
Generic Value-Set Analysis on Low-Level Code

Zhenkai Zhang Xenofon Koutsoukos
EECS Department, Vanderbilt University, USA

{zhenkai.zhang,xenofon.koutsoukos}@vanderbilt.edu

Abstract
Verification is an essential task in the design of cyber-
physical systems (CPS). Due to the lack of many details
captured at a high-level like compilation and computational
platform limitations, CPS software also needs to be ana-
lyzed/verified at a low-level. Value-set analysis (VSA) has
been proposed to perform both numeric and pointer anal-
yses on low-level code, but it is originally developed for
Intel x86 architecture. If we want to perform VSA for a
new architecture, we need to make changes to the analy-
sis programs taking into account the semantics of its in-
structions, which can be tedious and error-prone. In this
paper, we address this challenge by using an intermediate
language to capture the semantics of the instructions of dif-
ferent architectures. Then, we define the abstract semantics
with respect to VSA for the intermediate language. We give
an example to show the feasibility of the generic VSA ap-
proach, which is to precisely resolve indirect branch target
addresses. In addition, we also extend the original strided-
interval domain to enable more precise tracking of struc-
tured values, and define the operations on this extended
strided-interval domain.

Keywords Static Analysis, Verification

1. Introduction
Cyber-physical systems (CPS) are complex systems that
are characterized by tight interactions between the physical
dynamics, computational platforms, communication net-
works, and control software. Many CPS are safety-critical
or mission-critical systems, such as aerial vehicles and de-
fense missiles, which means any failure may cause a great
damage. Since buggy software is notoriously responsible
for many system failures, it is an essential task to ana-
lyze/verify various properties of CPS software to guarantee
it conforms to the specification.

When analyzing/verifying many CPS software proper-
ties, it may be insufficient to only consider this software in
its high-level form, e.g. its source code. Often, we also need

The 5th Analytic Virtual Integration of Cyber-Physical Systems Workshop
December 2, 2014, Rome, Italy.
Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press.
AVICPS website:
http://www.analyticintegration.org/

to analyze/verify these properties in its low-level form, e.g.
its machine code, namely we need to take into account the
compilation that transforms the source code into the low-
level code and the interactions between the compiled soft-
ware and its underlying computational platform; otherwise,
even the high-level code is verified, compiler-induced bugs
or unexpected architectural limitations may still cause the
system to fail. For example, it is reported in [13] that ev-
ery tested compiler is found to be able to generate wrong
code silently; and a Patriot missile failed to intercept a Scud
missile in the Gulf War due to the precision error of time
calculation using a 24-bit fixed point register.

Value-set analysis (VSA) has been proposed to simul-
taneously perform numeric and pointer analyses on low-
level code [2], which can be used to analyze/verify various
control software properties (e.g. variable range and satura-
tion) and security vulnerabilities (e.g. buffer overflow and
side channels) for a specific platform. However, the original
work only targets at the Intel x86 instruction set architec-
ture (ISA). Thus, if we want to perform VSA on binaries
in other ISAs, we need to make changes repeatedly to take
into account the semantics of their instructions, which can
be a tedious and error-prone process.

While there is some uniqueness in different ISAs, many
instructions of an ISA have their counterparts in another
ISA, and they share a lot of similarities in their semantics.
Thus, if we can use an intermediate language to encode the
instructions of different ISAs capturing their computational
semantics, we can use one generic VSA program which an-
alyzes the translated binaries in this intermediate language,
instead of modifying the VSA programs to target at differ-
ent ISAs.

The main contributions of this paper are: (1) we ex-
tend the original strided-interval domain in order to pre-
vent huge over-approximation from happening in the case
of wrap-around computations; (2) we define several oper-
ations on the extended strided-interval domain which can
more precisely track the set of structured numbers; (3) we
use an Intermediate Static Analysis Language (iSAL) with
a straightforward concrete semantics to encode instructions
of different ISAs; (4) we define an abstract semantics for
the iSAL in the value-set abstract domain to facilitate any
VSA program writing; (5) we give an example to show the
feasibility of the generic VSA approach, which is to pre-
cisely resolve indirect branch target addresses.

The rest of the paper is organized as: Section 2 states the
related work; Section 3 briefly describes VSA and presents
the extension to the original strided-interval domain with
a set of operations; Section 4 introduces the syntax and
concrete semantics of iSAL and defines abstract semantics
with respect to VSA; Section 5 discusses some issues when
using iSAL to perform VSA; Section 6 presents an example
on resolving indirect branches and Section 7 concludes this
work.

2. Related Work
In order to realize generic analysis on low-level code of dif-
ferent architectures, semantically translating the low-level
code to a generic intermediate form becomes necessary. In-
termediate languages are actually often used in many com-
piler frameworks, like GCC and LLVM, to enable the sup-
port of different programming languages at the front end
and of different platforms at the back end.

In order to make it possible to develop analysis tools
and algorithms for generic security analysis on binary code,
an intermediate language called REIL is proposed in [7].
REIL has a very compact set of intermediate instructions
while being able to achieve semantic closure, but the trans-
lated code in REIL may have a very long representation.
Later in [11], an extension to REIL called RREIL is made
mainly with an addition of several comparison instructions
to take into account the relational information. Based on
RREIL, a toolkit called GDSL to specify semantics to ma-
chine languages is presented in [8].

