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ABSTRACT. Model-driven development of software systems envisions transformations applied 

in various stages of the development process. Similarly, the use of domain-specific languages also 

necessitates transformations that map domain-specific constructs into the constructs of an 

underlying programming language. Thus, in these cases, the writing of transformation tools 

becomes a first-class activity of the software engineer. This paper introduces a language that was 

designed to support implementing highly efficient transformation programs that perform model-to-

model or model-to-code translations. The language uses the concepts of graph transformations and 

metamodeling, and is supported by a suite of tools that allow the rapid prototyping and realization 

of transformation tools.   

Keywords. Model transformation, UML, graph transformation, graph rewriting, 

Model Driven Architecture.  

1. Introduction 

The model driven development of systems [34] necessitates the transformation of 

models into other models (e.g. analysis models) and artifacts (e.g. executable 

code) relevant in the system development process. Writing complex 

transformations is not easy, and tools are needed. Graph grammars and graph 

transformations (GGT) have been recognized as a powerful technique for 

specifying complex transformations. They can be used in various situations in a 

software development process [2][36][41][8]. Many tasks in software 

development have been formulated using this approach, including weaving of 

aspect-oriented programs [3], application of design patterns [41], and the 

transformation of platform-independent models into platform specific models [1]. 

A special class of transformations arises in Model Integrated Computing (MIC) 

[1]. MIC is an approach in which domain-specific modeling languages and 
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generator tools are developed and then the domain-specific language is used for 

creating, analyzing, and evolving the system (or a product-line of systems) 

through modeling and generation. During the last decade, MIC has gained 

acceptance through several fielded systems [23][34], and it is recognized in both 

academia and industry today. In the MIC approach, a crucial point is the 

generation, where design time models are transformed into executable models and 

analysis models. Executable models are used to configure a run-time platform 

(e.g. a component framework), while analysis models are used to verify the 

system using simulation and various other verification techniques. Model 

transformation tools are essential to MIC: they establish a bridge between the 

domain-specific models and their execution-time and analysis-time equivalents.  

In this paper we propose to use GGT techniques to provide an infrastructure for 

model transformations. We will use the MIC software process as the context, in 

which we present our results, but they easily generalize to universal model 

transformations like the ones advocated in OMG’s Model Driven Architecture 

[34].  

Section 2 briefly introduces Model Integrated Computing (MIC), and reviews 

graph grammars and transformations.   Section 3 describes Graph Rewriting and 

Transformation (GReAT) a language that allows transformations from one 

domain to another using heterogeneous metamodels. GReAT has a rich pattern 

specification sublanguage, a graph transformation sublanguage and a high-level 

control flow sublanguage and has been designed to address the specific needs of 

the model transformation problem. Section 4 provides details of the execution 

engine that implements GReAT. Section 5 shows an example model 

transformation using GReAT along with some results, and Section 6 describes 

comparison with other, similar systems. Section 7 discusses the conclusions and 

proposals for future research.  

2. Background and Related Work  

2.1. Model Integrated Computing (MIC) 

MIC is a software and system development approach that advocates the use of 

domain-specific models to represent relevant aspects of a system. The models 

capture system design and functionality, and are used to synthesize executable 



systems, perform analysis or configure simulators. The advantage of this 

methodology is that it expedites the design process, supports evolution, eases 

system maintenance and reduces costs [1].  

The MIC development cycle (see Figure 1) starts with the formal specification of 

a new application domain. The specification proceeds by identifying the domain 

concepts, their attributes, and relationships among them through a process called 

metamodeling [1]. Metamodeling is enacted through the creation of metamodels 

that define the abstract syntax, static semantics and visualization rules of the 

domain. The visualization rules determine how domain models are to be 

visualized and manipulated in a visual modeling environment. Once the domain 

has been defined, the resulting metamodel of the domain is used to generate a 

Domain-specific Design Environment (DSDE), which is then used to build 

domain-specific models. However, to do something useful with these models such 

as to synthesize executable code, perform analysis or drive simulators, we have to 

convert the models into another format like executable code, input language of 

analysis tools, or configuration files for simulators. This mapping of the models to 

another useful form is called model transformation and is performed by model 

transformers [1]. Model transformers (also called “model interpreters”) are 

programs that convert models in a given domain into models of another domain. 

For instance, a source model can be in the form of a synchronous dataflow 

network of signal processing operations, while the target (analysis) model can be 

in the form of Petri-nets, suitable for predicting the performance of the network. 

Note that the result of the transformation is just another model that conforms to a 

different metamodel: the metamodel of the target domain [1]. 

 
Figure 1 The MIC Development Cycle [1] 
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MIC promotes a metamodel-based approach to system construction, which has 

gained acceptance in recent years. The flagship research products following this 

approach are: Atom3 [27], DOME [51], Moses [36], Metaedit[27], and GME [1]. 

Each implementation has a metamodeling layer that allows the specification of a 

domain-specific modeling languages and a modeling layer that supports the 

construction and modification of domain models. 

The Generic Modeling Environment (GME) is the main component of the latest 

generation of MIC technologies developed at the Institute for Software Integrated 

Systems (ISIS), Vanderbilt University since the late 1980s. GME provides a 

framework for creating domain-specific modeling environments [1]. An important 

distinguishing property of the metamodeling environment of GME is that it is 

based on UML class diagrams [34]; an industry standard, which are used in GME 

to describe domain-specific modeling languages and their corresponding 

modeling environment by capturing the syntax, semantics and visualization rules 

of the target domain. The abstract syntax is captured using in UML class 

diagrams, the visualization techniques through the use of stereotypes, and the 

static semantics (i.e. the well-formedness constraints) using OCL expressions. A 

tool called the meta-interpreter verifies and translates the metamodels and 

constructs a configuration file for GME. This configuration file acts as a meta-

program for the (generic) GME editing engine, so that it makes GME behave like 

a specialized modeling environment supporting the target domain. Note that GME 

is used both as the metamodeling environment and the domain-modeling 

environment; the metamodeling language is just another domain-specific language 

that the common editing engine supports.  

