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Abstract—Most existing multiprocessor schedulability analy-
sis assumes zero cost for preemptions and migrations. In order
for those analysis to be correct, execution time estimations are
often inflated by a certain (pessimistic) factor, leading to severe
waste of computing resource.In this paper, a novel Global
Earliest Deadline First (GEDF) schedulability test is proposed,
where Cache-Related Preemption Delay (CRPD) is separately
modeled and integrated. Specifically, multiple analyses for
estimating CRPD bounds are conducted based on the refined
estimation of the maximal number of preemptions, leading to
tighter G-EDF schedulability tests. The experimental study is
conducted to demonstrate the performance of the proposed
methods.

Keywords-Multiprocessor scheduling, Cache-Related Pre-
emption Delay, Global Earliest Deadline First, schedulability
analysis

I. INTRODUCTION

With the rapid growth of Cyber-Physical Systems (CPS)

and Internet of Things (IoT) [17], Multiprocessors [8] have

been widely used in embedded real-time systems in the

last decade. The tremendous computing power of multi-

processors have featured the embedded real-time systems

with higher capacity but lower cost. In such a trend, both

hardware and software providers have started to support

multiprocessors/multi-core processors in practical embedded

real-time systems design. For example, as a leading micro-

processor provider in real-time system, ARM has released

its ARMv8-A structure with multi-core configurations, while

a series of real-time operating systems, such as VxWorks,

have been upgraded to fully support multi-core processors.

In terms of performance, the embedded real-time systems

equipped with multiprocessors are capable to schedule a

larger volume of concurrent tasks, while guaranteeing all

responses (e.g., task completion) on time [11]. To understand

the response time of embedded real-time system, a branch

of studies [3] [4] [5] [18] have been done to analyze schedu-

lability in multi-processor. As early as 1973, to analyze the

performance of Earliest Deadline First (EDF) scheduling in

the multiprocessor, Liu and Layland [18] studied a sufficient

condition for guaranteeing schedulability of all tasks. Then,

to derived the maximum execution (time) requirement for

each task set, Baker [3] [4] proposed a Global EDF (GEDF)

schedulability test. Later in 2007, Baruah [5] and bertogna

et al. [6] improved GEDF test and developed a new schedu-

lability test. Most recently, in 2015, Sun et al. [23] proposed

new schedulability test through response time analysis for

GEDF.

However, existing studies on multiprocessors/multi-core

processors rarely take the delay caused by preempting shared
resource into consideration. Most existing schedulability

analyses are based on certain unrealistic assumptions; e.g.,

zero time cost for preempting a shared resource. Note

that the preemptions of shared resources commonly exist

in the multiprocessor/multi-core systems and could cause

significant performance degradation (e.g., missing deadlines)

in the worst case scenarios [2] [9] [10]. One common way

is to multiply the worst case execution time parameters by a

certain factor to cover potential delays cased by preempting

shared resource – this is often over pessimistic [22].

Related Work. Among a wide range of delay caused by

shared resources such as bus and main memory [10] [14]

[16], the Cache-Related Preemption Delay (CRPD) [15] [16]

[20] is a crucial factor of schedulability guarantee in mul-

tiprocessor systems, while CRPD is usually overestimated

under Earliest Deadline First (EDF) scheduling settings [3]

[4]. In 2007, Ju et al. [13] integrated the CRPD into

EDF schedulability analysis in uniprocessor settings, where

they took all possible direct preemptions of a single job

into account. Following Ju’s attempts, Lunniss et al. [19]

proposed an extended CRPD analysis for EDF, where they

leveraged ECB-union multiset approach and UCB-union

multiset approach to bound the CRPD. This result provided

a tighter bound of CRPD compared with the work of Ju et
al [13].

Unfortunately, the aforementioned existing work only

analyzes the CRPD for EDF on uniprocessor platforms. The

upper bound of CRPD is yet not known under EDF schedul-

ing in the multiprocessor embedded real-time systems.

