Supervisory Control of Interacting Discrete Event Systems

Sherif Abdelwahed
sherif.abdelwahed@vanderbilt.edu
Institute for Software Integrated Systems

Vanderbilt University
Nashville, TN, USA

Abstract

In this paper we present a theory for decentralized su-
pervisory control of a general class of multiprocess dis-
crete event systems referred to as interacting discrete
event systems (IDES). An IDES is a discrete event sys-
tem that consists of a number of components working
concurrently and possibly restricted by a well-defined
interaction specification. We extend the notion of de-
centralized supervisory control to this class of systems
by adding a supervisor for the interaction specification.
Conditions that guarantee the optimality of the decen-
tralized supervision of this class of systems are estab-
lished and a complexity analysis of the proposed pro-
cedure is presented.

1 Introduction

Discrete event systems (DES) are systems with fi-
nite state space where transitions are driven by dis-
crete events. Examples of discrete event systems in-
clude communication networks, database systems, traf-
fic networks, digital circuits and manufacturing sys-
tems. A control theory of a general class of discrete
event systems was initiated by Ramadge and Wonham
[5]. Control-theoretic concepts such as controllability
and observability have been formalized in the DES set-
ting.

Most practical real-life discrete event systems consist
of a large number of components that operate concur-
rently. The composite system size grows exponentially
with the number of components - a phenomenon known
as the state space explosion problem. For such class
of systems a decentralized control mechanism appears
more suitable than a centralized one. In [4], a decen-
tralized control scheme is developed for discrete event
systems in which the specification is implemented us-
ing a set of local supervisors acting concurrently. Each
local supervisor observes and controls a subset of the
system events. Necessary and sufficient conditions for
the optimality of the decentralized control scheme are
presented in [3].

In [7], the decentralized control of concurrent discrete
event systems is investigated. In this work, the sys-

W. M. Wonham

wonham@control.toronto.edu
Department of Electrical Engineering
University of Toronto
Toronto, Ontario, Canada

tem is given as a set of concurrent subsystems. In the
proposed decentralized scheme a set of local supervi-
sors is constructed for the system components. It is
shown that when the given specification is “separable”,
i.e., decomposable with respect to the system structure,
the decentralized scheme can achieve the optimal be-
haviour under the supremal centralized supervisor.

In this paper we extend the decentralized supervisory
control scheme to a general class of multiprocess dis-
crete event systems with well-defined interaction be-
tween the system components. This class will be re-
ferred to as interacting discrete event systems (IDES).
Interacting discrete event systems are introduced in
[1, 2]. An interacting discrete event system consists of
a set of DES components working concurrently and an
interaction specification that restricts the concurrent
behaviour of these components. Many standard forms
of interaction such as the parallel, serial, refinement,
and interleaving compositions can be simulated using
a certain class of “abstract” interaction specifications

[1].

Using the IDES model, the decentralized control
scheme can be applied to a more general class of sys-
tems where the interaction between the system com-
ponents is considered a variable in the model, allow-
ing different forms of interaction, rather than a fixed
one (parallel composition). Also, it is shown that any
DES can be converted to an IDES that generates the
same language. Therefore, the proposed decentralized
scheme for interacting discrete event systems is not lim-
ited to separable (decomposable) languages.

The paper is organized as follows. Section 2 introduces
basic facts and notation used in this paper. In Section
3 we introduce the language based model for interact-
ing discrete event systems. A decentralized supervisory
control scheme for interacting discrete event systems is
introduced in Section 4. Sufficient conditions for the
optimality of the decentralized supervision are given.
In section 5 we present a brief complexity analysis of
the decentralized supervisory synthesis procedures.

Proofs of the propositions and theorems established in
this paper can be found in [1].

