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Abstract

This work presents two parallel asynchronous algorithms for the solution of the optimal
control problem of linear large scale dynamic systems. These algorithms are based on the
prediction concept. The first one adopts the interaction prediction approach and the second
is based upon the costate prediction approach. The convergence behavior of the proposed
algorithms is thoroughly investigated. The new algorithms are applied on three practical systems
and simulation results are presented and compared with those obtained using the well known
synchronous algorithms. It is shown that substantial saving in computation time can be achieved
by employing the proposed asynchronous algorithms.
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1 Introduction

The information processing and requirements for experimenting with large scale systems are usually
excessive and many problems may arise when dealing with such systems. Conventional control
methods usually fail when applied to such systems. Therefore, new multilevel techniques were
established to handle these problems.

We consider two issues while evaluating these techniques, namely the computational time and
the storage requirement. It has been shown that multilevel techniques need, in general, a much
smaller storage requirement than conventional methods.1 As for the computation time, practical
implementation of these methods have shown that they need less computational time when com-
pared with conventional methods. Another important factor is that the computational structure
of these techniques can effectively utilize the existing parallel and distributed computing facilities,
from which a great reduction of computational time can be obtained.

The general form of the multilevel algorithms is characterized by their synchronous nature
where the iteration time is equal for all subproblems irrespective of their dimensions, with no in-
teraction between the subsystems within the iteration period. However, many practical systems
are composed of a number of subsystems with different structures and dimensions. In such sit-
uation the asynchronous implementation of multilevel parallel algorithms may result in a better
convergence.2,3

With a variety of applications, a number of researches have been focused to develop and in-
vestigate asynchronous implementation of parallel algorithms.4–6 In some earlier work,7,8 a partial
asynchronous implementation of the interaction and costate prediction algorithms have been inves-
tigated. In these algorithms, information updating takes place within the iteration, however, all
processors have to synchronize for a new iteration. It was shown, both theoretically and practically,
that a significant reduction of computational time can be achieved using the partially asynchronous
algorithms.

In order to enhance the utilization of the computational facilities, we propose a totally asyn-
chronous - or simply asynchronous - algorithm applied to both interaction and costate prediction
methods. In this approach, processors perform certain computations and then exchange their infor-
mations either by direct communications with each other or by means of a coordinator processor.
Each processor performs its steps independent to other processors, that is a processor can proceed
with its next cycle without waiting for other processors to finish their iteration. This may result
in some processors performing computation faster than others. Consequently, this will allow faster
updating of systems components, and hence, it is excepted that the asynchronous method will
improve the convergence rate over the synchronous one. However, the communication delay factor
will be important since excessive information exchange may take place between the subsystems.

This paper is organized as follows. Section 2 presents the problem formulation and an outline
the synchronous algorithm. In section 3, asynchronous algorithms, for both interaction and costate
prediction methods, are presented to solve the optimal control problem of linear interconnected
dynamical systems. The convergence behavior of the algorithms is analyzed in section 4. The
convergence was proven based on the results of El-Tarazi.9 Section 5 discusses the practical im-
plementation of the algorithms and the effect of communication delay. In section 6, the results
of simulation of the proposed algorithms are presented to emphasize the results of the theoretical
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investigation. Section 7 concludes the paper.

2 Problem Formulation

Consider a linear large scale time invariant system

ẋ(t) = Ax(t) + Bu(t), x(to) = xo (1)

where x ∈ Rn and u ∈ Rm. It is assumed that the system can be decomposed into N
interconnected subsystems given by

ẋi(t) = Aixi(t) + Biui(t) + Cizi(t), xi(to) = xio, i = 1, . . . , N (2)

The interaction vector zi is a linear combination of the states of the other N − 1 subsystems
given by

zi(t) =
N∑

j=1

Lijxj(t) (3)

where xi ∈ Rni is the state vector, ui ∈ Rmi is the control vector, zi ∈ Rqi is the intercon-
nection vector, Ai,Bi, Ci are the ith subsystem matrices with proper dimensions, and Lij is the
interconnection matrix.