While GME is equipped with a meta-interpreter, until recently there were no 

generic, high-level tools to assist in the construction of domain-specific model 

transformers. Each model transformer had to be hand-coded in an imperative 

programming language: a time consuming and error-prone activity. There was a 

need to develop methods and tools to automate and speed up the process of 

creating model transformers. 

The MIC approach described above has gained attention recently with the advent 

of the Model Driven Architecture (MDA) by Object Management Group (OMG) 

[34]. MIC can be considered as a particular manifestation of MDA, which is 

tailored towards system construction via domain-specific modeling languages [1]. 
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Recent efforts (described in [23]) indicate the widespread interest in MIC-related 

approaches.  

2.2. Graph Grammars and Transformations  

To enhance the development of model transformers we need a way to precisely 

specify the operation of those transformers on categories of models, and then 

generate the model transformer code from the specification. However, this task is 

non-trivial as a model transformer can be required to work with two arbitrarily 

different domains: the input and the output languages, and perform fairly complex 

computations. Hence, the specification language needs to be powerful enough to 

cover diverse needs and yet be simple and usable.  

Note that the metamodels, which are UML class diagrams, define the abstract 

syntax of the visual modeling language. In fact, GME allows the creation and 

manipulation of only such object structures that are compliant with those UML 

class diagrams. The objects edited in GME are called models, and the metamodels 

determine how model objects are composed, what attributes they have, what static 

semantic constraints are imposed on them, etc. 

From a mathematical viewpoint models in MIC are graphs, to be more precise: 

vertex and edge labelled multi-graphs, where the labels are denoting the 

corresponding entities (i.e. types) in the metamodel. It is plausible to formulate 

the model transformation problem as a graph transformation problem. We can 

then use the mathematical concepts of graph transformations to formally specify 

the intended behaviour of a model transformer.  

A variety of graph transformation techniques are described in [46][8][22][34] 

[2][48]. These techniques include node replacement grammars, hyperedge 

replacement grammars, algebraic approaches, and programmed graph replacement 

systems. Graph grammar techniques such as node replacement grammars, hyper 

edge replacement grammars, and algebraic approaches such as the ones used in 

AGG do not provide sufficiently rich mechanisms for controlling the application 

of transformation rules. PROGRES has a rich set of control mechanisms but they 

perform transformations within the same domain. Domains specify the structural 

integrity constraints that the graphs must conform to; in PROGRES these 

constraints are represented using schemas [46], while in AGG these are 

represented using type graphs [52].  



In MIC, the domain is represented by a metamodel, and the model transformations 

typically transform graphs that conform to one metamodel to models that conform 

to a completely different metamodel. For example, a model transformer may be 

required to convert models/graphs belonging to the “state machine” domain to 

models/graphs conforming to the “flow chart” domain. The graph transformation 

system must provide support for these transformations across heterogeneous 

domains. There is another problem: maintaining references between the different 

models/graphs. During the transformations it is usually required to link graph 

objects belonging to different domains.  

To illustrate the point let us consider a very simple transformation that needs to 

transform models conforming to one domain to another. For sake of simplicity we 

consider that the source domain has only one type of vertices: V1 and only one 

type of edges: E1 and that the target domain has again only one type of vertices: 

V2 and only one type of edges: E2. The transformation’s aim is to create a vertex 

and an edge in the target set for each vertex and edge in the source set: 

2212,2211 11 VvVvEeEe ∈∃⇒∈∀∈∃⇒∈∀  

(where means “precisely one”). A simple algorithm could first create a target 

vertex for each source vertex and then create the edges. To create a target edge e2 

that corresponds to source edge e1 we need to find the vertices in the target that 

correspond to the two source vertices e1 is incident with. This information needs 

to be saved in the first phase of the transformation for use in the second phase, 

and can be considered as maintaining reference between two graphs. There are 

other examples where the referencing is not simple, for example, in a 

transformation that determines the cross product of two sets of vertices to generate 

a new set of vertices. In this case each pair of source vertices should reference a 

single target vertex. A method is required to specify and use this information.  

1∃

The existing GGT approaches are powerful but are often hard to use for the 

specification and implementation of model transformers as described. Hence, new 

approaches are needed that target the specific needs of model-to-model 

transformation. A novel approach should have the following features:  

 The language should provide the user with a way to specify the different graph 

domains being used. This helps to ensure that graphs/models of a particular 

domain do not violate the syntax and static semantics of the domain. 
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 There should be support for transformations that create independent 

graphs/models conforming to different domains than the input models/graphs. 

In the more general case there can be n input model/domain pairs and m 

output model/domain pairs.  

 Cross-links between graph domains should be supported through well-formed, 

preferably graphical language constructs.  

 The language should have efficient implementations. The implementation for 

the model transformer should exhibit acceptable performance, and unbounded 

search should be avoided, if possible.  

 All the previous points aim at increasing programmer productivity in writing 

model transformers, thus the language should be usable by software engineers 

with average experience. This is a pragmatic goal. 

The new language should be usable and suited for addressing the needs of 

transforming graphical models to low-level implementation. It should drastically 

shorten the time taken to develop a new transformation tool for a graphical 

language, allowing a large number of domain-specific high-level graphical 

languages to be developed and used.  

Many recent papers have shown how graph transformation techniques can be used 

for (1) specification of program transformations [2], (2) defining the semantics of 

hierarchical state machines [36], (3) tool support for design patterns [41], and (4) 

tool integration [8]. Other recent work [32] [11] shows how model transformation 

can be implemented using graph transformation techniques, and illustrates how 

interesting properties, like termination, consistency, confluence, etc. can be 

proven using existing results. Our goal is that the language be able to implement 

the ideas presented in these papers.  

