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Abstract—Assigning behavioral semantics to domain-specific
languages (DSLs) opens the door for the application of formal
methods, yet is largely an unresolved problem. Previously
proposed solutions include semantic anchoring, in which a
transformation from the DSL to an external framework
that can supply both behavioral semantics and apply formal
methods is constructed. The drawback of this approach is
that it loses the structural constraints of the original DSL
along with the details of the transformation, which can lead
to erroneous results when formal methods are applied. We
demonstrate this problem of “forgetful” semantic anchoring
using existing approaches through a translation from dataflow
systems to interface automata. We then describe our modeling
tool FORMULA and apply it to the same example, showing how
forgetful semantic anchoring can be avoided.
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I. INTRODUCTION

Model-based development (MBD) is a methodology
for engineering complex software systems through formal
and composable abstractions. Many versions of MBD ex-
pose abstractions using domain-specific modeling languages
(DSMLs) (or domain-specific languages (DSLs) for short).
In this case, a model is a description expressed through
the abstract syntax of one or more DSLs. This approach
requires each DSL to provide (1) a structural semantics
for representing models and rejecting erroneous instances
of DSL syntax, (2) a behavioral semantics for relating
models to traces, runs, or other descriptions of dynamics.
A major benefit of this approach is the ability to define
abstractions that appear drastically different from each other,
while reusing a common set of behavioral semantics and
formal methods. For example, labeled-transition systems
(LTSs), interface automata, and petri nets are all well-
studied low-level abstractions with rich formal methods.
These frameworks are commonly used to assign behavioral
semantics to DSLs, and their formal methods are used to
deduce properties of models.

The DSL approach does require effort to reuse behavioral
semantics. The most common technique, called semantic
anchoring, employs a model transformation τ to translate
models from DSL DX without behavioral semantics into

DSL DY with behavioral semantics. The pair (τ,DY )
then provides DX with behavioral semantics; DY is called
the semantic unit. Presumably, once a model is translated
into a semantic unit, then formal methods for DY can be
applied. However, the applicability of analysis/verification
techniques relies on a crucial assumption:

The Assumption of Forgetfulness: The formal methods
of the semantic unit DY can be applied to models of DX

without considering the structural semantics of DX or the
details of the anchoring transformation τ .

In other words, we can forget how a model is translated; only
the result of the transformation matters. We use the term
forgetful semantic anchoring to refer to semantic anchoring
frameworks relying on this assumption.

In this paper we show that the assumption of forgetfulness
does not hold in general. We provide an example where
a class of dataflow systems is transformationally anchored
to interface automata, but formal methods of interface au-
tomata yield erroneous results w.r.t the dataflow models.
This phenomenon occurs because key constraints on the
dataflow systems are lost in translation. Forgetting these
constraints results in a decision problem which is so under-
constrained that its solution is no longer useful. Our example
reflects the constraints found in dataflow-based synchronous
languages, e.g. Lustre and Signal [1], and the translations
from these languages to automata-based formalisms [2]. We
then discuss the reasons why semantic anchoring without
the assumption of forgetfulness is non-trivial and briefly
describe our modeling tool, FORMULA, and its mechanisms
for performing semantic anchoring without forgetting con-
straints.

II. RELATED WORK

The term semantic anchoring was introduced in [3] and
composition of semantic units were explored in [4]. In this
work, the Model Integrated Computing (MIC) [5] framework
was used: DSL structural semantics were specified with the
MetaGME [6] metamodeling language and model transfor-
mations were specified using the GREaT [7] transformation



language. Semantic units, such as low-level LTS and au-
tomata formalisms, were bootstrapped with abstract state
machines (ASMs) [8]. All DSLs were eventually reduced
to ASMs. Formal methods on ASMs include explicit state
enumeration, symbolic execution, and bounded symbolic
model checking.

Similarly, the Atlas Model Management Architecture
(AMMA) [9] also uses ASMs to define the behavioral
semantics of DSLs. In this case, the OMG’s meta-object
facility (MOF) [10] serves as the metamodeling language
and the Atlas Transformation Language (ATL) is used for
model transformations. Note that ATL also reflects the
OMG’s QVT standard. AMMA exposes a built-in ASM DSL
to make bootstrapping to ASMs simpler. These tools are
built on top of the Eclipse Modeling Framework (EMF).

Translating between formalisms has been studied in the
context of logic [11]. In this work, the component(s) of one
logic, such as a proof theory, can be transferred to another
logic via suitable maps that rely on limited features of the
two logics involved. Concurrency theory also deals with such
mappings and the properties they preserve.