In [5], a binary analysis platform (BAP) is introduced
which is a successor of Vine that is used in the BitBlaze
project [12]. Both BAP and Vine use a formally specified
intermediate language to enable generic static analysis. In
[3], a binary code analysis framework called BINCOA is
proposed that is based on a formal automaton model to
capture the low-level code semantics.

The original VSA is summarized in [2], and is used in a
tool called CodeSurfer/x86 for analyzing Intel x86 binary
code [1]. In order to achieve adaptable value analysis, in-
termediate representations are also used in [4]. Incremental
SAT solving is used to derive sets of values for registers
taking into account the relationship between registers and
status flags.

An approach that shares a lot of similarities with ours is
described in [10], in which the authors introduce a numer-
ical abstract domain called CLP (circular linear progres-
sion). Their CLP serves exactly the same purpose as our
ESI (extended strided-interval) domain, which is used to
precisely track a set of structured integers. Different from
their work, we focus on an intermediate language whose
abstract semantics is specified upon an abstract domain that
is constructed from ESI.

3. Value-Set Analysis
In this section, we first briefly recapitulate VSA, and then
we argue why it is necessary to extend the original strided-
interval domain, and redefine several operations on the
extended domain.

VSA combines numeric analysis and pointer analysis to-
gether, and its goal is to determine an over-approximation
of the set of numeric values and addresses at each program
point [2]. It is a flow-sensitive, context-sensitive, and inter-
procedural static analysis approach based on abstract inter-
pretation [6].

In order to avoid dependence on absolute memory ad-
dresses (since some of them may not be determined stati-
cally), the memory model in VSA consists of a set of sep-
arated memory regions, and each memory region is an ab-
stract memory space which corresponds to the set of all
concrete memory spaces with respect to specific run-time
properties, e.g. all the possible stack frames of a proce-
dure invocation are aggregated as a memory region. There
are three types of memory regions in VSA: the global-
region for statically allocated variables in the program,
local-regions for locally allocated variables in the run-time
stack, and heap-regions for dynamically allocated variables
in the heap. While there is only one global-region, there are
as many local-regions as procedures.

An abstract address in a memory region can be rep-
resented by a pair 〈memory-region, value〉, which cor-
responds to the set of all memory addresses a variable
can have. A global variable has a fixed address which can
be represented by 〈global-region, address〉, while a local
variable has a varying address but a fixed offset to the vary-
ing base address of the stack frame and its abstract address
can be represented by 〈local-region, offset〉.

The explicitly referenced variables in the source code
are accessed by using their addresses in the machine code,
VSA needs to recover the variables from low-level code,
and represent them by using abstract locations (a-locs). An
a-loc is a variable-like entity which may have an explicit
boundary (e.g. registers) or an implicit boundary (e.g. vari-
ables allocated in the memory).

Given an a-loc, the abstract state of VSA maps it to a
value-set. A value-set is a function that maps a memory
region to a strided-interval (SI). A strided-interval is an
abstract object used to represent a set of structured integers
with a fixed stride. A k-bit strided-interval s[l, u] where
−2k−1 ≤ l ≤ u ≤ 2k−1 − 1, 0 ≤ s ≤ 2k − 1 represents
the set {i|i = l+n× s ∧ n ≥ 0 ∧ i ≤ u}. Depending on
the type of the given memory region, the mapped strided-
interval has different semantics: if the memory region is the
global-region, the mapped strided-interval represent a set
of numeric values which are the values held by the a-loc
in some executions; otherwise, the mapped strided-interval
represent a set of offsets in the memory region, and each
〈memory-region, offset〉 pair is an abstract address with
respect to the memory region. For a given memory region,
the mapped strided-interval may be a ⊥ which means the
empty set of values. If the mapped strided-interval is a>, it
is the set of all the representable values 1[−2k−1, 2k−1−1].

3.1 Extension to Strided-Interval
The biggest problem of the original strided-interval repre-
sentation is that: if l is required to be less than or equal
to u (i.e. ∀s[l, u], l ≤ u), it loses the ability to precisely
track the set of numbers when some of the numbers in

the set lead to an overflow interpretation with respect to
two’s complement representation. For example, on a 16-
bit architecture, if a strided-interval 4[0x7FF0, 0x7FFC] is
added another interval 0[4, 4], according to the addition op-
eration defined in [9], the resultant strided-interval will be
1[0x8000, 0x7FFF], i.e. the > element in the SI domain.
Although the result is sound, basically it treats the upper
bound of the calculation as an overflow and let > safely
capture all possible values, it is not precise at all.

Actually, in the example the interval 4[0x7FF4, 0x8000]
would be a more precise and also sound result, in which l
represents a signed positive number 215 − 12 and u repre-
sents a signed negative number −215. Thus, a better deci-
sion is to get rid of the constraint l ≤ u so as to allow both
l and u to be any number of the range [−2k−1, 2k−1 − 1],
which induces our extended strided-interval (ESI) domain
similar to the CLP domain in [10]. Let γ denote the con-
cretization function mapping an extended strided-interval
s[l, u] ∈ ESI to a set of integers, and we have

γ(s[l, u]) ={
{i|i = l + n× s ∧ n ≥ 0 ∧ i ≤ u} if l ≤ u

{i|i = l + n× s ∧ n ≥ 0 ∧ i ≤ u+ 2k} otherwise

3.2 Operations on Extended Strided-Interval
There are six groups of operations on ESI, which are arith-
metic, shift, bit-wise, set, comparison, and truncation oper-
ations.