The original system optimal control problem is reduced to the optimization of N subsystems,
satisfying (2) and (3) while minimizing the cost function

Ji =
∫ tf

to

xT
i (t)Qixi(t) + uT

i (t)Riui(t)dt (4)

where Qi is ni × ni positive semidefinite matrix and Ri is mi ×mi positive definite matrix.

As known from the original prediction concept, this problem can be solved by first introducing
a set of Lagrange multipliers πi(t) and costate vectors λi(t) to augment the interaction equality
constraint (3) and the subsystem dynamic constraint (2) to the cost function and defining the
Hamiltonian of the ith subsystem as follows:

Hi =
1
2

(
xT

i (t)Qixi(t) + uT
i (t)Riui(t)

)
+ πT

i (t)


−zi(t) +

N∑

j=1
j 6=i

Lijxi(t)


 +

λT
i (Aixi(t) + Biui(t) + Cizi(t)) (5)
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then the following set of necessary conditions of optimality can be obtained

∂Hi

∂ui
= Riui(t) + BT

i λT
i (t) = 0 (6)

∂Hi

∂λi
= Aixi(t) + Biui(t) + Cizi(t) = ẋ(t) (7)

∂Hi

∂xi
= Qixi(t) + AT

i λi(t) +
N∑

j=1

LT
ijπi(t) = −λ̇i(t) (8)

∂Hi

∂zi
= πi(t)−CT

i λi(t) = 0 (9)

∂Hi

∂πi
= zi(t)−

N∑

j=1

Lijxj(t) (10)

Substituting ui from equation (6) into (7) and πi from (9) into (8) we get

ẋ(t) = Aixi(t) + BiR
−1
i BT

i λi + Cizi xi(to) = 0 (11)

λ̇(t) = −Qixi(t)−Aiλi(t)−
N∑

j=1

LT
ijCjλj(t) λi(tf ) = 0 (12)

The above problem can be solved in hierarchical structure by introducing a set of coordination
variables. The lower level solves the local optimization problems given by (6)-(10) keeping the
coordination variables fixed, and the upper level uses the optimal trajectories received from the
lower level to update the coordination vectors then sends them back to the lower level.

According to the coordination parameters we will consider two approaches in this paper, first,
the interaction prediction where the coordination vector is given by

[
zT

i πT
i

]T , and second, the

costate prediction approach in which
[
zT

i λT
i

]T
is the coordination vector.

2.1 The Interaction Prediction Approach

Consider the lower level and let

λi(t) = P ixi(t) + si (13)

Substituting for λi(t) in (12) and (9) we get

P i + AT P i + P iAi − P iBiR
−1
i BT

i P i + Qi = 0 P i(tf ) = [0] (14)

si + AT
i si − P iBiR

−1
i BT

i si + P iCizi −
N∑

j=1

LT
ijπj = 0 si(tf ) = 0 (15)
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As a result, the local control ui is given by

ui(t) = −R−1
i BT

i P ixi(t)−R−1
i Bisi (16)

The well-known synchronous algorithm is given as follows:10

step 1 Solve the N independent differential Matrix Riccati equations (15) and store the values of
P i(t).

step 2 The upper level assigns the iteration number k = 1, guesses the initial values of the coor-
dinating variables z,π and transmits them to the lower level.

step 3 Using z(k), π(k) received from the upper level and the stored values of P i(t), each sub-
system solves the adjoint equation (17), then uses the obtained values of P i, si to solve for
x

(k+1)
i , u

(k+1)
i then sends them to the upper level.

step 4 The upper level uses the received values of x, π from all the subsystems to update the
coordination vector, puts k = k + 1 , and then calculates the Euclidean norm of the error,

e(k+1) =‖ f (k+1) − f (k) ‖, f (k) =
[
z

(k)T
i π

(k)T
i

]T
(17)

If e(k+1) ≤ ε, where ε is a small positive number, it stops, otherwise sends the new values of
z(k+1), π(k+1) to the lower level and goes to step 3.