In this paper, we study the schedulability of EDF on mul-

tiprocessor systems taking into account the CRPD and derive

a tight bound of CRPD under such settings. We propose a
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novel CRPD analytical approach that extends the existing the

state of the art of CRPD analysis [19] [13] to GEDF schedul-

ing. Specifically, while existing works [13] [19] assumes that

each released job of tasks causes a preemption of shared

cache to the job in execution, therefore all cache blocks

are inferred densely in an uniprocessor, our work leverages

the nature of the sparse interferences between cache blocks

distributed on multi-cores/multi-processors [21].

Please note that the estimation of preemption times on

uniprocessor may not be accurate under multiprocessor

settings, as the actual number of preemption times on

multiprocessor is lower than the uniprocessor case1.

Organization and Contribution. In this paper, we propose

a novel approach to derives a tighter upper bound of CRPD

under GEDF scheduling on the multiprocessor platform. At

Section II, We present the System Model and the notations

used in this paper. Based on the models and notations, we

introduce GEDF-CRPD Test – a new GEDF schedulability

test on multiprocessor for CRPD analysis in Section III.

With the new test, in Section IV, we propose an three-step

approach that first condenses the multiset of interfered cache

blocks, then estimates the maximal number of preemption

times on multiprocessors, and further bounds the CRPD

via our GEDF-CRPD Test. In Section V, we compare our

method to the existing approaches; the experimental results

show that our method converges to the Demand Bound

Function (DBF) with a tighter margin than other methods.

Section VI concludes the main contributions for this paper.

To the best of our knowledge, this is the first work

that analyzes the multiprocessor CRPD upper bound under
global EDF scheduling, by addressing interference cache

blocks on multiprocessors and refined estimation of maxi-

mum preemption occurrences issues.

II. SYSTEM MODEL AND NOTATIONS

In order to analyze the CRPD in GEDF schedulability

test, we first describes the system model, terminology, and

notations used in the rest of the paper.

We consider a multicore system which has a fixed number

of processors shared an on-chip one-level cache. Specifically,

these processors do not have any private cache, as demon-

strated in figure 1. Henceforth, no migration delay for tasks

will be considered due to no partitioning and no private
cache.

We assume a multiprocessor system with m processors

running a predefined sporadic task set under GEDF schedul-

ing, and the total number of tasks n � m. Each task τi
defined as a 3-tuple {Ci, Di, Ti}:

1Consider the following settings as an intuitive example demonstrating
sparse interference: all tasks are executed on a single uniprocessor (with a
single cache), the cache is shared by all tasks and the preemptions happen
frequently due to the dense interferences. On the other hand, given the
multiprocessor with multiple cores/caches, the cache access of tasks would
be isolated with fewer preemptions, when tasks are executed on different
cores with partitioning cache.

Figure 1: Cache model of the system: all cores share a same

on-chip cache. Note that tasks executing on different cores

do not have resource interference with each other although

they share a common cache.

• Ci is the worst-case execution time for each job of the

task.

• Di is relative deadline for each job.

• Ti means each job of a task would released at least

every Ti time units.

Each job has a absolute deadline di which occurs Di time

units after its release time.
We consider a constrained deadline in our system that

Di ≤ Ti holds for all tasks. We consider preemptive

execution model, where during execution of a task, the

executing job could be preempted or suspended at any

instant of time, its execution may resume later on the same

processor or another one.
Correctness. For a given scheduling algorithm, if all tasks

can be scheduled without missing deadline based on the

specification of the system, we defined the task set as

schedulable.

Task Period Deadline WCET

τ1 6 6 4

τ2 6 6 3.5

τ3 2 2 1

(a) A sample task set with three tasks.

(b) The GEDF schedule of the task set show in Table 1(a) (with two
processors), where all tasks are released at time 0. The second job of
task τ3 preempts task τ2 at time instant t = 2 when all processors
are busy, while the third job of task τ3 is scheduled into an idle slot
at time t = 4.

Figure 2: GEDF scheduling of a sample task set.

In this paper, we consider the GEDF scheduling algorithm
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in the multi-processor system. GEDF is a dynamic schedul-

ing algorithm which will place processes in a priority queue.

The task’s priority is assigned by the system based on their

deadline. The task which has the earliest absolute deadline

will have the highest priority; the task which has the latest

absolute deadline will have the lowest priority [5].