Let us assume the underlying platform is a n-bit archi-
tecture, and let maxu be the number 2n − 1, maxs be the
number 2n−1− 1, and mins be the number −2n−1. For an
arbitrary number x, n(x) gives the lowest n bits represen-
tation of x, and tz(x) gives the number of trailing zeros in
x’s representation.

In addition, let us define several functions that are used
in the operations: let sg(p, q, s) return the smallest number
that is greater than p and can be reached by q in multiple s
strides, and let gs(p, q, s) return the greatest number that is
smaller than p and can be reached by q in multiple s strides
(the computation wraps around in terms of n-bit).

Let dsiu(s[l, u]) give an ordered set of disjoint strided-
intervals, each of which represents a maximal sub-interval
with respect to unsigned integers. Depending on the s[l, u],
this set can be a singleton (e.g. dsiu(1[10, 20]) = {1[10, 20]}),
or has two members (e.g. dsiu(1[−2, 2]) = {1[0, 2], 1[maxu−
1,maxu]}). Let fst(dsiu(s[l, u])) give the first member in
this ordered set, and let snd(dsiu(s[l, u])) give the second
one if it exists, or ⊥ if the set is a singleton. Similarly,
let dsis(s[l, u]) give an ordered set of disjoint strided-
intervals, each of which represents a maximal sub-interval
with respect to signed integers.

Arithmetic Operations
For an addition operation s1[l1, u1]+

si s2[l2, u2], let us
assume s = gcd(s1, s2), l̂ = l1 + l2, and û = u1 + u2

without overflow, i.e. l̂ and û have enough bits to contain
the sums. From now on, let us assume all the arithmetic

operations on numeric values will not induce overflow.

s1[l1, u1] +
si s2[l2, u2] =

s[n(l̂), n(û)] if û− l̂ < 2n

s[sg(mins, l̂, s), gs(maxs, û, s)] else if s = 2m

1[mins,maxs] otherwise

For a negation operation −sis1[l1, u1], since ESI allows
l1 > u1, we can easily have

−sis1[l1, u1] = s1[−u1,−l1]

which is simpler but more precise than the negation opera-
tion for the original strided-interval defined in [9]. Thus, for
a subtraction operation s1[l1, u1]−si s2[l2, u2], we have

s1[l1, u1]−si s2[l2, u2] = s1[l1, u1] +
si (−sis2[l2, u2])

For an unsigned multiplication operation s1[l1, u1]×si
u

s2[l2, u2], we have produ defined as

produ = {p|∃sx[lx, ux] ∈ dsiu(s1[l1, u1]),

sy[ly, uy] ∈ dsiu(s2[l2, u2]) : p = lx × ly ∨ p = ux × uy}

Let l̂1 be the lower bound of fst(dsiu(s1[l1, u1])) and let
l̂2 be the lower bound of fst(dsiu(s2[l2, u2])). We have

ŝ1 = gcd(s1 × s2, l̂1 × s2, l̂2 × s1)

ŝ2 = gcd(ŝ1, l̂1 × 2n, s1 × 2n)

ŝ3 = gcd(ŝ1, l̂2 × 2n, s2 × 2n)

ŝ4 = 2tz(gcd(ŝ2,ŝ3))

ŝ =

ŝ1 if |dsiu(s1[l1, u1])| = 1 ∧ |dsiu(s2[l2, u2])| = 1

ŝ2 if |dsiu(s1[l1, u1])| = 1 ∧ |dsiu(s2[l2, u2])| = 2

ŝ3 if |dsiu(s1[l1, u1])| = 2 ∧ |dsiu(s2[l2, u2])| = 1

ŝ4 if |dsiu(s1[l1, u1])| = 2 ∧ |dsiu(s2[l2, u2])| = 2

Since the product of two n-bit numbers should be contained
in 2n-bit, we have the multiplication operation to generate
two ESIs: the first ESI corresponds to the high n-bit of
the product, and the second one corresponds to the low n-
bit of the product. Let pmin = min(produ), and pmax =
max(produ). We have

s1[l1, u1]×si
u s2[l2, u2] = 〈1[b

pmin

2n
c, bpmax

2n
c], ŝ[l̂, û]〉

where [l̂, û] ={
[n(pmin), n(pmax)] if pmax − pmin ≤ maxu

[sg(0, 2tz(ŝ), ŝ),maxu] otherwise

The signed multiplication operation s1[l1, u1]×si
s s2[l2, u2]

is similar but makes use of dsis instead of dsiu.
For an unsigned division operation s1[l1, u1]÷si

u s2[l2, u2],
we have quotu defined as

quotu = {q|∃sx[lx, ux] ∈ dsiu(s1[l1, u1]),

sy[ly, uy] ∈ dsiu(s2[l2, u2]) : q = b lx
uy
c ∨ q = bux

ly
c}

Let l̂2 be the lower bound of fst(dsiu(s2[l2, u2])), and let
q̂ = b s1

l̂2
c and r̂ = s1

l̂2
− q̂. We have

ŝ =

q̂ if |γ(s1[l1, u1])| = 1 ∧ r̂ = 0 ∧

|dsiu(s1[l1, u1])| = 1 ∧ q̂ = 2m

1 otherwise

s1[l1, u1]÷si
u s2[l2, u2] = ŝ[min(quotu),max(quotu)]

For an signed division operation s1[l1, u1] ÷si
s s2[l2, u2],

it is similar but makes use of dsis instead of dsiu, and the
corresponding quots also contains q that is either q = b lxly c
or q = bux

uy
c.