2 Preliminaries and Notation

Let 3 be an alphabet representing the events in the
process under consideration. A string or word is a
sequence of events. We will write ¥ for the set
of all nonempty finite strings with events in X, and
¥* =¥t U {e}, where € ¢ ¥ denotes the empty string.
A language over the alphabet Y is any subset of X*.
The set of languages over ¥ will be denoted L(X). A
string s/ € X* is a prefiz of s € ¥*, denoted s’ < s,
if there exists u € X* such that s'u = s. The prefix
closure of a language H C ¥*, denoted H, is the set of
all strings in ¥* that are prefixes of strings in H. The
complement of a language L C ¥* is defined as ¥* — L
and is denoted L°.

An automaton is a 5-tuple structure A =
(Q,%,0,q0,Qm), where @ is a finite set of states,
Y is a finite nonempty set of events, § : Q@ x ¥ — Q
is a (partial) transition function, g, € @ is the initial
state, and @,, C @ is a nonempty set of marker states.
If 6(q,0) is defined, then we say that o is eligible
at ¢ in A. This can also be expressed by the map
Elig, : Q — Pwr(X) which assigns to each state in A
the set of eligible events. The map § is extended to
strings in the usual way. For a language L € L(X), we
will write A(L) to denote the minimal automaton that
generates L.

We will extend the above notation to handle multipro-
cess systems. Let I be the index set of a collection of
processes. An alphabet vector over I is a set {;|i € I}
of alphabets. In the following we will use bold letters
to distinguish vector quantities. Let X = {¥;|i € I}
be an alphabet vector. The union of all alphabets in X
will be denoted a(X) or simply ¥ if no confusion arises.
We will write 3 or as(X) for the set of shared (syn-
chronous) events in ¥, namely 3, = {J,; (£;N%;). A
multi-process environment will be referred to as a pro-
cess space. A process space is uniquely defined by its
alphabet vector, hence both terms designate the same
thing.

A language vector over X is aset L = {L; C Xf|i € I}.
The set of all language vectors over X is denoted £(X).
The language L; is called the ith component of L. Sim-
ilarly a string vector is a set s = {s; € X¥|i € I}.
For a map F : L(X) — L(X), we will write F(L) for
the vector language {F'(L;) | i € I}. The decomposi-
tion (vector projection) map Py : L(X) — £(3X) asso-
ciates each language L € L(X) with the language vector
{P,L|i € I} where P; : ¥* — X is the natural projec-
tion map that erases all events other than those of the
ith component of 3. On the other hand, the compo-
sition (synchronous product) map By : £(X) — L(X)
associates each language vector with its synchronous
product ||L. To simplify notation we will write P By
to denote the composition PxoBsy : £(X) — £(X), and

BPs for the composition By o Py : L(X) — L(X).

3 Interacting Discrete Event Systems

Let ¥ be an alphabet vector with index set I. An
interacting discrete event system over X is a pair £ =
(L, K) where L is a language vector in £(X) and K is
a language in £(X). The language K will be referred
to as the interaction specification language or simply
the interaction language of the IDES L. We will use
calligraphic letters to denote IDES structures. Also we
will write L; to denote the ith component of £. The
language generated by L is given by

Bs(L)=|L N K

Therefore, the IDES structure consists of a set of com-
ponents, represented by the language vector L, running
concurrently, and a language K that synchronizes with
the composite behaviour of these components. Note
that the By operation is overloaded as it is defined for
both language vectors and IDES, consistently, given
that vector languages are a subclass of IDES where
K =X*.

Based on the setting of the IDES model it is possible
to decompose any single process (flat) DES to an IDES
structure that generates the same behaviour. This can
be done by compensating the information lost in the
projection operation, that is, by adding necessary in-
formation to the composite behaviour BPx(L) such
that the overall behaviour of the structure is equal to
L. Tt is easy to see that, for any language L such a com-
pensator depends on L (is a function of L) and must
contain L. The set of ¥-compensators for L, denoted
C. (L), is defined as follows

Co(L) = {K € L(S) | L = BPy(L) N K}

The set Cy (L) is not empty as it contains L. It is
easy to verify that the set C (L) is closed under union
and intersection and hence has a supremal and infimal
element. The infimal element of C'y (L) is L. We will
write Cx(L) to denote the infimal element of the set
C,(L) and Cx(L) to denote its supremal element.