Example II.1. Consider the task set shown in figure 2(a),
which can be correctly scheduled under GEDF (with the
absolute deadline), as demonstrated in figure 2(b). Assuming
a job arrived with an earlier absolute deadline, it is first
scheduled into the idle time slots. If all the m processors are
busy at that time instant, this newly released job would pre-
empt the job with the lowest priority. Upon the completion
of one processor, the processor would choose the pending
jobs with the highest priority to execute.

Observation 1. Under the system and cache model shown
in figure 1, for any newly released job to begin its execution
at time t0, if all processors are busy, the following two
conditions must hold:
• Among the executing jobs, there are lower priority ones

(i.e., with later absolute deadlines) than the job of
interest.

• Only the job with lowest priority that was executing will
be preempted while all other jobs will not be preempted
– they will continue their executions until either there
is a new job release or they are finished.

Notation. Assume that a job with earliest absolute deadline

has a higher priority. Let hp(i) denote the set of tasks with

smaller relative deadlines (and thus can preempt task τi);
i.e.,

hp(i) = {∀τj |Dj < Di}. (1)

Let Pj(Di) denote the maximum number of jobs belong-

ing to task τj that are invoked during a single job of task

τi’s execution period:

Pj(Di) = max
(
0, �Di −Dj

Tj
�
)
. (2)

Let Ei(t) represents that the maximum number of jobs,

which have their release times and deadlines within the time

interval of length t, of task τi can be invoked. We calculate

it as follow:

Ei(t) = max
(
0, 1 + � t−Di

Ti
�
)

(3)

Demand Bound Function. We use the Demand Bound

Function DBF (τi, t) [12] to generate the maximum execu-

tion requirement by the jobs of τi that have both the arrival

time and deadline within the time interval of length t. It can

be calculated as follow:

DBF (τi, t) = max
(
0,

(� t−Di

Ti
�+ 1

) · Ci

)
. (4)

Where Ci is the Worst Case Execution Time (WCET)

for a task τi. In GEDF scheduling, tasks can execution

in different cores simultaneously, Note that the inter-core

interference when tasks are running is taken into account in

WCET.

To analyze the CRPD, we use the concept of Useful Cache

Block (UCB) and Evicting Cache Block (ECB).

Lee et al. [15] provided the definition for UCBs as “A

memory block m is called a useful cache block (UCB) at

program point P , if it is cached at P and will be reused

at program point Q that may be reached from P without

the eviction of m”. The memory blocks are loaded into the

cache when a preempting task evicts other tasks, which are

called ECBs. Combining the concept of UCBs and ECBs

can assist us to bound CRPD.

III. GEDF-CRPD: A MULTIPROCESSOR GEDF

SCHEDULABILITY TEST FOR CRPD ANALYSIS

This section describes how CRPD analysis can be inte-

grated into the existing schedulability test for GEDF on a

multiprocessor platform. In order to do so, in Section III-A,

we briefly introduce the widely accepted GEDF schedulabil-

ity analysis without incorporating CRD. Then in Section III-

B, we propose four different methods to integrate CRPD into

demand bound functions in GEDF schedulability analysis.

A. Global EDF Schedulability Test

FLiu and Layland [18] explored the global multiprocessor

scheduling of implicit deadline task. They gave a sufficient

condition for guaranteeing that any tasks would not miss its

the deadline.

usum(τ) ≤ m− (m− 1) · umax(τ). (5)

In Equation (5), m denotes the number of processors,

usum(τ) represents the total utilization and umax(τ) rep-

resents the maximum utilization.

Later in 2007, Baker [3] [4] designed the GEDF schedu-

lability test in an different perspective. He assumed that the

task τk missed its deadline, then determined the necessary

conditions for other tasks, that resulted in task τk to have

missed its deadline. Finally, the negation of the necessary

condition would have been a sufficient condition to guaran-

tee all deadline being met for the task set.

In 2007, Baruah [5] designed a more sophisticated GEDF

schedulability test that overcame some shortcomings of

Baker’s test. Similarly, he obtained a necessary condition

which would let a job of task τk be the first to miss its

deadline. When the necessary condition was not satisfied,

then task τk would not have missed its deadline.