Shift Operations
Since a shift operation on a value (left or right, logical

or arithmetic, but not circular) makes no difference when
the numbers of bits to shift are greater than n, we define
shn(s[l, u]) as

shn(s[l, u]) = {x|0 ≤ x ≤ n ∧ x ∈ γ(s[l, u])}

to give the set of numbers by which the shift operations
are performed usefully. For a logical/arithmetic left-shift
operation s1[l1, u1] �si s2[l2, u2], we extract the useful
sub-interval from s2[l2, u2] for the operation:

xmin = min(shn(s2[l2, u2]))

xmax = max(shn(s2[l2, u2]))

ŝ2[l̂2, û2] = (2xmin × (2s2 − 1))[2xmin , 2xmax]

s1[l1, u1]�si s2[l2, u2] = snd(s1[l1, u1]×si
s ŝ2[l̂2, û2])

For a logical right-shift operation s1[l1, u1]�si
l s2[l2, u2],

it is similar but the result is the quotient of s1[l1, u1] ÷si
u

ŝ2[l̂2, û2].
For an arithmetic right-shift operation s1[l1, u1] �si

a

s2[l2, u2], it is also similar but the result is the quotient of
s1[l1, u1]÷si

s ŝ2[l̂2, û2]. Different from logically shifting, an
arithmetic right-shift operation needs to fill in the sign bit
of the shifted number. In the case of |shn(s2[l2, u2])| = 0∧
|γ(s2[l2, u2])| 6= 0, it means every number in γ(s2[l2, u2])
is greater than n. Thus, we also have

if |shn(s2[l2, u2])| = 0 ∧ |γ(s2[l2, u2])| 6= 0

s1[l1, u1]�si
a s2[l2, u2] =

0[−1,−1] if ∀y ∈ γ(s1[l1, u1]) : y < 0

0[0, 0] if ∀y ∈ γ(s1[l1, u1]) : y ≥ 0

1[−1, 0] otherwise

Bit-Wise Operations
Since the bit-wise not operation ∼si s1[l1, u1], the bit-

wise or operation s1[l1, u1] |sis2[l2, u2], the bit-wise and
s1[l1, u1] &sis2[l2, u2], and the bit-wise xor operation
s1[l1, u1] ⊕si s2[l2, u2] are similar to the corresponding
one defined in [9], we will not state them here.

Set Operations

For a set union operation s1[l1, u1] ∪ s2[l2, u2], let ŝ =
gcd(s1, s2), and let us define four boolean variables: b1 =
l2 ∈ γ(ŝ[l1, u1]), b2 = u2 ∈ γ(ŝ[l1, u1]), b3 = l1 ∈
γ(ŝ[l2, u2]), and b4 = u1 ∈ γ(ŝ[l2, u2]). We have

s1[l1, u1] ∪ s2[l2, u2] =

ŝ[la, ua] if b1 ∧ b2 ∧ b3 ∧ b4

ŝ[l1, u1] else if b1 ∧ b2

ŝ[l2, u2] else if b3 ∧ b4

ŝ[l1, u2] else if b1 ∧ b4

ŝ[l2, u1] else if b2 ∧ b3

ŝb[lb, ub] otherwise

where [la, ua] ={
[l1, u1] if l1 = l2 ∧ u1 = u2

[sg(mins, l1, ŝ), gs(maxs, u1, ŝ)] otherwise

and the computation of ŝb[lb, ub] is similar to the set union
operation given in [10]. The set intersection operation
s1[l1, u1] ∩si s2[l2, u2] and the set complement operation
s1[l1, u1]\sis2[l2, u2] are similar to the ones defined in [10]
and are not described due to the space limitation.

Comparison and Truncation Operations
For a comparison operation s1[l1, u1]Rs2[l2, u2], where

R is a relational operator, we compare the ranges of the
members of dsiu|s(s1[l1, u1]) and dsiu|s(s2[l2, u2]). If the
operation is to compare unsigned numbers, we use dsiu;
otherwise we use dsis.

For a truncation operation s1[l1, u1] ↓si s2[l2, u2], we
assume s2[l2, u2] give the set of numbers of bits kept in
the truncated value. In order to be meaningful, the number
of kept bits given by s2[l2, u2] should be smaller than n;
otherwise the original number will not be truncated. We
borrow shn(s2[l2, u2]) from the shift operations defined
above. Given a number x < n, let us define trun(s[l, u], x)
as

trun(s[l, u], x) =
0[l&(2x − 1), u&(2x − 1)] if l = u

s[l, u] if ∀y ∈ γ(s[l, u]) : y&2x = 0

1[0, 2x − 1] otherwise

and we have

s1[l1, u1] ↓si s2[l2, u2] =
⋃

x∈shn(s2[l2,u2])

trun(s1[l1, u1], x)

4. Intermediate Static Analysis Language
(iSAL) with Value-Set Analysis Semantics

The iSAL consists of 25 intermediate instructions which
are used to encode the semantics of instructions of different
ISAs. These instructions are selected between trade-offs in
expressivity and compactness (namely, some instructions
may be redundant since they can be represented by a com-
bination of others, but their presence makes the translation
much easier).