2.2 The Costate Prediction Approach

Equations (12) and (14) constitute the core of the costate prediction algorithm. The subsystems
solve these equations at the lower level then send the results of the integration to the upper level
coordinator who do a very simple job of calculating the coordination vector and sending it back to
the subsystems. The synchronous algorithm is given as follows:

step 1 The upper level assigns the iteration number k = 1, guesses the initial values of the coor-
dinating variables z,λ and transmits them to the lower level.

step 2 Using z(k), λ(k) received from the upper level each subsystem solves the state and costate
equations then sends the updated values to the upper level.

step 3 The upper level uses the received values of x, λ from all the subsystem to update the
coordination vector, puts k = k + 1 , and then calculates the Euclidean norm of the error
given by

e(k+1) =‖ f (k+1) − f (k) ‖, f (k) =
[
z

(k)T
i λ

(k)T
i

]T
(18)

If e(k+1) ≤ ε, where ε is a small positive number, it stops, otherwise sends the new values of
z(k+1), π(k+1) to the lower level and goes to step 2.
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3 The Asynchronous Algorithms

In order to present the asynchronous algorithms, we assume that the dimensions of the N subsys-
tems are given by n1, n2, . . . , nN such that

n1 ≤ n2 ≤ n3 . . . ≤ nN

with at least one dimension different from the others. In this case, at least one of the processors
will terminate computations before the others, and the following algorithm can be applied:

Algorithm 1 (Asynchronous Interaction Prediction)

step 1 Solve the N independent differential Matrix Riccati equations (15) and store the values of
P i(t).

step 2 The upper level assigns the iteration number k = 1, guesses the initial values of the coor-
dinating variables z,π and transmits them to the lower level.

step 3 Using z(k), π(k) received from the upper level and the stored values of P i(t), the subsystems
at the lower level solve the adjoint equation (16) backward, then use the obtained values of
P i, si to solve for x

(k+1)
i , u

(k+1)
i , and send their values to the upper level. Since there exists

at least one subsystem with smaller dimension than the others then at least one processor
will terminate before the others. Here we introduce the following rule:

When any processor pi terminates an iteration, it sends the solution to the upper
level to update the values of the coordination variables zi(t), πi(t). Processor pi will
start a new iteration immediately after receiving updated values of the coordination
variables independent of the other subsystems.

step 4 The upper level updates the coordination vector by using the received values of x, π from
the lower level, and then calculates the iteration error from equation (19). If e ≤ ε, where ε
is a small positive number, it stops, otherwise sends the new values of z, π to the lower level
and goes to step 3.

Algorithm 2 (Asynchronous Costate Prediction)

step 1 The upper level assigns the iteration number k = 1, guesses the initial values of the coor-
dinating variables z,λ and transmits them to the lower level.

step 2 Using z(k),λ(k) received from the upper level each subsystem solves its state and and costate
equations then sends the results to the upper level. Since there is at least one subsystem has
smaller dimension than the others, at least one processor will terminate before the others.
Here we introduce the following rule:
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When any processor pi terminates an iteration, it sends the solution to the upper
level to update the values of the coordination variables zi(t), λi(t). Processor pi will
start a new iteration immediately after receiving updated values of the coordination
variables independent of the other subsystems.

step 3 The upper level updates the coordination vector by using the received values of x, λ from
the lower level, and then calculates the iteration error from equation (19). If e ≤ ε, where ε
is a small positive number, it stops, otherwise sends the new values of z, λ to the lower level
and goes to step 3.

Remarks

• At the lower level the subsystems are allowed to communicate their results with each other
through the coordinator without timing restriction. The most recent information obtained
from each subsystem is used to update the predicted interaction with other subsystems.
Moreover, the subsystems are allowed to run independently of each other in a complete
asynchronous manner, so that subsystems with lower dimensions will release more updated
information about their trajectories compared with the synchronous and the partial asyn-
chronous cases.7,11 This results in a better computational performance as shown in section
6.