Based on this idea, if td is the time instance that a job of

τk first missed its deadline, we use ta to denote this job’s

arrival time, where ta = td −Dk. if t0 instant as the latest

time instant ≤ ta, at which at least one processor is idle in
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Figure 3: A job of task τk with arrival time at ta and misses its deadline at td. t0 is the time instant that at least one of the

m processor is idle.

GEDF scheduling (Figure 3), In order to satisfy the deadline

miss occurrence, it is necessary that all m processors are

executing jobs other than τk’s job more than (Dk−Ck) time

units in the time interval [ta, td]. Hence, the total amount of

execution requirement that execution in this interval t should

satisfy:

∑
τi∈τ

I(τi) > m · (Ak +Dk − Ck). (6)

We defined a time period Ak = ta − t0 in Equation (5),

and I(τi) denotes the contribution of τi to work done in

GEDF schedule during [t0, td].

If a task τi contributes no carry-in work2 and the task

τk does not miss its deadline, combined with the demand

bound function, the contribution of τi to the total workload

should not exceed the Equation (6).

I1(τi) = min(DBF (Ti, Ak +Dk), Ak +Dk − Ck). (7)

Based on Baruah’s work, we establish that the total

amount of execution demand for tasks should not exceed

the total amount of slack time period in m processors. The

Equation (5) can be extended to the following format:

n∑
i=1

max(0, �(t−Di)/Ti�+1)Ci ≤ m·(Ak+Dk−Ck). (8)

Without considering the CRPD in GEDF scheduling,

when the demand bound function satisfies Equation (6),

the deadlines will be met. However, for GEDF in mul-

tiprocessor system, when a higher priority task preempts

lower priority tasks, the introduced CRPD would enlarge the

demand bound function significantly, the current sufficient

condition cannot necessarily guarantee the schedulability of

any sequence of tasks under GEDF scheduling. Figure 4

demonstrates that the given task set is no longer schedulable

under GEDF with considering CRPD. Therefore, in the fol-

lowing subsection, CRPD will be integrated into the GEDF

schedulability test framework introduced in this subsection.

B. Integrate CRPD into GEDF Scheduling

For a given task, DBF calculates the execution require-

ment in the interval of length t. When considering the CRPD

2Carry-in work means that a job is released before t0 and completes
execution before td.

Figure 4: GEDF schedule of the taskset shown in Fig 2(a),

where CRPD is taken into consideration and the first job of

τ2 misses its deadline at time t = 6.

into GEDF scheduling, the execution requirement for each

job of the task τi should integrate the cache reload time γi.

∑
DBF (τi, t) =

n∑
i=1

max
(
0, � t−Di

Ti
�+ 1

)
· (Ci + γi).

(9)

In the remainder of the subsection, we will present four

different approaches in calculating and bounding the CRPD,

γi.

(A) Ju’s Approach. Ju et al. [13] presented an approach

to integrate the CRPD analysis into uniprocessor EDF

schedulability analysis in 2007. This approach first calcu-

lated the number of blocks belonging to τi that are directly

preempted by task τj multiplied by Pj(Di). Pj(Di) is the

maximum times that the task τj preempts a single job of task

τi. In order to find all possible direct preemptions, the higher

priority tasks which could preempt task τi are summed.

These higher priority tasks τj represented as j ∈ hp(i) and

the γJu
i represent CRPD calculated by Ju et al. [13]

γJu
i = BRT ·

( ∑
j∈hp(i)

Pj(Di)×
∣∣∣UCBi ∩ECBj

∣∣∣
)
. (10)

where BRT is the per cache block reloading time. We modify

Equation (8) and substitute γi which the value from Equation

(9), so that the CRPD can be calculated in DBF for GEDF

schedulability analysis.
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However, applying this method into GEDF would over-

estimate CRPD as in uniprocessor. For instance, if a task

τj could preempt τi in a time instant, but the task τi has

already been preempted by a higher priority task τk, this

approach will calculate all possible preemptions into τi’s
response time, which is overly pessimistically estimate the

preemption times.