Proposition 3.1

Cs(L) = LUBP4(L)°

It is easy to see that any language K such that L C
K C Cs(L) is a B-compensator for L. In general a
compensator K for L may be blocking by construction
in the sense that the intersection of K with BPx(L)

may produce blocking states from which the system
cannot reach any marker state. We write C%(L) to
denote the set of nonblocking compensators for L. For-
mally, the set C2(L) is defined as follows:

QOE(L) = {K € C}:(L) | BE(PE(L)7K) =
Bx((Px(L), K))}

Also, this set is not empty for any language L as it
contains L itself. It is easy to verify that this set is
closed under union and hence contains a supremal ele-
ment. We will denote this supremal element by C'2(L)
for a given language L. Therefore, it is always possi-
ble to generate an optimal non-blocking IDES model
that generates the language L. This is based on the
following result.

Proposition 3.2

Co(L)y=LuU|LEn [BPE(L)]C} o

Based on this result, the supremal non-blocking com-
pensator ég (L) can be obtained by adding to L any
string that extends a string in L without being a pre-
fix of BPx(L). This can be implemented by comput-
ing the synchronous product of A(L) and A(BPx(L));
at every state (qi,qz) in this product, where ¢; is a
state in A(L) and g2 is a state in A(BPx(L)), we
add a set of transitions with events ¥ — (Eligr)(q1) U
Eliga(ppy (1)) (92)) leading to a terminal state with self-

loop ¥*. This ensures that C2(L) extends L to the
maximal extent without allowing any prefix of BPx(L)
to exist in C2(L) outside the prefix of L.

4 Supervisory control of IDES

The supervisory control problem for IDES is stated for-
mally as follows. Given a system £ = (L, K) over a
process space X generating a language L = Bg(L),
and a specification language S represented by an IDES
structure, S = (S, R) with S = By(S), construct an
IDES supervisor V = (V,T), such that the supervised
system V/L satisfies Bg(V/L) C S. The form of su-
pervision we propose here is a component-wise supervi-
sion where each component of the supervisor controls
the corresponding component of the system, and the
supervisor’s interaction specification controls the sys-
tem’s interaction specification. Formally this translates
into defining Bx(V/L) as follows

Bx(V/L) = llict(Vi/Li) N (T/K)

where V; is a supervisor for L; with respect to the spec-
ification S;, and in general (X/Y) denotes the restric-
tion of the language Y by the supervisor represented by

the language X. Typically such restriction is achieved
by total synchronization (intersection). The IDES su-
pervision setting is depicted in Figure 1.

T

Figure 1: The IDES supervision scheme

For a language S representing a specification and a sys-
tem with language L, we will write Cr,(S) to denote the
set of all sublanguages of S that are controllable with
respect to L'. This set contains a supremal element
denoted supCr,(S). This element, if not empty, cor-
responds to the optimal supervisor for L with respect
to the specification S. The blocking issue will not be
addressed in this paper. Therefore, all languages are
assumed prefix closed.

Proposition 4.1 Let 51,53, L € L(X) be prefix
closed languages. Then

supCr(S1 N S2) = supCr(S1) N supCr(S1)

The above proposition is a special case of a more
general result in [8]. Optimal supervisors are im-
plemented by the language supCr(S N L). Based on
the above Proposition we can write supCr(S) N L =
sup Cr,(S N L). To simplify notation, this language will
be denoted as sup 5L(S). Given this notation, the op-
timality of IDES supervision can be expressed by the
following condition:

supCr(S) = | supCr,(S;) NsupCx (R)

ﬂ Pt supCr,(S;) NsupCx (R)
iel

IFor a detailed introduction to supervisory control theory we
refer the reader to [8]. We adopt the notation used in this refer-
ence.

Note that the optimality of IDES supervision implies
its validity. Conditions for the optimal IDES supervi-
sion will be explored hereafter.