• The asynchronous algorithms still maintain the simple structure of the synchronous algo-
rithms. These algorithms are also directly applicable to large scale discrete time control
systems. Moreover, for the interaction prediction algorithm a completely closed-loop control
structure can be established by applying the extension made by Singh et.al.12

4 Convergence Analysis

We define W as the matrix of the interaction variables between the ith subsystem and others. W
is, in general, a piecewise continuous function having a finite number of discontinuity (as we have
finite number of subsystems performing a finite number of iterations), W can be written in the
form

W = [W x W λ] (19)

where W x is the x components of W and W λ is the λ components of W given by

W x = [wx1 | wx2 | . . . | wxN ] , W λ = [wλ1 | wλ2 | . . . | wλN ] (20)

We can write the state and costate equation at any iteration in the form
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ẋi = Aixi −BiR
−1
i BT

i λi +
N∑

j=1
j 6=i

Aijwxj , xi(to) = xio (21)

λ̇i = −Qixi −AT
i λi −

N∑

j=1
j 6=i

Aijwλj , λi(tf ) = 0 (22)

In the following the convergence of the proposed algorithms will be proved based on the results
of El-Tarazi9 for general asynchronous iterative algorithms.

4.1 The Interaction Prediction Algorithm

In this case equations (22) and (23) constitute a two point boundary value problem (TPBVP)
which can be combined in matrix form as follows:

[
ẋi

λ̇i

]
=

[
Ai −BiR

−1
i BT

i

−Qi −AT
i

]
+

[
xi

λi

]
+

N∑

j=1
j 6=i

[
Aij 0
0 −AT

ij

] [
wxj

wλj

]
(23)

Let ν
(k)
i =

[
x

(k)
i λ

(k)
i

]T
,

then equation (24) can be written in the form

ν̇
(k+1)
i = Hoiν

(k+1)
i +

N∑

j=1

H ijν
(k)
j (24)

where

Hoi =
[

Ai −BiR
−1
i BT

i

−Qi −AT
i

]
, H ij =

[
Aij 0
0 −AT

ij

]
,H ii = 0, ∀i, j ∈ [i, N ]

Let the optimal solution be ν∗i = [x∗i λ∗i ]
T , where x∗i , λ∗i are the optimal values of x, λ. Define

the interaction error of subsystem i at iteration k to be e
(k)
i = ν

(k)
i − ν∗i =

[
e

(k)
ix e

(k)
iλ

]
, and the

iteration error to be ewj = [ewxj ewλj ] =
[
wxj − x∗j wλj − λ∗j

]
. Now we can rewrite equation

(25) as follow:

ėi = Hoiei +
N∑

j=1

H ijewj (25)

Solving with respect to time we get
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ei(t) = Φi(t, to)ei(t) +
N∑

j=1

∫ t

to

Φi(t, τ)H ijewj(τ) dτ, ei(to) = [eix(to) eiλ(to)]
T (26)

where Φi(t, to) is the state transition matrix for the subsystem i given by

Φ(t, τ) = expHoi(t− τ) =
[

Φi11(t, τ) Φi12(t, τ)
Φi21(t, τ) Φi22(t, τ)

]
(27)

Substituting with t = tf , and since eiλ(tf ) = 0 and eix(to) = 0, we can obtain

ei(t) =
N∑

j=1

(∫ t

to

Φi(t, τ)H ijewj(τ) dτ −
∫ tf

to

Θi(to, tf , t, τ)H ijewj(τ) dτ

)
,

Θi(to, tf , t, τ) =
[

Φi12(t, to)
Φi22(t, to)

]
Φ−1

i22(tf , to) [Φi12(tf , τ) Φi22(tf , τ)] (28)

To obtain sufficient conditions for the convergence of the global system, we define the norm for
the error vector e(t) over the time period [to, tf ] to be

Norm of e(t) = max
t∈[to,tf ]

‖ e(t) ‖2 (29)

where ‖ · ‖2 is the Euclidean norm in R2n.