3. A Language for Graph Rewriting and 
Transformations: GReAT 

The transformation language we have developed to address the needs discussed 

above is called GReAT, short for “Graph Rewriting and Transformation 

language”.  

This language can be divided into 3 distinct parts.  

 Pattern Specification language. 

 Graph transformation language. 



 Control flow language. 

Before describing the language, we discuss how this language addresses the first 

three requirements mentioned in Section 2.2. 

3.1. Heterogeneous Graph Transformations  

Many approaches have been introduced in the literature to capture graph domains. 

For instance, schemas are used in PROGRES while AGG uses type graphs. These 

approaches are specific to the particular systems, while standards like UML are 

widely used in the software community today, and we have chosen to follow the 

UML route. It was also a pragmatic decision, as UML was used in our tools 

already.  

 

Figure 2 Metamodel of Hierarchical Concurrent State machine using UML class diagrams 

In model-to-model transformations the input and output graphs are object 

networks whose “schema” can be represented using UML class diagrams and 

constraint expressions in the Object Constraint Language (OCL) [41]. UML 

provides a rich language to specify structural constraints while OCL can be used 

to specify non-structural, semantic constraints. Thus, a UML class diagram can 

play the role of a graph grammar in that it can describe all the “legal” object 

networks that can be constructed with the domain. Finally, UML can be used to 

generate an object oriented API that can be used to traverse the input graph and to 

generate the output graph. GReAT allows the user to specify any number of 

domains that can be used for the transformation purposes. Figure 2 shows a UML 

class diagram that represents the domain of Hierarchical Concurrent State 

8 



Machines (HCSM) and Figure 3 shows the metamodel of a simple Finite State 

Machine (FSM).  

 
Figure 3 Metamodel of a simple finite state machine 

Note that one domain is typically described by multiple UML class diagrams, and 

classes with the same name (but different semantics) may appear in different 

domains. As discussed above, one problem that we need to address is how to 

maintain links between objects across multiple domains, such that these links 

appear as first-class elements (i.e., edges) in the graph transformation process. 

This problem is tackled in GReAT by using an additional domain to represent all 

the cross-domain links. Apart from using UML to specify all the different 

domains that will be used for the transformation, UML is also used to specify a 

temporary domain that contains the information of all the types of cross-links the 

transformation needs to know about. For example, Figure 4 shows a metamodel 

that defines associations between classes from HCSM and FSM. The State and 

Transition are classes from Figure 2 while the FiniteState and FiniteTransition are 

classes from Figure 3. This metamodel defines three types of edges. There is a 

refersTo edge type that associates States and FiniteStates and Transitions and 

FiniteTransitions. Another edge type associatedWith is defined and it links State 

objects.  

 
Figure 4 A metamodel that introduces cross-links 

Cross-links can be defined not only between different domains but can also be 

used to extend a specific domain to provide some extra functionality required by 

the transformation. By using yet another domain to specify the cross-links we are 
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able to tie the different domains together to make a larger, heterogeneous domain 

that encompasses all the domains and cross-references. This also helps us to have 

the same representation for cross-links as for any other edges. Note that this 

approach is related to the techniques used in triple-graph grammars [49], where 

explicit mappings between domain elements are specified.  

3.2. Definitions 

Before describing GReAT, some initial definitions are presented in this section. 

Graphs used in the GReAT language are typed and attributed multi-graphs and are 

defined below. We assume that for each graph there is a UML class diagram that 

defines classes and associations that act as “types” for vertices and edges, 

respectively. Classes could define attributes as pairs of names and attribute types.  

A vertex V is a 3-tuple (class, id, attrs), where class is a UML class, id is a unique 

label, and attrs is a map that maps each attribute (defined in the class) into a 

value. For convenience, we define the function vtype(V) that returns the class of 

V. We also define the Boolean-valued type-compatibility function tcomp(c1, c2) 

that returns true if class c1 is identical to or a subclass of class c2. If tcomp(c1,c2) 

evaluates to true, then we c1 and c2 are said to be type-compatible. We will use 

this to define the pattern matching for objects that are subtypes of base type 

pattern elements. This is different from to the approach in [5] that distinguishes 

abstract and concrete rules. 

An edge E is a 5-tuple: (assoc, id, src, dst, attrs), where assoc is the simple 

association or association class of a UML class diagram the edge belongs to, id is 

a unique label, and src and dst are vertices. attrs is a map which is non-empty if 

assoc is a UML association class, and it maps each defined attribute of that 

association class into a value.  When assoc is an association class the edge must 

be unique: there can be only one edge of type assoc between two participating 

objects. Src and dst are the vertices that the edge is incident upon and the type of 

these vertices must be identical to the endpoint classes of the edge.  For 

convenience, we define the function etype(E) that returns the assoc of E.  

A graph G is pair (GV, GE), where GV is a set of vertices in the graph and GE is 

the set of edges, such that GVdstGVsrcGEattrsdstsrcidassoce ∈∧∈∈=∀ ,),,,,(  

Note that the metamodel (the UML class diagram) is also a graph, but its 

metamodel is the model describing the UML language. That, in turn, relies on a 
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meta-metamodel, which is a subset of the MOF (Meta-Object Facility) of OMG 

[39], and it’s metamodel is itself. Thus, we follow the standard four-layer 

metamodeling approach.  

A match M is a pair (MVB, MEB), where MVB is a set of vertex bindings and 

MEB is a set of edge bindings. Vertex binding is defined as a pair (pv, hv), where 

pv is a pattern vertex and hv is a host graph vertex. Similarly, edge binding is a 

pair (pe, he), where pe is a pattern edge and he is a host edge. The match must 

satisfy the following property.  