In addition to ASMs, other theorem provers, including
Alloy [12], B [13], and Z [14] have been used to evaluate
properties of modeling artifacts for different purposes. How-
ever, the automatic conversion of metamodeling constraints
into theorem provers has remained an open problem. (These
constraints are usually expressed in OCL [15].) In this sense,
much of the existing literature describes (partially) forgetful
semantic anchoring approaches.

III. CASE STUDY: SDF TO INTERFACE AUTOMATA

In this section we show an example of semantic anchoring
where global structural constraints are lost in translation. The
DSL to be anchored, called synchronous dataflow (SDF), is
used to model systems with the following properties:

1) Dataflow: A system is an interconnection of dataflow
operators and FIFO buffers.

2) Synchronous: The duration of computation is effec-
tively zero with respect to the arrival rate of input
events.

3) Homogeneous, Rate 1: A dataflow operator fires if a
data token is available on every input buffer. After-
words, a token is enqueued on every output buffer.

This is a simplification of both the dataflow-based syn-
chronous languages [1] and the full SDF abstraction [16],
which may be multi-rate and have data-dependent firing
conditions. The process of translating dataflow formalisms
to automata formalisms (and vice-versa) has been studied
extensively [2]; we adapt them for purposes of illustration.

A. Homogeneous Synchronous Dataflow

Formally, an SDF system is a structure DF =
〈N,P,C, in, out, d〉 where:

1) N is the set of nodes (dataflow operators).

2) P is a set of communication ports.
3) in : N → 2P is a function from nodes to sets of ports;

in(n) designates the input ports of node n.
4) out : N → 2P is a function from nodes to sets of

ports; out(n) designates the output ports of node n.
5) C ⊆ out(N) × in(N) is a set of directed communi-

cation channels. A channel is directed from an output
to an input.

6) d : C → N is a mapping from channels to non-
negative integers; d(c) is called the delay of channel
c.

The top of Figure 1 shows a small dataflow system con-
sisting of two dataflow operators X and Y. Node X has one
output port A connected to the input port E of Y. (Therefore,
in(X) = out(Y) = ∅, out(X) = {A}, in(Y) = {E}).

The delay of a channel indicates the size of the un-
derlying communication buffer. A zero-delay channel is
an instantaneous data-dependency. The instant one node
writes to a channel another node removes the token from
the channel. Zero-delay channels cause readers to block
until data becomes available. Channels with non-zero delay
remember the last values d that passed through the channel.
Reading nodes can read these channels at any time and
writers can write them at any time with no chance of
communication deadlock. We follow tradition by indicating
zero-delay channels with solid lines and delay channels with
dashed lines.

Dataflow systems use ports and channels to restrict com-
munication between two sources. This requires a global
constraint on port names:

∀n, n′ ∈ N,

 in(n) ∩ out(n′) = ∅ ∧
in(n) ∩ in(n′) 6= ∅ ⇒ n = n′ ∧
out(n) ∩ out(n′) 6= ∅ ⇒ n = n′

(1)

Most synchronous languages impose the global constraint
that every communication cycle must contain at least one
delay edge to prevent deadlock [17].

∀H ∈ cycles(DF )
∑
c∈H

delay(c) > 0. (2)

B. The Interface Automata Semantic Unit

We follow previous semantic anchoring work by assum-
ing a translation onto an interface automata semantic unit
defined via abstract state machines [18]. In the interest of
space, we do not show the ASM specification. Interface
automata are similar to finite-state automata, but augmented
with a set of actions partitioned into three disjoint sets: input
actions, internal actions, and output actions. An automaton
can observe input actions, emit output actions, while internal
actions occur without provocation. This partitioning of the
actions forms an interface between the automaton and its
environment. Interface automata are a suitable semantic unit
for the SDF abstraction because SDF graphs also receive
input events from their environment and create data tokens



that are either passed to the environment or remain hidden
within channels.

An interface automaton [19] is a structure A =
〈Q,Q0, AI , AO, AH ,→〉 where:

1) Q and ∅ ⊂ Q0 ⊆ Q are states and initial states,
respectively.

2) AI , AO, AH are mutually disjoint sets of input, output,
and internal actions. Let A = AI ∪ AO ∪ AH denote
all these actions.

3) →⊆ Q×A×Q is the transition relation.
Given two interface automata A,A′, let shared(A,A′) =

A ∩ A′. Then the synchronous product A′′ = A ⊗ A′ of
automata is given by:

1) Q′′ = Q×Q′, Q′′
0 = Q0 ×Q′

0.
2) A′′

i = Ai ∪A′
i − shared(A,A′), i ∈ {I,O}.