Taking the norm of both sides of equation (30) we get

max
t∈[to,tf ]

‖ e(t) ‖≤
N∑

j=1

Mij

∫ tf

to

max
t∈[to,tf ]

‖ ewj(t) ‖ dτ (30)

Where

Mij = max
t,τ∈[to,tf ]

‖ ΦiH ij ‖ + max
t,τ∈[to,tf ]

‖ ΘiH ij ‖ (31)

From inequality (32), we get

max
t∈[to,tf ]

‖ e(t) ‖≤ (to − tf )




N∑

j=1

Mij


 max

t∈[to,tf ]
j∈[1,N ], j 6=i

‖ ewj(t) ‖ (32)

and we can conclude that
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max
t∈[to,tf ]
i∈[1,N ]

‖ ei(t) ‖ ≤ αi max
t∈[to,tf ]

j∈[1,N ], j 6=i

‖ ewj(t) ‖, αi = (to − tf )
N∑

j=1

Mij (33)

If we choose (tf − to) such that αi < 1, ∀i ∈ [1, N ], then inequality (35) defines a property of
contraction on the space E defined by

E =
N∏

i=1

Ei, Ei = C([to, tf ];R2ni) (34)

where C(·) denotes the set of continuous functions. From El-Tarazi,9 this contraction property
guarantees the convergence of the asynchronous iterations.

4.2 The Costate Prediction Algorithm

Here we will solve equations (22) and (23) independently of the other. If we solve equation (22)
forward with time we get

xi(t) = Φix(t, to)xi(t) +
∫ t

to

Ψix(t, τ)λi(τ) +
N∑

j=1

Ψijx(t, τ)wxj(τ) dτ, (35)

where,

Φix(t, τ) = eAi(t−τ), Ψix(t, τ) = −Φix(t, τ)BiR
−1
i BT

i ,

Ψijx(t, τ) = Φix(t, τ)Aij , Ψiix(t, τ) = 0 ∀i, j ∈ [1, N ] (36)

By solving equation (23) backward with time we get

λi(t) = Φiλ(tf , t)λi(tf ) +
∫ tf

t
Ψiλ(t, τ)xi(τ) +

N∑

j=1

Ψijλ(t, τ)wλj(τ) dτ (37)

where,

Φiλ(t, τ) = e−AT
i (t−τ), Ψiλ(t, τ) = −Φiλ(t, τ)Qi,

Ψijλ(t, τ) = Φiλ(t, τ)AT
ji, Ψiiλ(t, τ) = 0 ∀i, j ∈ [1, N ] (38)

Substituting, by the final condition given in equation (23) and then by x(t) from (37) into (39),
we get
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λi(t) = Φiλ(tf , t)λi(tf ) +
∫ tf

t
Ξi(t, τ, to)xi(to) +

N∑

j=1

Ψijλ(t, τ)wλj(τ) dτ +

∫ tf

t

∫ τ

to

Ωi(t, τ, υ)λi(υ) +
N∑

j=1

Ωij(t, τ, υ)wxj(υ) dυ dτ (39)

where

Ξi(t, τ, to) = Ψiλ(t, τ) Φix(τ, to), Ωi(t, τ, υ) = Ψiλ(t, τ) Ψix(τ, υ),
Ωij(t, τ, υ) = Ψiλ(t, τ)Ψix(τ, υ) ∀i, j ∈ [1, N ] (40)

Note that at the optimal solution, we have

x∗i (t) = Φix(t, to)x∗i (t) +
∫ t

to

Ψix(t, τ)λ∗i (τ) +
N∑

j=1

Ψijx(t, τ)x∗j (τ) dτ, (41)

Subtracting (43) from (37) and using our error definition in the previous subsection, and from
the initial condition in (22) we obtain

eix(t) =
∫ t

to

Ψix(t, τ)ewλi(τ) +
N∑

j=1

Ψijx(t, τ)ewxj(τ) dτ (42)

Following the same procedures for the λ component we get

eiλ(t) =
∫ tf

t

N∑

j=1

Ψijλ(t, τ)ewλj(τ) dτ +

∫ tf

t

∫ τ

to

Ωi(t, τ, υ)ewλi(υ) +
N∑

j=1

Ωij(t, τ, υ)ewxj(υ) dυ dτ (43)

Taking the norm of both sides of equation (44) and integrating we get

max
t∈[to,tf ]

‖ eix(t) ‖≤ (tf − to)


Mix max

t∈[to,tf ]
‖ ewλi(t) ‖ +

N∑

j=1

Mijx max
t∈[to,tf ]

