slightly more difficult. Mode

switches in Giotto are specified as periodic activities

within a mode: the mode switch guard needs to be

evaluated with the specified frequency, and when it

evaluates true, control needs to be transferred to the

code block implementing the appropriate mode.

As we have seen in the previous section, Giotto

allows tasks to be logically interrupted by mode

switches. If the task is present in both the current and

next modes, its time slot has to be aligned with both

modes’ periods (i.e. it has to ―logically finish‖ at the

right time in the next mode even if it was started in

the previous one).

This has two consequences:

a) the destination (within the next mode) of the

jump implementing the mode change has to be

calculated accordingly (i.e. it is not always the first

instruction of the mode’s code block) and

b) the actual jump might have to be delayed in

order to synchronize the two modes.

Figure 2 (with some details omitted) illustrates this

by showing the generated E-code for the Giotto

system from Figure 1. Marked arrows indicate

(possible) mode switches. At Δ0 = 0ms (both modes)

a mode switch is implemented by a jump. At Δ1 =

200ms in m1 for example, the effective mode switch

has to be delayed by 100ms because the E-code

instruction getting control is intended to run 300ms

after t1 was scheduled (and 300ms before it is going

to be scheduled again in m2). The mode switch has to

accommodate the logically interrupted task instance

during m1→m2. This is implemented using a future

instruction.

Note that the E-code implementation splits m1 into

three 200ms ―time slots‖ and m2 into two 300ms slots.

200 and 300 are referred as ―unit sizes‖ for m1 and m2

respectively.

Figure 2 GME Model for E-Code implementing Giotto system from Fig. 1 with mode switches shown

3.4 Implementing the extended translator

The rule block (Giotto2ECode) responsible for

generating E-code has been extended as shown in

Figure 3:

Figure 3 Rule block Giotto2ECode of the extended

translator

This chain matches top-level ―System‖ (from the

Giotto source model) and ―Program‖ (target E-code

model) objects, and routes them through the rule

chain shown.

Rule Modes (Figure 4) matches all modes in the

system, which are then fed into rule block

CompileMode.

Figure 4 Rule to match all modes in the system

The rule matches inputs System and Program,

and matches all Mode instances contained by

System. The results (the Program instance and all

the Mode instances) are propagated to the next rule.

3.4.1 Setting the program entry point

After the E-code blocks have been generated for

each mode (rule block CompileMode, discussed

below), the initial mode needs to be matched (Figure

5):

Figure 5 Rule selectStartInstr with Guard code

The C++ Guard condition (using the GME API)

selects the jump instruction named Start from

Program, and the Mode whose start attribute is

true. This is also necessary since rule block Modes

(Fig. 4) matched and propagated all Mode instances.

Then, the initial jump instruction is set to the first

instruction of the corresponding E-code block, as

shown in the next figure. The destination of the jump

is set to the first instruction of the Mode by creating

(indicated by a checkmark) a sequencing (Next)

connection. (The very first instruction of a Mode is

marked with a ModeBegin crosslink association.)

Figure 6 Rule SetStart

3.4.2 Implementing mode switches

As mentioned above, a mode switch is a guarded

periodic activity, thus it can be implemented similarly

to task invocations. In the Giotto metamodel a

ModeSwitch is also derived from the abstract

Periodic, thus it is matched by rule

PeriodicActions in block

CompileMode/AddUnits. In order to process it,

the subsequent rule block AddUnitContent needs

to be extended with a rule explicitly matching

ModeSwicthes.

return

(Mode.start()

&&

Start.name()

== “Start”);

This rule block (ModeSwitch) is very similar to

existing block TaskWithDriver, but rather than

generating if
then

→call→schedule sequences, it

creates if
then

→call→jump sequences.

 At this point, the jump is left unspecified

(without destination), because the code generation has

to finish for all modes before the destination point

can be determined.

In order to make further processing easier, a

crosslink (temporary association) is placed between

model elements representing the jump and the target

mode. Furthermore, the time elapsed since the

beginning of the period is encoded with the jump

instruction.