4.1 Syntax and Concrete Semantics
From Tab. 1, we can observe that most of the intermediate
instructions have three operands (only two of them have
two operands, i.e. not and brc). In the table, we use r to
restrict the operand to be a register, and use f to represent
the operand is a status flag. There are no restrictions on s
and t, namely, each of them can be either a register or an
immediate number.

The first 10 instructions are arithmetic instructions. For
an arithmetic operation ∗, let ∗m denote the result of this
operation is in m-bit. Therefore, if the result needs more
than m bits to represent, there is a potential overflow. Two
functions, hi and lo, are defined as using the high m

2 bits
and the low m

2 bits of a m-bit number respectively. Further-
more, we use ∗u to denote the operation treat the operands
as unsigned numbers and use ∗s to denote the operation
treat the operands as signed numbers.

The next 3 instructions are about shift operations. For
the left-shift operation,�n

0 means the result is confined in
n bits (discarding the bits higher than n) and 0 is shifted in
from the right to the left, namely, the operation is the logical
left-shift. For the right-shift operations, �0 is the logical
right-shift operation which shifts 0 in from the left to the
right and �msb(s) is the arithmetic right-shift operation
which shifts the sign bit of s in (i.e. the most significant
bit of s given by the function msb).

We have 4 instructions for bit-wise operations, although
we can just include not and or instructions and deduce and
and xor instructions by De Morgan laws. Thus, there is a
trade-off between compactness and expressivity.

The next 5 comparison instructions are used to check the
relations between two operands. As the arithmetic instruc-
tions, they distinguish between signed and unsigned com-
parisons. If the designated relation is met, the first status
flag operand will be set; otherwise, the flag will be cleared.

ld and st are the only two instructions to operate mem-
ory. The second operand s gives the load/store size in bytes
and the third operand t gives the base address of the mem-
ory operation. Given an address range, the mem function
returns the corresponding collection of memory cells.

The sequential control flow can only be changed by the
conditional branch instruction, i.e. brc instruction. The un-
conditional branches instructions can be modeled by set-
ting the first status flag operand as always-set.

Translation from a binary executable B in some ISA into
the corresponding programBT in iSAL can be achieved au-
tomatically provided the mapping of instructions is avail-
able. The encoded mapping captures the semantics of the
instructions of the ISA using the iSAL.

The concrete semantics of a binary executable program
(and its translated intermediate program) considers every
possible execution path in all possible environments. It may
be an infinite mathematical object which is not computable.
In order to make the analysis tractable, some form of over-
approximation is needed. Abstract interpretation [6] is pro-
posed to formalize the notion of over-approximation in
a unified framework. Based on abstract interpretation, an

Table 1. Syntax and Concrete Semantics of 25 Intermedi-
ate Instructions

Instruction Concrete Semantics
add r, s, t r := s+n t
sub r, s, t r := s−n t

muluhi r, s, t r := hi(s×2n
u t)

mululo r, s, t r := lo(s×2n
u t)

mulshi r, s, t r := hi(s×2n
s t)

mulslo r, s, t r := lo(s×2n
s t)

divu r, s, t r := s÷u t
divs r, s, t r := s÷s t

modu r, s, t r := s mod u t
mods r, s, t r := s mod s t

shl r, s, t r := s�n
0 t

shrl r, s, t r := s�0 t
shra r, s, t r := s�msb(s) t
and r, s, t r := s & t
or r, s, t r := s | t
not r, s r := ∼ s

xor r, s, t r := s⊕ t
cmpeq f, s, t if s = t then set(f) else clr(f)
cmpleu f, s, t if s ≤u t then set(f) else clr(f)
cmples f, s, t if s ≤s t then set(f) else clr(f)
cmpltu f, s, t if s <u t then set(f) else clr(f)
cmplts f, s, t if s <s t then set(f) else clr(f)

ld r, s, t r := mem(t, t+ s)
st r, s, t mem(t, t+ s) := r
brc f, t if isset(f) then goto(t)

analysis like VSA can be used to verify the properties of
CPS software.

4.1.1 Abstract Domains for VSA
Following the original work of VSA (which is summarized
in [2] and has been briefly described in Section 3), we
define several abstract domains that are used in VSA.

In our virtual iSAL architecture, in addition to the reg-
isters in the encoded ISA, temporary registers can be de-
clared and used in order to keep intermediate values in the
process of an instruction execution. There can be as many
temporary registers as needed. Let NormLoc denote the
set of ordinary a-locs corresponding to target ISA regis-
ters, global variables, and local variables, let FlagLoc de-
note the set of a-locs corresponding to status flags used in
the encoding, and let TempLoc denote the set of tempo-
rary a-locs corresponding to the declared temporary reg-
isters and other entities which hold temporary values. We
have AbsLoc defined as

AbsLoc = NormLoc ∪ FlagLoc ∪ TempLoc

Let MemRgn denote the set of all the memory regions,
which include the single global-region and all the local-
regions (since CPS software seldom use dynamic memory
allocation, usually we can ignore heap-regions), and let V S
denote the set of all the value-sets. Thus, we have

V S = MemRgn→ ESI⊥

where ESI⊥ is the lifted extended strided-interval domain,
i.e. ESI⊥ = ESI ∪{⊥}. Thus, there is a special value-set
vs⊥ ∈ V S such that ∀mr ∈ MemRgn : [mr 7→ ⊥]. We
also have another special value-set vs> ∈ V S such that
∀mr ∈MemRgn : [mr 7→ >].