  

))(),(())(),((
),(),,(

,
)()(

),,,(),,,,(),,(
, 

pdstvtypehdstvtypetcomppsrcvtypehsrcvtypetcomp
hdstpdstVBDhsrcpsrcVBS

whereMVBVBDMVBVBS
heetypepeetype

hattrshdsthsrchassochepattrspdstpsrcpassocpehepeEB
whereMEBEB

∧•
==

∈∃∧∈∃
∧=•

===
∈∀

The match doesn’t have a restriction that would specify that each pattern object 

must have a binding. This is intentional, as the match is also used to specify 

partial matching of pattern graphs. Note that a host graph vertex matches a pattern 

a vertex if they are type compatible. Note also that a match is injective: one 

pattern element maps onto one host graph element, and we disallow non-injective 

matches (i.e. one host graph element can be bound to at most one pattern 

element). However, the collections of matches are not injective: the same host 

graph element can appear in multiple matches, and thus the identity condition 

does not apply across matches, only within one match.   

3.3. The Pattern Specification Language 

A full graph transformation language is built upon a graph pattern specification 

language and pattern matching. Graph patterns allow selecting portions of the 

input (host) graph, and thus specify the scope of individual transformation steps. 

The specification techniques found in graph grammars and transformation 

languages [46][8][22][9][9][48][9] were not sufficient for our purposes, as they 

did not follow UML concepts. This paper introduces an expressive yet easy to use 

pattern specification language, which is closely related to UML class diagrams. 

Recall that the goal of the pattern language is to specify patterns over graphs (of 

objects and links), where the vertices and edges belong to specific classes and 

associations. In the language we will rely on the assumption that a UML class 
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diagram is available for the objects. The UML class diagram can be considered as 

the “graph grammar,” which specifies all legal constructs formed over the objects 

that are instances of classes introduced in the class diagram. In other words, an 

object graph is correct with respect to a metamodel if (1) there is a morphism 

between the metamodel elements and the object graph, and (2) all well-

formedness rules (constraints) evaluate to true over the object graph. 

3.3.1. Simple Patterns 

A simple pattern is one in which the pattern represents the exact subgraph. For 

example, if we were looking for a clique of size three in a graph, we would draw 

up the clique as the pattern specification. These patterns can be alternatively 

called single cardinality patterns, as each vertex drawn in the pattern specification 

needs to match exactly one vertex in the host graph.  

These patterns are straightforward to specify; however, ensuring determinism of 

the matching on such graphs is not. In this case determinism means that given a 

graph and pattern the match returned should be the same from one execution of 

the pattern matcher to another and from one matching algorithm to another. 

Pattern matching in graphs is non-deterministic and different matching algorithms 

may yield different results. 

Consider the example in Figure 5(a), where vertices are labeled as C:N, C being a 

class name and N being an instance name. The figure describes a pattern that has 

three vertices P1, P2 and P3, each of type. The pattern can match with the host 

graph shown in Figure 5(b) to return two valid matches, {(P1,T1), (P2,T3), 

(P3,T2)} and {(P1,T3),  (P2,T5), (P3,T4)}. For sake of brevity matches are 

considered as a set of vertex bindings, edge bindings have been ignored as they 

can be inferred from the vertex bindings. Naturally, the result of the matching 

depends upon the starting point of the search and the exact implementation of the 

algorithm.  

 
(a) Pattern   (b) Host graph 
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Figure 5 Non-determinism in matching a simple pattern 

The solution for this problem is to return the set of all the valid matches for a 

given pattern. The set of matches will always be the same for a given pattern and 

host graph.  

Returning all the matches however, has a time complexity of , where Ch 

is the number of host vertices and Cp is the number pattern vertices. To make the 

pattern matching usable we need to optimize it. One approach is to start the 

pattern matcher with an initial context. By context we mean an initial partial 

match that the pattern matcher is started with. For example, in Figure 5 the pattern 

matcher could be started with a binding {(T1,P1)} thus, the context for the 

matching is the host vertex T1 and the matcher will return only one match 

{(P1,T1), (P2,T3), (P3,T2)}. The initial binding reduces the search complexity in 

two ways, (1) the exponential is reduced to only the unmatched pattern vertices 

and (2) only host graph elements within a distance d from the bound vertex are 

used for the search, where d is the longest pattern path from the bound pattern 

vertex. 

)C(O pC
h

An algorithm for matching such kinds of patterns is given in Appendix 1. The 

algorithm takes as input the pattern, host graph and a partial match and returns a 

set of matches. Note that the algorithm works connected graphs only, unlike 

algorithms used in more sophisticated tools [52][41]. The partial match must have 

at least one vertex of the pattern bound to the host graph. It uses a recursive 

approach to solving the matching problem and returns a set of matches. 

There are cases where we would like to use the pattern matcher on the entire 

graph and not restrict it to any context. This can be achieved by running the 

pattern-matching algorithm for each host vertex. 

3.3.2. Fixed Cardinality Patterns 

Suppose we need to specify a string pattern that starts with an ‘s’ and is followed 

by 5 ‘o’-s. Obviously we could enumerate the ‘o’s and write “sooooo”. However, 

this is not a scalable solution and thus a representation format is required to 

specify such strings in a concise and scalable manner. For strings we could write 

it as “s5o” and use the semantic meaning that o needs to be enumerated 5 times 

assuming that ‘5’ is not part of the alphabet of this particular language.  
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(a) Pattern  (b) The graph it will match 

Figure 6 Pattern specification with cardinality 

The same argument holds for graphs, and a similar technique can be used. The 

pattern vertex definition can be changed to a pair (class, cardinality), where 

cardinality is an integer. Vertex binding can also be redefined as a pair (PV, 

HVS), where PV is a pattern vertex and HVS is a set of host vertices. For 

example, Figure 6(a) shows a pattern with cardinality on vertices. The pattern 

vertex cardinality is specified in angular brackets and a pattern vertex must match 

n host graph vertices where n is its cardinality. In this case the vertex bindings in 

the match are {(P1,T1), (P2,{T2, T3, T4, T5, T6})}, and there is one edge binding 

between the pattern edge and all the edges in the host graph.  