Lunniss et al. [19] provided an improved CRPD analysis

for EDF scheduling in uniprocessor system in 2013. They

used γt,j to represent the Ej(t) times of the preemptions cost

for preempting tasks. Where Ej(t) described the maximum

number of jobs that belong to task τj . These jobs would

have had their release times and absolute deadlines in an

interval of length t.
We can apply this concept in CRPD analysis under GEDF

scheduling. Therefore, the DBF could be changed into the

following format:

∑
DBF (τj , t) =

n∑
j=1

(
max{0, � t−Dj

Tj
�+1}·Cj+γt,j

)
.

(11)

There are mainly two approaches for calculating γt,j in

Equation (11): (B) ECB-Union multiset3, (C) UCB-Union

multiset approaches and (D) Combined multiset approach,

which are extended by Lunniss et al [19] to EDF scheduling

based on the work of Staschlat et al. [22] in fixed priority

for the uniprocessor.

(B) ECB-Union Multiset Approach. Nested preemp-

tions make the pessimistic assumption, for any preemption

by task τj , task τj itself may have already been preempted

by a higher priority task. And total number of times that the

jobs of task τk can be preempted by jobs of task τj is equal

to Pj(Dk) × Ek(t). Therefore, the multiset Mt,j could be

formed as follow:

Mt,j =
⋃

∀k∈aff (t,j)

( ⋃
Pj(Dk)×Ek(t)

∣∣∣UCBk∩(
⋃

h∈hp(j)∪j
ECBh)

∣∣∣
)

.

(12)

In the time interval t for each processor.The job of task

τj could at most invoke Ej(t) times, therefore, ECB-union

multiset approach bound the CRPD by summing the Ej(t)
largest value in the multiset Mt,j :

γecb−m
t,j = BRT ·

Ej(t)∑
l=1

|M l
t,j |. (13)

where BRT is per block reloading time, γecb−m
t,j represents

the CRPD calculated by ECB-Union multiset approach.

(C) UCB-Union Multiset Approach. This approach also

use the concept of multiset. Lunniss et al [19] first form

the multiset Mucb
t,j . This multiset includes Pj(Dk) × Ek(t)

times preemption of each task τk caused by task τj . Each

3Multiset is like a set, but it allows duplicate elements. For instance, {a,
a, b} and {a,b} is not the same multiset. However, order does not matter.
For example, {a, a, b} and {a, b, a} are the same multiset.

time of preemption is represented by a set of cache blocks

that might be preempted by task τj . Task τk whose relative

deadline is greater that task τj’s in the time interval [0, t)

presented as aff (t, j):

Mucb
t,j =

⋃
∀k∈aff (t,j)

( ⋃
Pj(Dk)×Ek(t)

UCBk

)
. (14)

Then they form the ECB multiset Mecb
t,j , which contains

the cache blocks that could be evicted by the jobs of task

τj . Since τj invoked at most Ej(t) times, the Mecb
t,j contains

Ej(t) times Repeated ECBs preempted by the a single jon

of τj .

Mecb
t,j =

⋃
Ej(t)

(ECBj). (15)

Finally, the intersection of Mucb
t,j and Mecb

t,j is multiplied

by the BRT, they obtained the CPRD which is represent by

γucb−m
t,j :

γucb−m
t,j = BRT · |Mucb

t,j ∩Mecb
t,j |. (16)

where BRT is per block reloading time, γucb−m
t,j indicates

the CRPD calculated by UCB-Union multiset approach.

(D) Combined Multiset Approach. Since UCB-Union

multiset and ECB-Union multiset approaches are not compa-

rable [19], we get the minimum of these two result applying

to the total DBF equation, which is represented as follow.
∑
j

DBF (τj , t) =

∑
j

min{DBF (τj , t)
ucb−m, DBF (τj , t)

ecb−m}.
(17)

where DBF (τj , t)
ucb−m indicates DBF obtained through

UCB-Union multiset approach, Similarly, DBF (τj , t)
ecb−m

represents DBF obtained by applying ECB-Union multiset

approach.

Until now, we studied GEDF schedulability test on mul-

tiprocessor system and integrated the CRPD into GEDF

in multiprocessor system. Moreover, we proposed four

CRPDanalysis approaches under GEDF. However, ECB-

union multiset approach, UCB-union multiset approach and

combined multiset approach assume that each released job

of tasks can causes a preemption of shared cache. The

maximum number of preemption times is decreased in

multiprocessor compared with uniprocessor. We will present

improved CRPD analysis in Section IV.