‖ ewxj(t) ‖

 (44)

where,
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Mix = max
t,τ∈[to,tf ]

‖ Φix(t, τ) ‖, Mijx = max
t,τ∈[to,tf ]

‖ Ψijx(t, τ) ‖ (45)

Similarly, by taking the norm of equation (45), we get

max
t∈[to,tf ]

‖ eiλ(t) ‖ ≤ (tf − to)
N∑

j=1

Mijλ max
t∈[to,tf ]

‖ ewλj(t) ‖ +

(tf − to)2


Miλx max

t∈[to,tf ]
‖ ewλj(t) ‖ +

N∑

j=1

Mijxλ max
t∈[to,tf ]

‖ ewxj(t) ‖

(46)

where

Mijλ = max
t,τ∈[to,tf ]

‖ Ψix ‖, Miλx = max
t,τυ∈[to,tf ]

‖ Ωi ‖, Mijxλ = max
t,τ,υ∈[to,tf ]

‖ Ωij ‖ (47)

Combining inequality (46) and (48) in a matrix form, with T = (tf − to)I is the integration
period multiplied by the identity matrix of size ni × ni , we obtain




max
t∈[to,tf ]

‖ eix ‖
max

t∈[to,tf ]
‖ eiλ ‖


 =

[
0 TMix

0 T 2Miλx

]


max
t∈[to,tf ]

‖ ewxi ‖
max

t∈[to,tf ]
‖ ewλi ‖


 +

N∑

j=1

[
TMijx 0

T 2Mijλx TMijλ

]


max
t∈[to,tf ]

‖ ewxj ‖
max

t∈[to,tf ]
‖ ewλj ‖


 (48)

Taking the global maximum of the previous inequality, we get

max
t∈[to,tf ]

‖ ei(t) ‖ ≤ βi max
t∈[to,tf ]

‖ ewj(t) ‖ +
N∑

j=1
j 6=i

γij max
t∈[to,tf ]

‖ ewj(t) ‖ (49)

where

βi = max(‖ TMix ‖, ‖ T 2Miλx ‖), γij = max(‖ TMijx ‖, ‖ T 2Mijλx TMijλ ‖) (50)

Taking the maximum over all the subsystems we get the following inequality

max
t∈[to,tf ]
i∈[1,N ]

‖ ei(t) ‖ ≤ δi max
t∈[to,tf ]

j∈[1,N ], j 6=i

‖ ewj(t) ‖ (51)
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Similar to the previous algorithm, if we choose (tf − to) such that δi < 1, ∀i ∈ [1, N ], then the
last inequality defines a property of contraction on the space E defined in (36), and from El-Tarazi,9

this contraction property guarantees the convergence of asynchronous point iterations.

5 On The Asynchronous Algorithms

Because of the complex nature of the asynchronous algorithms and the lack of common timing frame
1, it is difficult to represent it mathematically. In the following, we will present some remarks
about these algorithms based upon their algorithmic and mathematical structures, pointing out
some practical considerations.

5.1 The Algorithm Structure

• In the asynchronous implementation the processors are not required to receive all the re-
sults of the previous iteration, rather, each processor is allowed to continue iterating with its
own components at its own pace. If the current value of the component updated by some
other processor is not available, then the latest update received is used instead. Furthermore,
processors are not required to communicate their results after each iteration but only once
in a while. In this structure we allow some processors to compute faster and execute more
iterations than others. Only the subsystem(s) with the largest dimension will do as many iter-
ations as performed in the synchronous case. Therefore, it is expected that the asynchronous
algorithms will show faster convergence.

• Although the algorithm is expected to perform well on any type of multiprocessor, shared
memory system is more suitable for it. In a shared memory system all subsystems can have
access to the system trajectories simultaneously, which reduces the effect of communication
delay, which is a concern for this type of algorithms. Using a shared memory system also
reduces the coordination task to calculating the iteration error and terminating the compu-
tations.