The fixed cardinality pattern matching also exhibits non-determinism. However, 

even in this case the issue can be dealt with by returning all the possible matches. 

If all the possible matches are returned the resulting set could be quite large. For 

example in Figure 6, if the host graph contained another vertex T7 adjacent to T1 

then the number of matches returned would be 6C5 (all combinations of 5 vertices 

out of 6). Thus 6 matches will be returned and each having only one vertex 

different from the other.  

A more immediate concern is how this notion of cardinality truly extends to 

graphs. For strings we have the advantage of a strict ordering from left to right, 

while for graphs we don’t. For instance, extending the example in Figure 6 with 

another pattern vertex will result in an ambiguous specification. 

In Figure 7(a) we show a pattern having three vertices. There are different 

interpretations (or semantics) that can be associated with the pattern. One possible 

semantics is to consider each pattern vertex pv to have a set of matches equalling 

the cardinality of the vertex. Then an edge between two pattern vertices pv1 and 

pv2, implies that in a match each v1, v2 pair are adjacent, where v1 is bound to 

pv1 and v2 is bound to pv2. This semantics, when used with the pattern in Figure 

7(a), gives the graph in Figure 7(b).  
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(a) Pattern with three vertices 

 
 

(b) Result with set semantics 

 

 
(c) Result with tree semantics

Figure 7 Pattern with different semantic meanings 

The algorithm to search the host graph for a set of matches according to the 

above-mentioned semantics is given in Appendix 2. The algorithm is a direct 

extension of the algorithm discussed in 3.3.1. 

The set semantics will always return a match of the structure shown in Figure 

7(b), and it doesn’t depend upon the factors like the starting point of the search 

and how the search is conducted. However, with the set semantics it is not 

obvious how to represent a pattern to match the graph shown in Figure 7(c).   

Another possible semantics could be the tree semantics: If a pattern vertex pv1 

with cardinality c1 is adjacent to pattern vertex pv2 with cardinality c2, then each 

vertex bound to pv1 will be adjacent to c2 vertices bound to pv2.  Let b1 = 

(pv1,V1) and b2 = (pv2,V2) be the bindings for pv1 and pv2 respectively. Then  

),(,21 212

2

11 nn

c

n
vveVvVv ∧∈∃∈∀

=
 

Relation 1 

This semantics, when applied with the pattern gives Figure 7(c). The tree 

semantics is weak in the sense that it will yield different results for different 

traversals of the pattern vertices and edges. For the traversal sequence pa, pb, pc 

we get a the graph shown if Figure 7(c) while for the traversal sequence pa, pc, pb 

we will get a different graph as shown in Figure 8. Another problem with the tree 

semantics is that graphs like the one shown in Figure 7(b) cannot be expressed in 

a concise manner. 
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Figure 8 Conflicting match for the tree semantics 

Both semantics discussed so far are incomplete in the sense that certain pattern 

matches cannot be expressed with it. Choosing either one compromises the 

expressiveness of the language. Furthermore, the tree semantics also brings in a 

different form of non-determinism because different traversal sequences yield 

different results.  

Fortunately, there is a pragmatic solution that solves all the problems: to use a 

more expressive, extended set notation. 

3.3.3. Extending the Set Semantics 

As an example, consider the use of regular expressions to represent strings. For 

example, in a string “sxyxyxy” “xy” is repeated 3 times. Using a notation 

mentioned previously we would express it as “s3(xy)”. Using parenthesis we were 

able to represent the fact that the “xy” sequence should occur 3 times. A similar 

notion can be used in graphs as well. That is, to use the notion of grouping 

vertices of a pattern to form a subpattern and then a larger pattern can be 

constructed using these subpatterns as vertices. If a group consists of a subgraph 

and has the cardinality n then the n subgraph need to be found. Another important 

point here is that while in strings the ordering of each element of the group is 

implicit in graphs we have to specify the connectivity and thus edges can be 

specified across groups.  

To illustrate the point Figure 9(a) shows the pattern that would express the graph 

in Figure 7(c) and Figure 9(b) shows the graph that expresses the graph in Figure 

8. With respect to the pattern P in Figure 9(a) there will be exactly one vertex PB 
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that will connect to exactly 2 vertices of type PC. The larger pattern will consist of 

the 3 subpatterns of the type described by P. The resulting graph that will be 

matched is shown in Figure 7(c). 

The above exercise illustrated two points. First, the set semantics along with the 

grouping notion can express all the graphs that the tree semantics can express and 

the second point is that the semantics are still precise and map to exactly one 

graph. 

 
(a) Pattern for Figure 7 (c) 

 
(b) Pattern for Figure 8 

Figure 9 Hierarchical patterns using set semantics 

At this point it is apparent that we can express a variety of graphs in an intuitive, 

concise and precise way. However, a large number of graphs are missing from the 

Grouped Set Semantics (GSS) that we described above: these graphs are those 

having more than one edge for the same pair of vertices. 