This value is stored in the (otherwise unused)

GME attribute name. This duration is equal to the

sum of the future delays within the mode so far,

since all other E-code instructions execute in zero

logical time. This information is encoded in the name

of the last Future instruction, which is also matched.

Rule TargetMode, implementing the above is

shown in the next figure:

Figure 7 Rule TargetMode

This rule works as follows: ModeSwitch and its

TargetMode are matched, and the jump instruction is

created (and sequenced in after the driver call by

creating a Next connection). A checkmark in the

right bottom corner indicates objects created by the

rule, and the ―incoming arrow‖ icons on the left

indicate objects matched by previous rules.

TargetMode/TargetJump shows the crosslink

connection. The AttributeMapping C++ code block

takes care of extracting and encoding (time) values

from object attributes.

3.4.3 Determining mode switch target instructions

After the CompileMode rule-block has finished (it

matches matching all modes), in the final

doModeSwitches rule-block all jump instructions

(within the main Program) with a crosslink to a Mode

are matched (i.e. all ―unfinished‖ modeswitch

sequences identified):

Figure 8 Finding "unfinished" mode switches

The schema for processing the modeswitches is

shown below:

Figure 9 Schema for resolving mode switch

destinations

The condition for choosing between a jump or

future instruction can be formulated as follows:

Mode switch ms→d, evaluated at time step Δ in s

(modulo ps, period of mode s) is implemented by a

jump if the ―unit size‖ of mode d (ud) is a divisor of

Δ. (i.e. the time of the mode switch coincides with the

start of a ―time slot‖ in d).

Otherwise, a future has to be used and the mode

switch has to be delayed until the start of the next

time slice in mode d. (Consider Figure 2: All but the

very first mode switches at Δ = 0 in both modes are

delayed).

This decision is implemented in rules Jump and

Future in Figure 9 by C++ guard conditions

extracting the timing information from the model

elements and comparing them. Rule Future also

takes care of replacing the jump instruction by a

future:

Figure 10 Rule Future in doModeSwitch

The Guard condition contains the C++ code for

the modulo arithmetic, and if it evaluates true, the

jump instruction is deleted (small x in the right

bottom) and a future is created (denoted by a

checkmark) and linked into the model by creating all

the necessary associations. The temporary

SrcUnitSize and TargetUnitSize elements

(on the top and bottom), associated with the source

and target models are used to store the unit size

values (in their When integer attribute). They are

temporary variables, created by the CompileMode

rule block during the processing of the systems’

modes.

Then, in Rules findTarget /

findUnitBodyAfterTarget the exact

instruction to jump to is determined by walking

through the instructions of the target mode until the

first instruction of the desired time slot is found, and

rule LinkInstrIn connects the branching

instruction to the appropriate E-code instruction in

the target mode.

Extending the transformation required adding or

modifying approximately 20-25 rules and took less

than two weeks including preparing test cases and

verifying the results against the Giotto compiler from

UC Berkeley. An e-mail exchange with the Berkeley

team was also necessary to clarify a few minor

details.

4 Related research

With visual, model-based design languages

becoming more and more mainstream, model

transformation is getting more and more research

attention. Formal model transformation approaches,

such the declarative, graph-transformation based

GReAT offer a higher level of abstraction and

promise better accountability for the transformation

process itself.

Pioneering efforts in this area are lead by OMG

with the QVT standardization efforts [14][15]. The

OMG advocates declarative and hybrid model

transformation approaches with the OCL language

(with extensions) having a key role in the proposed

standard. GReAT uses C++ code for attribute

manipulation and match guard predicates, because of

the availability of existing C++ model manipulation

APIs. Also, OMG uses the MOF language as opposed

to UML, but as it was shown in [16] the difference in

the context of model transformation is not really

relevant. Nevertheless, important research is being

done with native MOF and OCL compliant model

transformation techniques by the ATL [17] group.