3) A′′
H = AH ∪A′

H ∪ shared(A,A′).
Shared actions become internal actions that are no longer
visible to the environment. The transition relation synchro-
nizes on shared actions:

→′′=

((s0, t), α, (s1, t))

∣∣∣∣∣∣
(s0, α, s1) ∈→ ∧
α /∈ shared(A,A′) ∧
t ∈ Q′

∪((s, t0), α
′, (s, t1))

∣∣∣∣∣∣
(t0, α

′, t1) ∈→′ ∧
α′ /∈ shared(A,A′) ∧
s ∈ Q

∪{
((s0, t0), α, (s1, t1))

∣∣∣∣ (s0, α, s1) ∈→ ∧
(t0, α, t1) ∈→′

}
(3)

Note that the synchronous product is defined if two automata
do not share internal events, and if Ai ∩ A′

i = ∅ for i ∈
{I,O}.

C. Transformation onto Interface Automata

To apply semantic anchoring we define a transformation
from the structural semantics of SDF onto the interface
automata semantic unit.

The bottom of Figure 1 shows this transformation process
for the SDF graph at the top of the figure. The algorithm first
converts the graph to three individual interface automata,
labeled (a), (b) and (d) in the bottom of the figure: one
automaton for each Node, and one automaton for each
Channel with a delay of zero. Node X has no input ports
and a single output port, which means that it can continually
emit a token from its port named A. This is captured by the
automaton labeled (a) in the bottom of the figure, which has
a single state with one transition that emits an output action
named A. The values of the tokens emitted by ports are not
modeled, so we simply define an output action with the same
name as the port. Node Y is transformed into an automaton
(labeled (d) in the figure) in a similar way, except that its
automaton has a single transition labeled by an input action
E (corresponding to Y ’s input port). The channel between
the ports A and E is translated into an automaton (labeled

S1

A!

T1 T2

A?

E!

V1

E?

Node X Automaton

Node Y Automaton

Channel Automaton

+ =

ST1 ST2

A;

E!

Product of X and Channel

+ = STV1 STV2

A;

E;

Full Product

(a)

(d) (e)

(b)

(c)

ST1 ST2

A;

E!

Product of X and Channel

(c)

A E

X Y

Figure 1. An SDF system with 2 nodes (top) and the resulting interface
automaton (e). The automata for individual SDF components are shown in
(a), (b) and (d).

(b) in the figure) with two states. The initial state, T1, waits
for an input action named A. Upon the occurrence of this
action, it takes a transition to state T2 and emits an output
action named E, and the process repeats.

After the interface automata for the individual SDF graph
components have been constructed, the second step of the
transformation is the application of a synchronous product,
which combines all automata while synchronizing on port
names. We calculate the product using the definition listed
above in section III-B. The bottom of Figure 1 shows the
steps for constructing the product of the individual automata:
we first compose Node X’s automaton with the Channel’s
automaton, and compose that resulting automaton with Node
Y ’s automaton, yielding the full product automaton (labeled
(e) in the figure). In the first composition step, A is a
shared action, and thus becomes an internal action in the
composition (labeled (c)). E is a shared action in the second
composition step, so that both actions are internal in the final
product.

D. Applying Formal Methods

This semantic anchoring process is forgetful, as shown
in Figure 2. Node Z is anchored to the interface automaton
in the far left-hand side of the figure; the translation does
not retain any information about the SDF model. At this
stage formal methods of interface automata can be used to
check reachability, safety, deadlock-freedom, and liveness
properties of Z, which are local properties of the system
Z. It also important to decide the global effects combining
other components with Z. These properties can be more
difficult to decide, because one must consider the hypo-
thetical systems that can be connected to Z. Compositional
properties [20] guarantee that well-behaved systems can be
safely combined. These properties are key for scalability of
formal methods. Unfortunately, it is precisely compositional
reasoning that can be lost in translation.



From the perspective of DSLs, a compositional property
is defined this way: Given a DSL D, let models(D) be
the set of all legal instances of DSL syntax. A property
ρ is a predicate on DSL models; the property is true for
model m iff ρ(m) is true. A composition operator ⊕ is a
partial function for composing models, i.e. ⊕ : models(D)×
models(D)→ models(D).

Definition III.1. Compositional Properties. Given D, ⊕,
and a property ρ, then ρ is compositional over ⊕ if:

∀(m,m′) ∈ (dom ⊕), ρ(m) ∧ ρ(m′)⇒ ρ(m⊕m′). (4)

Consider the DSLs SDF and IntAutomata, with compo-
sition operators:

⊕IntAutomata = ⊗, ⊕SDF = po
‖pi
. (5)

where ⊕ for interface automata is synchronous product. The
composition operators for dataflow systems are a family of
parallel product operators where (m po‖pi m

′) creates the
union of two dataflow systems, except that output port po
in m is connected to pi in m′.