• The analytical study of the asynchronous algorithms shows that, its convergence depends on
two factors: the integration period, and the interaction between the subsystems. These two
factors are also dominant factors for the convergence of the synchronous algorithms. However,
we saw from the practical applications that asynchronous algorithms (within certain ranges)
are more stable with respect to these two factors. Another observation from the convergence
analysis is that, in the costate prediction algorithm, the internal structure of the system have
effect in the convergence, and this may reduce the efficiency of the costate algorithms in some
cases.

• Like synchronous algorithms, we can deal with some cases of divergence by applying a set of
adjustments to the optimization horizon and/or the cost matrices.1,11,12

1In the asynchronous environment, each subsystems performs its computations independent of the others and it
is not possible to define a global iteration index.

12



5.2 The Effect of Communication Delay

It is difficult to measure theoretically the effect of communication delay on the performance of
the asynchronous algorithms. Nevertheless, we can see from the algorithm structure and practical
implementation that the delay caused by information exchange between the subsystems is more
substantial than the synchronous case. Moreover, the communication effect is hard to predict,
because it is difficult to estimate the accumulated timing differences between subsystems and to
know the effect of updating the information randomly. However, from our practical experience, we
propose the following measures that could help to overcome or reduce the effects of this problem:

• Provide a time mechanism inside the coordinator to limit the amount of information exchange
between the subsystems. For example, in the case of large variation between the dimension of
the subsystems, a small subsystem may perform many iterations within the time of a single
iteration of a large subsystem, without significant impact on the total convergence. If the
communication overhead is substantial, then it is recommended to minimize unnecessary or
less effective communications by limiting the minimum time between two successive iterations
for some subsystems.

• Reduce the broadcasting by using either a special purpose communication hardware, or a mul-
tiprocessor network that matches the decomposition of the subsystem and their dependency,
so that all necessary communications involve directly connected nodes.

6 Simulation Results

To demonstrate the effectiveness of the proposed algorithm, numerical simulations have been done
on a single processor computer, using a parallel processing simulation program. In the following
we will present the simulation results for three practical systems that were solved using both the
synchronous and asynchronous algorithms.

River Pollution Control

The problem for the river pollution control (RPC) is to maintain the instream biomedical oxygen
demand (BOD) and the desolved oxygen (DO) at prespecified levels for a river with multiple
polluters using the discharges from the sewage stations as the control variables. The control problem
for a two-reach system without delay is represented by.13

minJ =
∫ 8

0
(x(t)− xd)T Q(x(t)− xd) + uT (t)Riu(t)dt,

ẋ(t) = Ax(t) + Bu(t) + D, x(0) = xo, (52)
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A =




−1.32 0 0 0
−0.32 −1.2 0 0
0.9 0 −1.32 0
0 0.9 −0.32 −1.2


 , B =




0.1 0
0 0
0 0.1
0 0


 , D =




5.35
10.9
4.19
1.9




This system was split into two subsystems, of orders 1 and 3. The simulation was carried out
with the following values,

Q = diag(2, 1, 2, 1) R = diag(1, 1),
xd = [4.06 8 5.94 6]T , xo = [10 7 5 7]T

Figure 1 shows the evolution of error with the iteration for the synchronous and the asynchronous
costate and interaction prediction algorithms.

Gas Absorber Tower

A gas absorber tower (GAT) is an important element in several chemical processes. A typical
gas absorber system consists of a number of vertically arranged plates enclosed within a chemical
tower. The chemical reactions that take place in the tower are affected by the inlet feed compositions
corresponding to a downward liquid stream and upward vapor stream.14 From the material balance
of each plate in the tower, a state-variable model has been developed. The system is decomposed
into two subsystems with dimensions 2 and 4 respectively. The system is initially stable and its
model has the following parameters

A =




−1.173 0.634 0 0 0 0
0.538 −1.173 0.634 0 0 0

0 0.538 −1.173 0.634 0 0
0 0 0.538 −1.173 0.634 0
0 0 0 0.538 −1.173 0.634
0 0 0 0 0.538 −1.173




, B =




0.538 0
0 0
0 0
0 0
0 0
0 0.88




Q =




136 17 54 0 0 0
17 23 8 0 0 0
54 80 29 0 0 0
0 0 0 17 30 13
0 0 0 30 28 2
0 0 0 13 28 18.5