3.3.4. Cardinality For Edges 

Adding cardinality to pattern edges helps us express additional graph patterns in a 

compact manner. Another example is called for and is shown in Figure 10. The 

figure shows a pattern with cardinality on the edge. The semantics is an extension 

of Relation 1. Let b1=(pv1,V1) and b2=(pv2,V2). Then 

)2,1(,22,11
1

vveVvVv n

C

n=
∃∈∈∀  

Relation 2 

The extension is that instead of having one edge between each pair of vertices 

there can be C edges where C is the cardinality of the pattern edge. 
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(a) Pattern (b) Matching Host graph 

Figure 10 Pattern with cardinality on edge 

3.3.5. Variable Cardinality 

Sometimes, the subgraph to be matched is not fixed but is a member of a family 

of graphs. To show an analogy, suppose we want to match a string starting with 

‘s’ followed by 1 or more ‘b’s. This family of strings can be expressed with the 

help of regular expressions, such as “s(b)+”. In the general case the number of 

‘b’s can be bound by two numbers, the lower and upper bound. To extend the 

example let us consider that 5 to 10 ‘b’s could follow the ‘s’. By extending the 

regular expression notation slightly, we can come up with a notation “s(5..10)(b)”.  

Using a similar method for graphs, we can allow the notation of cardinality to be 

variable of the form (x..y), where the lower bound is x and the upper bound is y. 

Hence a particular pattern vertex should match at least x host graph vertices and 

not more that y host graph vertices. The upper bound can however be *, 

representing no limit. This approach can also be used to specify optional 

components in a pattern by having the cardinality of optional components as 

(0..1). 

 
(a) Pattern  (b) Family of graphs 

Figure 11 Variable cardinality pattern and family of graphs 

Figure 11 shows a variable cardinality example. The pattern in Figure 11(a) 

specifies that 3..10 P2s can be connected to a P1, thus the family of graphs 
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represented is given in Figure 11(b). The required portion must be present while 

the optional part may or may not be present. We have finally extended the 

specification language to express a truly large set of graphs.  

However, there are a few problems with variable cardinality. Let us consider the 

pattern in Figure 11(a) and let us consider a graph having T2..T11 connected to 

T1 in the host graph. Should the pattern-matching algorithm return only one 

match namely the entire host graph or all possible subgraphs with cardinality 3, 4 

up to cardinality 10. The way we solve this problem is as follows: if more than 

one match is produced, then a match will be returned only if it is not a proper 

subgraph of another, larger match in the same set of matches.  A match m1 is 

larger than a match m2 if it, m1, contains more elements of the host graph than 

m2. Thus the matches returned would each be maximal and consistent with 

respect to the pattern. This construction yields a precise and consistent language, 

which can be used to specify complex patterns in a concise manner.  We 

conjecture that the language is powerful enough to express application conditions 

as described in [24].  

3.3.6. Pattern Graph and Match Definition  

After the discussion on the specification of patterns we can now generalize the 

definitions for pattern vertices, edges and graphs with cardinalities. We note that 

the pattern matching concept for nested subpatterns with multiplicities introduced 

here is similar to the one described in [52]. 

A pattern vertex PV is a pair: (class, card), where class is a UML class defined in 

the heterogeneous metamodel and card is a pair of (lower, upper). The function 

lower(pv) applied to a pattern vertex pv returns the lower field of card of that pv, 

and the function upper(pv) is similarly defined. For a set S #(S) means the 

cardinality of that set. A pattern edge PE is a 4-tuple (assoc, src, dst, card), where 

assoc is the simple association or association class the edge belongs to, and src 

and dst are the pattern vertices that the edge is incident upon. The class of these 

vertices must be identical to the endpoint classes of assoc.  A pattern graph PG is 

pair (GPV, GPE), where GPV is a set of vertices in the graph and GPE is the set 

of edges, such 

that GPVdstGPVsrcGPEcarddstsrcassocpe ∈∧∈∈=∀ ,),,,( . 
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The definition of a match can also be suitably revised to a pair (MVB, MEB), 

where MVB is a set of vertex bindings and MEB is a set of edge bindings. Vertex 

binding is defined as a pair (pv, HV), where pv is a pattern vertex and HV is a set 

of host graph vertices. Similarly edge binding is a pair (pe, HE), where pe is a 

pattern edge and HE is a set of host graph edges. The match (MVB,MEB) must 

satisfy the following properties: 

  

))(),(())(),((
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)()(#)()()(#)(

:),(),,(
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3.4. Graph Rewriting/Transformation Language 

The graph transformation language GreAT was inspired by many previous efforts 

such as [8][22][34][48][9]. The language is built upon the notion of the basic 

transformation entity: a production (or rule). A production contains a pattern 

graph where the pattern objects each conform to a type: class or association from 

the metamodel. Additionally, each pattern object has another attribute that 

specifies the role it plays in the transformation. There are three different roles that 

a pattern object can play. They are: 

• bind: The object is used to match objects in the graph. 

• delete: The object is used to match objects, but once the match is computed, 

the objects are deleted. 

• new: After the match is computed, new objects are created.  

The execution of a rule involves matching every pattern object marked either bind 

or delete. If the pattern matcher is successful in finding matches for the pattern, 

then for each match the pattern objects marked delete are deleted and then the 

objects marked new are created. The delete operation deletes the object, as well as 

the links incident upon it, similarly to the Single Pushout approach [46]. Since the 
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pattern matcher returns all matches for the pattern, it is possible that matches 

overlap, and there can be a case where a host graph object is deleted from a match 

while a subsequent match still has a binding for it. The delete operation checks for 

such a situation and if it arises it doesn’t perform the delete and returns failure. 

Thus only those objects can be deleted that are bound exactly once across all the 

matches.  

Sometimes the patterns by themselves are not enough to specify the exact graph 

parts to match and we need other, non-structural constraints on the pattern. For 

example, “an integer attribute of a particular vertex should be within a range.” 