Let τ be the semantic anchoring transformation from SDF
to IntAutomata then, if (m po

‖pi
m′) is defined, then:

(m po‖pi m
′) = τ(m)⊗ τ(cpi,po)⊗ τ(m′). (6)

where τ(cpi,po
) generates the interface automata for the new

channel cpi,po
according to the previous section. Due to the

global constraint of Equation 2, po
‖pi

is only defined for
models that compose without introducing deadlock. In other
words:

∀(m,m′) ∈ (dom po
‖pi

) ρ(m) ∧ ρ(m′)⇒ ρ(m po
‖pi

m′).
(7)

where ρ is deadlock freedom. SDF systems are composi-
tional with respect to deadlock-freedom. Applying Equation
6,

∀(m,m′) ∈ (dom po‖pi)
ρ(τ(m)) ∧ ρ(τ(m′))⇒ ρ(τ(m)⊗ τ(cpi,po)⊗ τ(m′)).

(8)
Together, the structural constraints and semantic anchoring
τ translate SDF systems into interface automata such that
deadlock freedom is also compositional ⊗.

However, forgetful semantic anchoring is unable to uti-
lize these properties, because it cannot refer either to the
structural constraints of higher-level abstractions, nor to the
action of the transformation. Properties can only be asked
with respect to the semantic unit. To see this, we ask a
hypothetical question about the danger of combining Z with
other components:

∃m′ ∈ models(IntAutomata), ¬ρ(AZ ⊗m′), (9)

asks if there is some interface automata that causes the
dataflow component Z to deadlock (AZ = τ(Z)). The
answer to this question is yes: One such interface automaton

A

Z

E

=
S1T1 S2T2

S1T2

S2T1

E; A;

DeadlockNode Z

S1

S2

E?A!

Offending 
component

T1

T2

A?E!+

Figure 2. An example of an erroneous deadlocking component.

causing Z to deadlock is shown in the center of Figure 2.
However, such an automaton corresponds to a zero-delay
cycle between the input port E and the output port A. Such
a composition is impossible in SDF domain. In fact, all
such constructions are erroneous. This example shows that
reasoning about the effects of component composition must
generally take into account the rich structural semantics of
higher-levels of abstractions, as well as the actions of the
semantic anchoring transformation. Otherwise, semantic an-
choring and compositional reasoning may not be compatible.

IV. SEMANTIC ANCHORING WITH FORMULA

The key idea of our approach to semantic anchoring is to
specify domain constraints and model transformations using
the same formalism. Our modeling language FORMULA
employs an expressive fragment of logic programming to
accomplish these tasks. Additionally, many formal methods
can be reduced to finite model finding and symbol execution
tasks over logic programs. FORMULA is coupled with a
state-of-the-art satisfiability modulo theories (SMT) solver
in order to provide a generic set of formal methods. Due to
space constraints, we give a general outline of our procedure;
for a more complete description of FORMULA, see [21].

Applying FORMULA to the example above would in-
volve the following steps. First, define domains for both
the SDF and Interface Automata languages. Domains are
the basic unit of encapsulation in FORMULA and consist
of: (1) data structures for representing models, and (2)
structural constraints to check the validity of models. The
structural constraints are specified using logic-programming.
Semantically anchoring models from the SDF domain to the
Interface Automata uses FORMULA’s transformation con-
struct. Transformations are defined using logic-programming
style rules, i.e., unification procedures, to search the data
contained by an input model and create elements in the
output model when patterns are matched and constraints are
met.

Formal methods are applied after the semantic anchoring.
The key difference with our framework is that it maintains



information about domain constraints and transformations,
allowing formal methods to utilize the properties of high-
level abstractions, even when they are anchored to low-level
abstractions that may not guarantee the same properties. For
example, using FORMULA to search for a non-compositional
component as in Section III-D would cause our finite model
finding procedure to attempt to construct two SDF models
that are valid both before and after their parallel product
is constructed. However, these models must also result
in a deadlocking interface automaton when semantically
anchored. Failure to construct a finite model for this query
on the composed logic programs means that deadlock is a
compositional property for this semantic anchoring.

V. CONCLUSIONS

We have shown the problems that can arise when using
forgetful semantic anchoring approaches. Our example pre-
sented a domain-specific language for a dataflow abstraction
that was semantically anchored onto interface automata. As
a result of forgetful semantic anchoring, compositionality
of deadlock freedom was lost in the translation of dataflow
models to interface automata.

We then introduced our modeling framework FORMULA,
which uses logic programming to consistently represent
domain constraints and model transformations. By using
a single framework, we described how FORMULA is able
to reason about high-level properties even after semantic
anchoring. Our experiments reducing the finite model find-
ing problem to a satisfiability modulo theories solver have
yielded encouraging results. Future work includes applying
these techniques to larger examples to test the scalability of
our approach.
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