IV. AN IMPROVED CRPD UPPER BOUND ANALYSIS

In multiprocessor system, approaches (A), (B), (C) and

(D) given in Section III-B usually over-estimate the CRPD

under GEDF scheduling. Since they assume that each re-

leased job of tasks could generate a preemption cost. How-

ever, the cache interference of tasks would be reduced in
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multiprocessor. Thus, we leverage the nature of the sparse

interference between cache blocks distributed on multipro-

cessor, obtain a tighter bound of CRPD.

A. Condensing the Multiset

One of the main difference between uniprocessor and

multiprocessor is that the first m tasks with the earliest

relative deadline would not be preempted by other tasks in

multiprocessor. According to observation 1, if one of these

tasks begin to execute when released, it means that there

exist some tasks in execution with an absolute deadline later

than the first m task’s absolute deadline. If the released task

has a lower priority compared with some tasks with a latest

absolute deadline, the task would wait until one of the jobs

complete execution in m processors.

Multiset approaches would included all the useful cache

blocks which may be evicted in the time interval of length

t. Since the first m tasks with the earliest relative deadline

would not be preempted, These approaches are all overesti-

mate the affected cache blocks.

In ECB-Union multiset approach at Equation (12), when

the task τk belongs to the taskset {τ1, τ2, · · · , τm}, the

intersections between UCBs and ECBs are considered empty

in multiprocessor system. Therefore, unless these values are

not the lth largest value in multiset M , the result would

overestimate the CRPD. The equation below rectifies the

limitation of Equation (12).
∣∣∣UCBk ∩ (

⋃
h∈hp(j)∪j

ECBh)
∣∣∣ = ∅, k = 1, · · · ,m. (18)

Similarly, in UCB-Union multiset approach, since the first

m tasks will not be preempted, we can simply treat the UCB

of these tasks as empty for calculations, then we obtain the

following bound.
( ⋃

Pj(Dk)×Ek(t)

UCBk

)
= ∅, k = 1, · · · ,m. (19)

B. Reducing the Maximum Number of Preemptions

In the m multiprocessor system with GEDF scheduling

algorithm (Figure 3), when we find that t0 is the idle point

in at least one processor, it means m jobs belonging to

different tasks in execution in any time instant between t0
and ta. If a single job of task τi released at a time instant

ti, even if it has the earliest absolute deadline, it would only

preempt the task τl with the latest absolute deadline. Other

tasks are not interrupted by the task τl. In this situation,

their response time would not be extended by preemptions

respectively. The total number of invocation times for the

higher priority tasks would be reduced compared with the

times in uniprocessor. Therefore, the total preemption times

can be decreased.

In multiprocessor, when a task is preempted, it could

resume in any processor including the processor it utilized

before. We also include this case into CRPD analysis since

it could bring extra cache reload time. With this basic

assumption, we mainly focus on how many preemptions

occur in the time interval of length t.
In order to find the worst case preemption times, we first

assume there are n tasks in the system and each single job

of a task released would cause a preemption. We let the

tasks with the latest m absolute deadline execute first, then

the second m tasks with a higher priority release after. They

could preempt all the tasks execution in the processor, in this

sequence, until the task with the earliest absolute deadline

released in one of the processor.

In this situation, the total preemption times should be n−
m when all jobs belong to different task completing the first

time release. In fact, no matter what the sequence of tasks,

the total preemption times in the first time invocation for

different tasks, would not exceed (n−m) times. Hence, we

can subtract mth least preemption cost from the total CRPD.

Through condensing the multiset M in combined multiset

approach and refined the estimation of maximum preemption

times. We further estimate the a tighter bound of CRPD in

multiprocessor.∑
j

DBF (τj , t) = −
m∑
i=1

Gm+

∑
j

min{DBF (τj , t)
ucb−D, DBF (τj , t)

ecb−D}.
(20)

where G denotes the interfered cache blocks for the first

released job of each tasks. Gm is the mth minimal interfered

cache blocks set. We use DBF (τj , t)
ucb−D to represent the

DBF calculated using condensed UCB-Union multiset ap-

proach and DBF (τj , t)
ecb−D to indicate the DBF calculated

by condensed ECB-union multiset approach.