These constraints could be described using Object Constraint Language (OCL) 

[41], as it is a widely used standard and is directly related to UML: the basis for 

metamodeling in GME. If a match returns multiple vertices (edges) for a pattern 

vertex (edge) then the value of a pattern variable will be a container (in the OCL 

sense), and thus the expression has to be written accordingly. There is also a need 

to provide values to attributes of newly created objects and/or modify attributes of 

existing objects, this done via “attribute mapping”. Because of practical 

considerations, we have chosen C++ as the implementation language for both 

guards and the attribute mapping code (although GME has a built-in OCL 

interpreter).  

The formal definition of a production is as follows. A production P is a 4-tuple: 

(pattern graph, pattern roles, guard, attribute mapping), where  

 Pattern graph is a graph (defined in Section 3.3.6). 

 The pattern roles map each pattern vertex and edge to an element of the role 

set: {bind, delete, new}. 

 Guard is a Boolean-valued expression that operates on the vertex and edge 

attributes of the matched host graph elements. If the guard is false, then the 

production will not execute any operations. 

 Attribute mapping is a set of assignment statements that set values for 

attributes on new edges and vertices, and can use values of other edge and 

vertex attributes. 

Figure 12 describes the algorithm executing a production (a “rule”). The 

algorithm calls the pattern matcher described in Appendix 1 and 2. A “Packet” 

provides the initial binding required by the pattern matcher and the “Effector” 

function performs deletion and creation of objects, described later in the paper.  
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Function Name : ExecuteRule 
Inputs   : 1. Rule rule (rule to execute)  

    2. List of Packets inputs  
Outputs   :  1. List of Packets outputs 
outputs = ExecuteRule(rule, inputs)  
{ List of Packets matches  
 List of Packets outputs 
 for each input in inputs 
 { = Patte Matcher(rule, input) matches rn
  for each match in matches  
  { if match doesn’t satisfy guard  
    matches.Remove(match) 
  } 
  for each match in matches 
  { Effector(rule, match) 
   outputs.Add(match) 
  } 
 } 
 return outputs 
} 
Figure 12 Algorithm for rule execution 

3.4.1. Language Realization 

The goal of the language is (1) to transform models that (a) belong to one meta-

model into models that belong to another meta-model or (b) to transform models 

within one meta-model, while (2) maintaining the consistency of the models with 

respect to their meta-models. Hence, it is important that the language allows the 

user to construct only rules that conform to the meta-models. As discussed earlier, 

sometimes it is necessary to construct vertices and edges that do not belong to a 

metamodel (of the input or the output) hence there is a need for having 

metamodels for these temporary elements. Therefore, we follow the process 

below when constructing GReAT transformation programs: 

 The user first imports metamodels the source and target models.   

 Next, the user constructs a metamodel that defines all the types for the 

temporary vertices and edges that he/she will need in the transformation. Note 

that the user may introduce associations between classes belonging to two 

different metamodels, and can even introduce completely new classes. 

 After building these metamodels, the user can construct the productions that 

are “legal”, i.e. compliant with a metamodel.  

Figure 13 shows an example rule. The rule contains a pattern graph, a Guard and 

an AttributeMapping. Each object in the pattern graph refers to a class in the 

collection of metamodels, and this reference means that the pattern object must 

match with a graph object that is an instance of the class (or of one of its 

subclasses) represented by the metamodel entity. The default action of the pattern 



objects is Bind. The New action is denoted by a tick mark on the pattern vertex 

(see the vertex StateNew in figure). Delete is represented using a cross mark (not 

shown in figure). The In and Out icons in the figure are used for passing graph 

objects between rules and will be discussed in detail in the next section.  

 
Figure 13 An example rule with patterns, guards and attribute mapping 

3.5. The Language for Controlled Graph Rewriting and 
Transformation 

In section 3.3.1 concerns about the efficiency of the pattern matching algorithm 

were discussed. The performance of the pattern matching can be significantly 

increased if some of the pattern variables are bound to elements of the host graph 

before the matching algorithm is started (effectively providing a context for the 

search). The initial matches are provided to a transformation rule via ports that 

form the input and output interface of the production. If one considers a 

production a function, then a port is a formal parameter:  input parameters (ports) 

are read during function execution and output parameters (ports) are written to. 

Before a rule is executed a “values”: a host graph node must be provided for each 

input port. The pattern vertices that are connected to the input ports are bound to 

these host graph vertices before the actual pattern matching is computed. After 

rule execution, the binding of those pattern vertices that are connected to output 

ports is then used to form the output values: again, host graph nodes.  These nodes 

are then passed along to a subsequent rule. In Figure 13 the In and Out icons are 

input and output ports respectively. The collection of input (output) ports is called 

the input (output) interface, respectively. A rule receives a set of bindings: one 

host node for each port, and produces another set of bindings: one host node for 

each output port. These sets are called the input and output packets, respectively. 

Thus rules operate on and produce packets, which are sets of (port, host graph 

vertex) pairs. Note that these packets are produced by predecessor rules (as 
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explained below), while for the first rule in the transformation program the 

programmer has to provide the initial bindings.  

 

Figure 14: UML class diagram for the core transformation classes GReAT 

The next concern is the application order of rewriting productions. Classical graph 

grammars apply any production that is feasible. This, very powerful technique is 

good for generating and matching languages but model-to-model transformations 

often need to follow an algorithm that requires a more strict control over the 

execution sequence of rules, with the additional benefit of making the 

implementation more efficient.   

In order to better manage complexity in transformation programs it is important to 

have higher-level constructs, like hierarchical constructs and control structures in 

the graph rewriting language. For this reason, we support (1) the nesting of rules 

and (2) control structures. We show these capabilities here using the classes that 

form the abstract syntax tree of the language. The common abstract base class for 

the language is Expression, as shown in Figure 14, and all other constructs like 

Rules and Blocks are derived from it. The derivation implies a shared base 

semantics: all these classes represent some kind of graph transformations.  