Let B3 denote the Kleene three-valued logic domain,
i.e. B3 = {TRUE ,FALSE ,UNKOWN }. Let gr denote
the global-region. Given a b ∈ B3, we define an auxiliary
function bvs : B3 → V S as

bvs(b) =

vs⊥[gr 7→ 0[1, 1]] if b = TRUE

vs⊥[gr 7→ 0[0, 0]] if b = FALSE

vs⊥[gr 7→ 1[0, 1]] otherwise

1

Also, let us define vsb : V S → B3 as the inverse operation
of bvs. In order to facilitate specifying the abstract seman-
tics for the comparison instructions, we define a product
domain FS as

FS = V S ×AbsLoc× V S × V S

Given a fs ∈ FS, the first component of fs (denoted as
fs〈1〉) is the answer of function bvs applied to the result
of a comparison, the second component (fs〈2〉) is the a-
loc of the second operand in a comparison instruction, the
third component (fs〈3〉) is the partition of the value-set
mapped from fs〈2〉 that makes the comparison TRUE ,
and the last component (fs〈4〉) is the partition that makes
the comparison FALSE .

An abstract state of VSA maps an a-loc a ∈ AbsLoc to
a vs ∈ V S if a ∈ NormLoc∪TempLoc, or to a fs ∈ FS
if a ∈ FlagLoc. Let State denote the set of all the abstract
states of VSA. We have

State = AbsLoc→ V S ∪ FS

Since the translation for a given binary executable pro-
gram is has a finite length and the target architecture has a
fixed word size, all the domains described above are finite.

4.1.2 Abstract Semantics for VSA
Each intermediate instruction in the iSAL has an abstract
semantic function for VSA which transforms an abstract
state to another state(s). Let IInst denote the set of all
the 25 intermediate instructions. Formally, we have this
semantic mapping function

sm : IInst → (State→ State+)

which assigns each intermediate instruction an abstract se-
mantic function on State. Let us also define an auxiliary
function

al : IInst × {1, 2, 3} → AbsLoc

that maps the ith operand of an intermediate instruction to
its corresponding a-loc. For a two-operand instruction χ,
i.e. not or brc instruction, let al(χ, 3) give ε ∈ TempLoc
such that ∀σ ∈ State : σ(ε) = vs⊥.

1 Given a function f : A → B, let f [x 7→ y] mean f(x) = y and
∀a ∈ A ∧ a 6= x : f(a) = f(a)

Let ASB ⊂ IInst denote the set of intermediate in-
structions in the first three groups (i.e. the arithmetic, shift,
and bit-wise instructions). Given an instruction α ∈ ASB
and an abstract state σ ∈ State, we have

sm(α)(σ) ={
σ[al(α, 1) 7→ op(α)vsσ(al(α, 2))] if al(α, 3) = ε

σ[al(α, 1) 7→ σ(al(α, 2))op(α)vsσ(al(α, 3))] otherwise

where op(α) gives the corresponding operation the instruc-
tion semantically performing, and op(α)vs denotes the op-
eration is performed on V S domain. The operations on V S
domain are based on the operations on strided-interval do-
main (ESI domain in our case), which are defined in [9].

Let CMP ⊂ IInst denote the set of comparison in-
structions. Given an instruction β ∈ CMP and an abstract
state σ ∈ State, we have

sm(β)(σ) = σ[al(β, 1) 7→ fs] where

fs〈1〉 = bvs(al(β, 2)op(β)vsal(β, 3))∧
fs〈2〉 = al(β, 2)∧

fs〈3〉(op(β)vs)−1σ(al(β, 3)) = FALSE∧
fs〈4〉op(β)vsσ(al(β, 3)) = FALSE

where (op(β)vs)−1 gives the inverse relational operation
of op(β)vs. The reason of using inverse operation is: in
the case of the comparison giving TRUE/FALSE instead
of UNKNOWN , fs〈4〉/fs〈3〉 is vs⊥ and we assume a
relational operation on vs⊥ always gives FALSE . In terms
of comparing two value-sets, we only compare them if they
have the same V S type – either V Sglobal (i.e. having all the
memory regions mapped to⊥ except for the global-region)
or V Ssingle with the same valid memory region mr (i.e.
having all the memory regions mapped to ⊥ except for the
mr); otherwise, the comparison gives UNKNOWN , and
both fs〈3〉 and fs〈4〉 are set as σ(al(β, 2)).

Let η be either a ld or a st instruction, which uses the
second operand to specify the load/store size. Since there
is barely an architecture that has a varying size in a specific
load/store instruction, we can assume vs2 = σ(al(η, 2)) ∈
V Sglobal and vs2(gr) = 0[w,w] where σ ∈ State and w
is a valid size value that can be loaded/stored in the target
architecture. η also uses the third operand to specify the
base memory address, which can be an address of a static
object, or an address of an object that is allocated in stack.
For a vs ∈ V S, let us define a function rg : V S →
MemRgn such that rg(vs) gives the global-region if vs ∈
V Sglobal; otherwise rg(vs) gives the local-region of the
procedure that is under analysis. Let vs3 = σ(al(η, 3)),
and let Addr be the set of a-locs that are constructed from
w, rg(vs3) and γ(vs3(rg(vs3))). Let←−η be a ld instruction.
We have

sm(←−η)(σ) = σ[al(←−η , 1) 7→ tvsd∈Addrσ(d)]

where tvs is the join operation on V S which is to memory
region-wisely join extended strided-intervals.