Model transformation also enables creating formal

analysis models derived from high-level design

models. Analysis models capture the system’s

behavior in various abstract formalisms (such as

timed automata [1]) which enable formal verification

through model checking. The VIATRA [18]

framework, relying on the graph transformation of

UML models into formal analysis models is a good

and innovative example of such approaches.

It is quite often a requirement to analyze a design’s

behavior implemented over different platforms

(offering the same interface). The (execution)

platform is a natural choice for abstraction (and

standardization) – this abstraction is probably best

described by the Metropolis approach [19].

5 Future work

Using the platform-level abstraction, in a recent

paper [13] we argued for the modeling of the

execution platform that facilitates the component

interactions in component-based embedded systems.

Using platform modeling, we showed an example for

deriving formal analysis models through a model

transformation incorporating information on the

implementation platform.

In the example, we constructed a transformation

that took a domain-specific system-design model and

translated it into timed automata that modeled the

behavior of the design implemented on a specific

execution platform.

One important lesson we learned from the

experiment was that the transformation contained a

section implementing the DSML→Platform mapping.

This part translated the DSM onto platform-level

structures, and then these structures were further

transformed onto analysis model structures describing

their behavior.

We realized that it is worth formally separating

this transformation, since it could to be re-used if we

want to construct additional DSML→Analysis model

transformations either

a) describing a different implementation of the

same platform, or

b) generating an analysis model in a different

analysis formalism, describing the same

system over the same platform

This was the main motivation behind the work

described in this paper.

An additional (very important) benefit of having a

DSML→Platform mapping is that it can be used for

system synthesis, as it is demonstrated by the example

discussed in this paper. Using the resulting E-code

models, an actual E-code program implementing the

system could be generated trivially.

Of course, tools (compilers) already exist to

perform this task, such as the Giotto E-code compiler

from Berkeley.

Having the very same transformation generate

both the (model of the) implementation code and the

analysis model guarantees that the two models

(implementation and analysis) are isomorphic and the

analysis results are valid. This is the main benefit

gained by the (re)implementation of the compiler in

the above model transformation framework.

Next, we are going to work on formalizing (and

making it explicit) the platform model: the part of the

DSML→Analysis model transformation describing

the platform-level entities (in terms of analysis model

structures) and their interactions.

6 Conclusions

This paper focused on the first step towards the

solution of the explicit platform modeling problem

discussed above:

We demonstrated an example for the DSM →

Platform model transformation and showed how it fits

into the generic modeling and transformation

framework. For us, this transformation is important

because it provides a system model at the platform

level, thus enables incorporating platform

implementation knowledge into further model

translations towards analysis models.

Our work also underlines a very important benefit

of the model-driven development (MDD) approach:

The very same transformation can be used in system

synthesis and analysis model generation, thus

reducing development effort and – more importantly

– ensuring the validity of the analysis models for the

actual implementation.

Model-driven engineering techniques are a prime

source for innovation and management of complexity

in embedded system development. In this paper we

have given an illustrative example that shows how

model transformation (specified in a high-level,

formal language that uses graph rewriting techniques)

can be used to solve non-trivial mapping problems

between domain-specific models and platforms. The

example is meant to emphasize the opportunity a

model transformation system can provide, and are not

necessarily optimized for performance.

We believe the next major research problems in

this area include (1) developing the technology for

the more general, platform-model-driven

transformations for analysis, and (2) developing the

technology for correctness-preserving

transformations. Both of these require further,

significant research efforts.

7 References

[1] R. Alur and D. Dill: “Automata for modeling Real-

Time Systems”. Theoretical Computer Science, 126(2):

183–236, April 1994

[2] E. Gamma, R. Helm, R. Johnson, J. Vlissides: Design

Patterns, Addison-Wesley, 1995.

[3] Thomas A. Henzinger, Benjamin Horowitz, and

Christoph M. Kirsch: “Embedded control systems

development with Giotto”, Proceedings of the

International Conference on Languages, Compilers, and

Tools for Embedded Systems (LCTES), ACM Press,

2001, pp. 64-72.