Proposition 4.2

S=Sand L=L = supC(S)=supC(9)

Based on the above result, the optimal supervisor is
guaranteed to be prefix closed when the system and the
specification are prefix closed . The next result shows
that the supC operation is invariant with respect to
inverse projection.

Proposition 4.3

?

P supCyr,(S;) = sup@PaLi(Pi_lSi)

The next step is to find conditions to ensure that the
synthesis of local supervisors for the system compo-
nents can be done optimally using only information
about these components without the need of informa-
tion from other components of the system.

Proposition 4.4 Let £ = (L, K) be an IDES such
that K is controllable with respect to B (L) and X5 C
Y.. Let L = Bg(L). Then for all i € I,

supCr(P7'S;inP7'L) N L =
supCP‘_lLi(PflSiﬂP{lLi) n L

The conditions in the above proposition are sufficient
to guarantee the optimality of supervision at the com-
ponents level. The controllability conditions for the
interaction part of the model are examined next.

Given the IDES specification S = (S, R), to achieve
optimal IDES supervision a condition is needed such
that information about the interaction language K is
enough to calculate the language sup Cr,(R) N K. This
language represents the optimal supervisor for the sys-
tem’s interaction language with respect to the interac-
tion language of the specification.

Proposition 4.5 Assume RN K is controllable with
respect to K. Then

supCr(RNK)=supCx(RNK)=RNK

In the above Proposition, the condition that R N K
is controllable with respect to K is sufficient but not
necessary in general. For instance, when K = L, the
implication of the proposition holds trivially indepen-
dent of R. Based on the above Proposition, optimal su-
pervision for the system’s interaction language K can
be achieved if a compensator R for the specification is
found such that K N R is controllable with respect to
K. In general, the set of compensators for the specifi-
cation S is any language R such that S C R C C'E(S).
Based on that we can state the following result.

Proposition 4.6 There exists an IDES model (S, R)
for S such that R is prefix closed and K N R is control-
lable with respect to K if

S CsupCx (C2(S))

Note that if .S is prefix closed, then the language ég (S)
is also prefix closed, and therefore supCx(C2(S5)) is
prefix closed.

It is worthwhile to consider limit cases of K for the
above Proposition. When K = L, the supervisor of the
system interactions is always optimal regardless of the
specification. However, this is also the most computa-
tionally complex case. The other limit is more interest-
ing, namely when K = ¥* indicating total parallelism
of the system components. Clearly here K "R = R for
any compensator R for the specification. It is straight-
forward to check that in this case, the above condition
holds if and only if RY,, C R, namely all uncontrollable
events are enabled at any state in the automaton of the
language R.

The results established so far can be used to obtain
the main result of this paper regarding the optimality
of the IDES supervision.

Theorem 4.1 Let £ = (L, K) be an IDES over a pro-
cess space X with L = L(L£), and let S € L(X). Assume
that,

1. ¥, Cx.
2. K is controllable w.r.t Bx(L)
3. S CsupCg(CL(9)).

Then

sung(S) = sungi(Si) N supgK(R)

Note that based on the above Theorem, the efficiency
of the decentralized supervisory synthesis depends,

among other factors, on the interaction language of the
system, as well as that of the specification. Roughly
speaking, the chance of finding an optimal IDES super-
visor increases by restricting the interaction language
of the system and relaxing that of the specification.

Example 4.1 The system in this example consists of
two processes representing two machines working con-
currently. The two machines can coordinate their oper-
ations using a shared event x which can be viewed as a
synchronization signal. The IDES model of the system
is shown below. In the diagrams the following conven-
tion is used: components are shown in rounded boxes,
the interaction specification is shown in a double box,
and controllable events are marked with a dash.

ne

Process A

opla op2a

Process B

oplb

fal fa2

The specification of the system is shown in the figure
below. The specification .S is converted to the displayed
IDES structure S = (Px(S), C2(S)). To simplify the
diagram, the selfloops of all remaining events at each
state are omitted.

op2a oplb

Specification S

It is easy to check that the specification S is not con-
trollable with respect to the interaction language of the
system K = %*. However, C2(S) is controllable with
respect to K and therefore supCx (C2(S)) = C2(S).
The IDES supervisor for the specification is shown in
the following figure.