In terms of storing, there may be some a-locs overlap-
ping with the a-loc(s) being modified by a store instruction.

Let Ovlp be the set of a-locs that are overlapping with the
a-loc(s) being modified by a st instruction −→η . We have

sm(−→η)(σ) = σ

[
∀d ∈ Addr : d 7→ σ(al(−→η , 1)),
∀o ∈ Ovlp : o 7→ vs>

]
A brc instruction δ denotes the end of the current basic

block. It is the only way to change the control flow and fork
the current state σ depending on fs = σ(al(δ, 1)). We have

sm(δ)(σ) =
〈σ[fs〈2〉 7→ fs〈3〉], σ⊥〉 if vsb(fs〈1〉) = TRUE

〈σ⊥, σ[fs〈2〉 7→ fs〈4〉]〉 if vsb(fs〈1〉) = FALSE

〈σ[fs〈2〉 7→ fs〈3〉], σ[fs〈2〉 7→ fs〈4〉]〉 otherwise

where σ⊥ means ∀a ∈ NormLoc ∪ TempLoc : σ(a) =
vs⊥ ∧ ∀f ∈ FlagLoc : σ(f) = fs⊥. Therefore, a brc
instruction partitions the σ into two ordered parts: the first
true part is for the branch taken execution and the second
false part is for the fall-through execution.

5. Value-Set Analysis on Translated
Programs

VSA on the translated program in iSAL intends to derive
the fixed-points of the abstract states of each program point
using iterations. In each iteration, we update the abstract
states according to the abstract semantics described above.

5.1 Handling Delay Slots
Several architectures (e.g. MIPS) use delay slots to com-
pensate the performance loss when dealing with condi-
tional branches.

Since the brc instruction intends to mean the end of a
basic block and partitions the σ ∈ State into a true part and
a fall-through part, any intermediate instruction following
a brc instruction will not change the value-sets of the true
partition. However, in the presence of delay slots, this does
not conform to the original code’s semantics.

Fortunately, the instructions in the delay slots are ar-
ranged by the compiler which does not allow any of the
instructions in the delay slots to have a dependency with
the associated conditional branch. Thus, when we perform
VSA on a basic block, if the last few instructions are used
as delay slots, we can rearrange the order of the analysis
by processing them before the corresponding conditional
branch.

5.2 Join Function
A join semantic function is needed to combine the incom-
ing abstract states when a basic block has more than one
predecessors in the control flow graph (CFG). Given two
abstract states σ1 ∈ State and σ2 ∈ State, we have the
join function join : State× State→ State defined as

join(σ1, σ2) =

 ∀a ∈ NormLoc : a 7→ σ1(a) tvs σ2(a),
∀b ∈ TempLoc : b 7→ vs⊥,
∀f ∈ FlagLoc : f 7→ σ1(f) tfs σ2(f)

where tfs is the join operation on FS domain. Given a
fs1 ∈ FS and a fs2 ∈ FS, we define tfs as

fs1 tfs fs2 =
〈bvs(UNKNOWN), ε, vs⊥, vs⊥〉 if fs1〈2〉 6= fs2〈2〉
〈fs1〈1〉 tvs fs2〈1〉, fs1〈2〉, otherwise

fs1〈3〉 tvs fs2〈3〉, fs1〈4〉 tvs fs2〈4〉〉

When joining two abstract states, we discard the value-set
information of temporary a-locs, since the information is
not used in the new basic block. If a basic block has more
than two predecessors, a successive joining is performed,
i.e. join(σn, join(. . . join(σ1, σ2))). Moreover, if a pre-
decessor ends with a brc instruction, depending on whether
the new basic block is the target of that brc instruction, the
true/false part of the resultant states is used.

5.3 Handling Input Dependent Value-Sets
When analyzing a program that has input dependent vari-
ables, for the sake of safety, these variables are supposed
to be any possible numbers. In the context of VSA, an ab-
stract state maps an a-loc corresponding to such an input
dependent variable to vs>. Since the result of an operation
on a vs> is also a vs>, the propagation of vs> will make
the analysis imprecise or even useless.

In order to improve the precision of analysis, we keep
track of the operations on vs> until a brc instruction is met.
Since the brc instruction partitions the state into two parts
depending on some previous comparison, in each part, we
use the information discovered by the comparison to refine
the vs> propagation chain. In the current work, we only
keep track of the chains of linear operations so as to reduce
the complexity.

6. Example – Handling Indirect Branches
As model-based control design tools become mature like
Simulink, a large part of control software is designed by
using formal specifications like finite-state machine (FSM)
or state chart, and its C code is generated by using a code
generator like Simulink Coder. Usually, the code generator
opts for using switch statements to implement the transi-
tions between states.

However, the compilers often implement switch state-
ments by using indirect branches, whose presence makes
reconstructing a whole CFG from a binary very challeng-
ing. Since a typically static analysis is performed on the ex-
tracted CFG, how to precisely resolve the target addresses
of these indirect branches becomes essential.