V. EXPERIMENTAL EVALUATION

In this section, we evaluate the effectiveness of the

different approaches to preemption cost computation on a

large number of tasksets with varying taskset parameters.

The task parameters used in our experiments were randomly

generated as follows:

– The number of cores(m) are 2, 4, 8.

– The default task size is 15.

– The total number of task sets are 100.

– Task utilizations were generated using the UUnifast-

discard algorithm [7].

– Task period were generated according to a uniform

distribution with a factor of 100 difference between the min-

imum and maximum possible task period and a minimum

periods of 5ms to 500ms, as found in most automotive and

aerospace hard real-time applications.

– Task execution times were set based on the utilization

and period selected: Ci = Ui · Ti

– Task deadlines were implicit, i.e., Di = Ti

– Priorities were assigned in deadline mon otonic order.
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The following parameters affecting preemption costs are

given below, the default values is given in parentheses:

– The number of cache-sets (CS=256).

– The cache reuse factor is 80%.

– The block-reload time (BRT = 8 μs)

– For each task, the UCBs of each task were assigned

randomly based on [1].

The experiment shows how the integrated CRPD and

global EDF schedulability analysis performed under the

default configuration for implicit deadline taskset. We var-

ied the utilization from 0.5 to m, and record how many

tasksets were deemed schedulable by the global schedula-

bility assuming no preemptions. Then we compared this

experimental result with the cases under different CRPD

analysis approaches in global EDF.

The Figure 5, Figure 6 and Figure 7 shows the result of 2

cores, 4 cores and 8 cores respectively. Each figure compared

five approaches we proposed before. GEDF CRPD Ju de-

scribes the global EDF schedulability test for CRPD analysis

based on Ju et al’s work [13]; i.e., Approach (A) in Section

III-B. GEDF CRPD ECB represents the schedulability test

based on ECB-union multiset approach; i.e., Approach (B)

in Section III-B. GEDF CRPD UCB represents the schedu-

lability test based on UCB-union multiset approach; i.e.,

Approach (C) in Section III-B. GEDF CRPD cb represents

the schedulability test based on combined multiset approach

(i.e., Approach (D) in Section III-B.) and GEDF CRPD cb

represents the schedulability test based on condensed mul-

tiset approach with technology described in Section VI.
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Figure 5: Evaluation for five CRPD analysis approaches:

Number of tasksets could be schedulable at different total

utilization in two processors.

After analyzing the figures, we find that GEDF CRPD Ju

approach perform worst. Since it computes all possible

preemptions caused by higher priority into a single job of

tasks in DBF. Although the single direct preemption costs

are precise, the total cost is very pessimistic. It overesti-

mates the total cost of preemption. GEDF CRPD ECB and

GEDF CRPD UCB approaches outperformed the Ju’s ap-

proach. These two approaches have very close performance

with our taskset. GEDF CRPD cb approach adopt the mini-

mum value of GEDF CRPD ECB and GEDF CRPD UCB,

therefore, It perform better than these two approaches some-

time. Due to considering the sparse cache-block interference

and refining the estimation of maximum preemption time

in multiprocessor, GEDF CRPD cd approach has the best

performance with our taskset. The experimental result shows

that GEDF CRPD cd gives a tighter bound of CRPD.
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Figure 6: Evaluation for five CRPD analysis approaches:

Number of tasksets could be schedulable at different total

utilization in four processors.
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Figure 7: Evaluation for five CRPD analysis approaches:

Number of tasksets could be schedulable at different total

utilization in eight processors.
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VI. CONCLUSION

In this paper, we first integrate the CRPD into GEDF

schedulability test and present different methods to bound

the CRPDunder GEDF. Specifically, condensed multiset

approach leverages the ECB-union multiset approach and

UCB-union multiset approach, so as to provide CRPD a

tighter upper bound. Both theoretical analysis and the simu-

lation results demonstrate the performance of the proposed

method.

In the future, firstly, we aim to give a more precise method

to calculate the total number of preemptions so that obtain a

tighter bound of CRPD in schedulability analysis. Secondly,

we aim at offering a more general approach which could be

applied into different cache model to bound the CRPD.
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