[4] Thomas A. Henzinger, Benjamin Horowitz, and

Christoph M. Kirsch: ”Giotto: A time-triggered

language for embedded programming.” Proceedings of

the First International Workshop on Embedded

Software (EMSOFT), Lecture Notes in Computer

Science 2211, Springer-Verlag, 2001, pp. 166-184.

[5] Thomas A. Henzinger and Christoph M. Kirsch: ”The

Embedded Machine: Predictable, portable real-time

code” Proceedings of the International Conference on

Programming Language Design and Implementation

(PLDI), ACM Press, 2002, pp. 315 326.

[6] Karsai, G., Agarwal, A., Shi, F., Sprinkle, J: “On the

Use of Graph Transformation in the Formal

Specification of Model Interpreters”, Journal of

Universal Computer Science, Volume 9, Issue 11, 2003.

[7] Agrawal, G. Karsai, F. Shi: “Graph Transformations on

Domain-Specific Models”, Technical Report, available

online at http://www.isis.vanderbilt.edu

[8] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.

Lopes, J.-M. Loingtier, and J. Irwin: ”Aspect-oriented

programming.” In ECOOP'97---Object-Oriented

Programming, 11th European Conference, LNCS 1241,

pages 220--242, 1997.

[9] Ledeczi, A.; Bakay, A.; Maroti, M.; Volgyesi, P.;

Nordstrom, G.; Sprinkle, J.; Karsai, G.: ”Composing

domain-specific design environments”, IEEE Computer,

Nov. 2001, Page(s): 44 –51.

[10] A. Shaw: ”Real-Time Systems and Software”, John

Wiley & Sons Inc., 2001.

[11] H. Kopetz: “The Time-Triggered Model of

Computation”, Proceedings of the 19th IEEE Systems

Symposium (RTSS98), December 1998

[12] T. Szemethy and G. Karsai: “Platform Modeling and

Model Transformations for Analysis”, Journal of

Universal Computer Science, Volume 10, Issue 10,

2004 pp 1383 1407

[13] T. Szemethy: “Case Study: Model Transformations for

Time-Triggered Systems”, International Workshop on

Graph and Model Transformations (GRaMoT), Tallinn,

Estonia, September 2005.

[14] Gardner et al. “A review of OMG MOF 2.0 Query /

View / Transformation Submissions and

Recommendations towards the final Standard” available

online at http://www.zurich.ibm.com/pdf/ebizz/gardner-

etal.pdf

[15] The QVT-Merge Group: “Revised submissions for

MOF 2.0 Query/Views/Transformation RFP”, available

from the QVT Group

[16] M. Emerson, J. Sztipanovits, T. Bapty: “A MOF-

Based Metamodeling Environment”, Journal of

Universal Computer Science, Volume 10, Issue 10,

2004 pp. 1357-1382

[17] J. Bézivin et al: “First experiments with the ATL

model transformation language: Transforming XSLT

into Query” In the online proceedings of the

OOPSLA’03 Workshop on Generative Techniques in

the Context of the MDA,

http://www.softmetaware.com/oopsla2003/mda-

workshop.html

[18] Gy. Csertán, G. Huszerl, I. Majzik, Zs. Pap,

A.Pataricza, and D. Varró: ”VIATRA: Visual automated

transformations for formal verification and validation of

UML models.” In J. Richardson, W. Emmerich and D.

Wile Proc. ASE 2002: 17th IEEE International

Conference on Automated Software Engineering, pages

267-270, Edinburgh, UK, September 23-27 2002.

[19] F. Balarin et al.: “Modeling and Designing

Heterogeneous Systems” Concurrency and Hardware

Design, Springer 2002, pp 228-273

http://www.zurich.ibm.com/pdf/ebizz/gardner-etal.pdf
http://www.zurich.ibm.com/pdf/ebizz/gardner-etal.pdf
http://www.softmetaware.com/oopsla2003/mda-workshop.html
http://www.softmetaware.com/oopsla2003/mda-workshop.html