The following figure shows a new specification for the
system. The new specification affects only the local
specification for process B and the compensator C2(S).
It can be checked that the new compensator is also
controllable with respect to K. Therefore, the new
IDES supervisor can be obtained from the one above
by updating only the supervisor for process B with
respect to its new specification.

opla op2b

op2a oplb

new specification

new local specification

new local supervisor

In general, under the decentralized supervision scheme,
we need only recompute the solution with respect to
the changed components of the system, rather than
the whole system as would be needed under the direct
centralized approach.

5 Complexity Analysis

To compare the computational complexity of the de-
centralized control with that of the centralized form,
consider the case of an IDES £ = (L, K) where L con-
tains IV components each with state size n. Let S be
a specification of size m. In general, the single process
model of £ will have a size of O(n™")2. As required
in the decentralized scheme, the specification S is as-
sumed decomposed into the IDES S = (S, R).

In the worst case, the size of each component of the
specification S; = P;(S) is O(2™), and that of R is

2For detailed complexity analysis of the relevant operations
we refer the reader to [6].

O(2™N). However, in typical situations the size of
each S; is closer to O(m). In this case the size of R
can be in the range from O(m) to O(m”) although
more likely to be closer to the lower end based on the
way the compensator is constructed. Solving the super-
visory control problem using the flat model of £ will
require O(mn'V) time and O(n'V) space. Under the as-
sumption that the elements of decomposed structure
of the specification is within the same dimension of the
specification, the decentralized supervision will require
O(mnN) time and O(max(n, m)N) space.

The main challenge in checking the optimality of the
decentralized supervisor is to check condition 2 in The-
orem 4.1, namely, that the interaction specification of
the system is controllable with respect to the parallel
composition of the system components. However, this
check can be eliminated if the language K is always
controllable with respect to any language, that is when
KY¥, C K. The most widely used parallel composition
scheme (K = X*) satisfies this condition.

6 Conclusion

In this paper we presented a decentralized supervision
structure for a general class of multiprocess DES with
possible interaction constraints. It is shown that under
certain conditions related to the structure of process
space, the architecture of the system, and the given
specification, an optimal supervisor can be computed
and implemented modularly.

7 Acknowledgement

The authors wish to thank the anonymous reviewers
for their helpful comments.

References

[1] S. Abdelwahed. Interacting Discrete Event Sys-
tems: Modelling, Verification, and Supervisory Con-
trol. PhD thesis, University of Toronto, 2002.

[2] S. Abdelwahed and W.M. Wonham. Interacting
discrete event systems. In Proc. of 37th Allerton Conf.
on Communication, Control and Computing, Cham-
paign, IL, USA, September 1999.

[3] R. Cieslak, C. Desclaux, A. Fawaz, and
P. Varaiya. Supervisory control of discrete-event pro-
cesses with partial observations. IEEE Trans. Autom.
Control, 33(3):249-260, March 1988.

[4] F. Lin and W.M. Wonham. Decentralized con-
trol and coordination of discrete event systems with

partial observation. IEEE Trans. Autom. Control,
35(12):1330-1337, 1990.

[5] P.J. Ramadge and W.M. Wonham. Supervisory
control of a class of discrete-event systems. SIAM Jour-
nal on Control and Optimization, 25:206-230, 1987.

[6] K. Rudie. Software for the control of discrete-
event systems: A complexity study. Master’s thesis,
Dept. of Elec. Eng., University of Toronto, 1988.

[7] Y. Willner and M. Heymann. Supervisory control
of concurrent discrete event systems. Int. Journal of
Control, 54(5):1143-1169, 1991.

[8] W.M. Wonham. Notes on Control of
Discrete-Fvent — Systems. ECE Department,
University of Toronto, revised 2002.07.01.
www.control.utoronto.ca/people/profs/wonham.