, R =
[

1 0
0 1

]

The system Ricatti equations were integrated over 5 seconds. Figure 2 shows the evolution of
error with the iteration for the synchronous and the asynchronous costate and interaction prediction
algorithms.
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Figure 1: Interaction error against iteration for river pollution control
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Figure 2: Interaction error against iteration for gas absorber tower
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Power System Control

The power system (PSC) problem under consideration consists of 7 machines. The mathematical
model of the n-machine systems consists of a set of nonlinear differential equations given in.15 The
linearized model have the following parameters

A =




0 1 0 0 0 0 0 0 0 0 0 0
−93.931 0 8.743 0 5.374 0 2.626 0 4.056 0 −1.647 0

0 0 0 1 0 0 0 0 0 0 0 0
15.85 0 −140.367 0 9.6 0 14.026 0 6.684 0 2.675 0

0 0 0 0 0 1 0 0 0 0 0 0
10.7 0 10.25 0 −116.06 0 6.22 0 4.313 0 0.416 0
0 0 0 0 0 0 0 1 0 0 0 0

8.515 0 18.074 0 7.655 0 −13.97 0 4.075 0 1.703 0
0 0 0 0 0 0 0 0 0 1 0 0

11.295 0 8.604 0 5.989 0 4.313 0 −124.46 0 2.98 0
0 0 0 0 0 0 0 0 0 0 0 1

1.969 0 1.962 0 1.684 0 1.212 0 1.645 0 −99.69 0




B = I, Q = 0.1I, R = I

It is required to control each state variable of the power system such that the quadratic cost
function is minimized. In simulation, the system has been split up into two subsystems of orders 4
and 8 respectively. The system Ricatti equations were integrated over 4 seconds. Figure 3 shows
the evolution of error with the iteration for the synchronous and the asynchronous costate and
interaction prediction algorithms.

Comparing The Computational Efficiency

Table 1 shows computational comparison between the synchronous and asynchronous algorithms
for the previous examples. The table shows the result of both the interaction prediction (IP) and
the costate prediction algorithm (CP). In this table, ef is the error at the final step, η is the number
of iteration needed to achieve the specified level of error, Ta/Ts% is the percentage ratio between the
computational time (required to reach the specified error level) using the asynchronous algorithm
(Ta) and the computational time using the synchronous algorithm (Ts), and G is the efficiency
factor of the algorithm given by

G = − log(ef )
η

(53)
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Figure 3: Interaction error against iteration for power system
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7 Conclusion

In this paper, we proposed asynchronous algorithms for the costate and interaction prediction meth-
ods. A mathematical study of the convergence behavior of the proposed algorithms is presented. It
is shown that the new algorithm is convergent under given sufficient conditions which are strongly
related to the interaction between the subsystems and the integration period. In the case of the
costate prediction, the internal system structure also influences the convergence of the algorithm.

In view of the structural properties and the convergence results of the proposed algorithms,
some important comments related to the practical implementation are presented. Also, we suggest
specific methods to reduce the effect of the high communication delay resulting from excessive
information exchange among the subsystems.

Finally, we present the results of the numerical simulation of the algorithms applied to a number
of practical systems. In general, the solutions were identical to the global optimal solution obtained
from both the centralized and synchronous algorithms. The comparison with the asynchronous
algorithms shows that a substantial reduction in the total calculation time is achieved through the
proposed algorithms for all examined cases.
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System algorithm Synchronous Algorithms Asynchronous Algorithms Ta/Ts%
η ef G η ef G

RPC IP 8 9.7e-6 0.87 6 1.39e-6 1.02 75 %
CP 11 9.9e-6 0.64 7 9.2e-6 0.99 64 %

GAT IP 14 6.1e-4 0.34 7 9.6e-5 0.85 50 %
CP 30 8.1e-4 0.16 15 5.6e-4 0.32 50 %

PSC IP 23 6.3e-4 0.21 14 8.3e-4 0.35 61 %
CP 40 8.6e-4 0.12 14 8.9e-4 0.34 36 %

Table 1: Comparison between the synchronous and asynchronous algorithms
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