As an example, we encode most of the instructions of
MIPS ISA (without considering floating-point, coproces-
sor, and exception instructions) using the iSAL, and show
VSA can precisely resolve the indirect branch instructions
when reconstructing the CFG.

As shown in Fig. 1, the code has an input dependent
variable x, and the switch statement relies on the value of
the input. At the address 0x4002bc, the brc intermediate in-
struction in the beqz MIPS instruction can determine: when
v1 ≥ 6, v0 is 0 and the branch will be taken; otherwise, the

Figure 1. A C Code Snippet with switch Statements and
Compiled MIPS Code

control falls through. Thus, the partitioned true part of the
state has v1 ≥ 6 and the false part has 0 ≤ v1 ≤ 5. How-
ever, since the value of x is stored in a local variable whose
address is given as (s8+12) in the binary code where s8 has
already been set equal to sp (stack pointer register), we also
need to handle the value-set mapped from the a-loc corre-
sponding to (s8+12) in the true and false parts partitioned
by brc, whereas the value of v0 at the address 0x4002c4
will still be any possible number as x.

From v0 at the address 0x4002d4, we can observe that
it can have 6 values ranging from 0x45bcd0 to 0x45bce4,
each of which is separated by 4. These 6 values are exact
data addresses where the indirect branch target addresses
are stored. However, since the target addresses stored at
these 6 data addresses are not regularly structured, after the
lw instruction at the address 0x4002d8, v0 will have an ex-
tended strided-interval 4[0x4002e4, 0x40032c] which cor-
responds to 19 values. In order to remove this imprecision,
we can derive the use-definition chain for the branch target
register, and the target addresses are given by the right hand
side of the definitions.

7. Conclusion and Future Work
In this paper, we extend the original strided-interval domain
to more precisely track the set of structured numbers, and
also define the operations on this extended strided-interval
domain. We present the syntax and concrete semantics of
the iSAL, which can be used to encode the instructions of
different ISAs. In order to achieve generic VSA, we define
the abstract semantics for the intermediate language, and
discuss how to use it in VSA. We also show an example on
using the approach to reconstruct the CFG in the presence
of indirect branches.

In the future, we want to try the approach on more
architectures, including ARM and PowerPC, and also want
to extend iSAL with more static analysis methods.

Acknowledgments
This work is supported in part by the National Science
Foundation under Award CNS-1035655.

References
[1] Gogul Balakrishnan, Radu Gruian, Thomas Reps, and Tim

Teitelbaum. Codesurfer/x86 – a platform for analyzing x86
executables. In Proceedings of CC ’05, pages 250–254,
2005.

[2] Gogul Balakrishnan and Thomas Reps. Wysinwyx: What
you see is not what you execute. ACM Trans. Program.
Lang. Syst., 32(6):23:1–23:84, August 2010.

[3] Sébastien Bardin, Philippe Herrmann, Jérôme Leroux,
Olivier Ly, Renaud Tabary, and Aymeric Vincent. The
bincoa framework for binary code analysis. In Proceedings
of CAV’11, pages 165–170, 2011.

[4] Jörg Brauer, René Rydhof Hansen, Stefan Kowalewski,
Kim G. Larsen, and Mads Chr. Olesen. Adaptable Value-
Set Analysis for Low-Level Code. In 6th International
Workshop on Systems Software Verification, volume 24 of
OpenAccess Series in Informatics (OASIcs), pages 32–43,
2012.

[5] David Brumley, Ivan Jager, Thanassis Avgerinos, and
Edward J. Schwartz. Bap: A binary analysis platform.
In Proceedings of CAV’11, pages 463–469, 2011.

[6] Patrick Cousot and Radhia Cousot. Abstract interpretation:
A unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In Proceedings
of POPL ’77, pages 238–252, 1977.

[7] Thomas Dullien and Sebastian Porst. Reil: A platform-
independent intermediate representation of disassembled
code for static code analysis. Proceeding of CanSecWest,
2009.

[8] Julian Kranz, Alexander Sepp, and Axel Simon. Gdsl: A
universal toolkit for giving semantics to machine language.
In Chung-chieh Shan, editor, Programming Languages
and Systems, volume 8301 of Lecture Notes in Computer
Science, pages 209–216. Springer International Publishing,
2013.

[9] Thomas Reps, Gogul Balakrishnan, and Junghee Lim.
Intermediate-representation recovery from low-level code.
In Proceedings of the 2006 ACM SIGPLAN Symposium
on Partial Evaluation and Semantics-based Program
Manipulation, PEPM ’06, pages 100–111, 2006.

[10] Rathijit Sen and Y. N. Srikant. Executable analysis using
abstract interpretation with circular linear progressions. In
Proceedings of MEMOCODE ’07, pages 39–48, 2007.

[11] Alexander Sepp, Bogdan Mihaila, and Axel Simon. Precise
static analysis of binaries by extracting relational informa-
tion. In Proceedings of WCRE ’11, pages 357–366, 2011.

[12] Dawn Song, David Brumley, Heng Yin, Juan Caballero,
Ivan Jager, Min Gyung Kang, Zhenkai Liang, James
Newsome, Pongsin Poosankam, and Prateek Saxena.
Bitblaze: A new approach to computer security via binary
analysis. In Proceedings of ICISS ’08, pages 1–25, 2008.

[13] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr.
Finding and understanding bugs in c compilers. In
Proceedings of PLDI ’11, pages 283–294, 2011.