Figure 15 shows input-output interfaces (Ports) of the Expressions (In and Out), 

as well as the sequencing (Sequence), the pattern class objects (PatternClass) and 

their connection to the ports (Binding).  The interface of the expressions allows 

the outputs of one expression to be the input of another expression, in a dataflow-

like manner: this is used to sequence expression execution.  
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Figure 15: UML class diagram for the abstract syntax classes of GreAT: The interface 

A CompoundRule may contain other compound rules, Tests, and PrimitiveRules.  

The primitive rules of the language are to express primitive transformations. A 

Test is a special expression and is used to change the control flow during 

execution. Figure 16 captures a high-level algorithm for rule execution.  
Function Name : Execute 
Inputs   : 1. List of Packets inputs  
     2. Expression expression  
Outputs   :  1. List of Packets outputs  
outputs = Execute(expression, inputs)  
{ if(expression is a for block) 
  return ExecuteForBlock(expression, inputs) 
 if(expression is a block) 
  return ExecuteBlock(expression, inputs) 
 if(expression is a test) 
  return ExecuteTest(expression, inputs) 
 if(expression is a rule) 
  return ExecuteRule(expression, inputs) 
} 
Figure 16 The expression execution algorithm 

The control flow language has the following basic control flow concepts. 

 Sequencing – rules can be sequenced to fire one after another 

 Non-Determinism – rules can be specified to be executed “in parallel”, where 

the order of firing of the parallel rules is nondeterministic.  

 Hierarchy – CompoundRules can contain other CompoundRules or 

Expressions 

 Recursion – A high level rule can call itself.  

 Test/Case – A conditional branching construct that can be used to choose 

between different control flow paths.  

Note that the approach followed here can be considered as a highly specialized 

version of the transformation unit concepts introduced in [27], and follow the 

concepts of programmed graph grammars introduced by [52]. The hierarchical 

constructs can be viewed as graph transformation modules, but in GReAT the 
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control condition is restricted. Also, GreAT does not address the issue of 

transactions, as all rule execution is assumed to be single-threaded.  Furthermore, 

the rule execution semantics is similar to the execution semantics of asynchronous 

dataflow graphs and DEVS [54], but with a difference in the hierarchical rule 

execution, as discussed below. In this sense, the class diagrams Figure 14 and 

Figure 15 introduce the same concepts as found in DEVS.  

3.5.1. Sequencing of Rules 

If the output interface (ports) of a rule is connected to the input interface (i.e. the 

input ports) of another rule, then the execution of the first rule is followed by the 

execution of the second rule. The connectivity of the rules implies the “flow of 

packets” from one rule to the next.  Figure 17 illustrates this flow of packets 

through the rules with names inside rules (e.g. IR, IP, etc.) for labeling the ports of 

the rules. The packets are shown as a vertical group of names where each name 

refers to a host graph vertex. For instance, (R P2) forms one packet, (R P1) forms 

another one, etc. Packets for the first rule in the transformation program are 

provided by the top-level configuration, and intermediate packets are produced by 

rule execution: pattern matching and object creation. Note that one input packet 

could produce zero, one, or more than one output packets. The last case happens 

when the pattern matcher delivers multiple matches. The objects within the 

packets are bound to the corresponding input ports in the vertical layout (i.e. R is 

bound to IR, P1 is bound to IP, and in the next packet R is bound to IR, and P2 is 

bound to IP, etc.) Figure 17(a) shows a state during rule execution, where there 

are two input packets available on the input interface of Rule 1. Rule 1 is executed 

first: it runs once for each of its input packets. Suppose it produces four output 

packets as shown in Figure 17(b). Then rule 2 will fire to process all its input 

packets, and it produces six output packets, as shown in Figure 17(c). 

 
(a) 

 
(b) 
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(c) 

Figure 17 Firing of a sequence of 2 rules 

3.5.2. Hierarchical Rules 

There are two kinds of hierarchical, “container” rules: (1)Block, and (2)ForBlock. 

We consider these rules, because from the viewpoint of other rules connected to 

the containers both Block and ForBlock have the same semantics: they consume 

and produce packets as described above. Thus, if in Figure 17 the rules 1 and 2 

were hierarchical, then they would have had the same effects as described above. 

All the semantic differences are internal to the hierarchical rules. 
Function Name : ExecuteBlock 
Inputs   : 1. List of Packets inputs   
     2  bloc. Expression k 
Outputs   : List of Packets tputs   1.  ou
outputs = ExecuteBlock(block, inputs)  
{ List of Packets outputs 
 Stack of Rules ready_rules 
 for each next_rule in block.next_rules() 
 { if(next_rule is_a block) 
    outputs.Add(inputs) 
  else  
    ready_rule.Push(next_rule,inputs)   
 } 
 while( ready_rules.NotEmpty()) 
 { current, arguments = ready_rules.Pop() 
  rguments = ecute(current, arguments) return_a Ex
  for each next_rule in current.next_rules() 
  { if(next_rule is_a block) 
   puts.add(inputs )   out
   else 
     ready_rule.Push(next_rule,inputs) 
  } 
 } 
 return outputs 
} 
Figure 18 Block execution algorithm 

The Block has the following semantics: it will forward all its incoming packets to 

the first internal rule (i.e. it operates with the regular rule semantics). The input 

interface of the block can be attached to the input interface of any internal block 

or to the output interface of the block. In other words the block can produce 

output packets from any internal rule or pass its input packets as output. However, 

the output interface of a block must be attached to exactly source and it cannot be 

attached to two different places. 
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(a) 

(b) 

(c) 

(d) 

(e)

Figure 19 Rule execution of a Block 

Figure 19 illustrates the execution of rules within a block. Figure 20 illustrates the 

case when the output interface of a block is connected to the input interface of the 

same block. 

(a) 

(b) 

(c) 

(d)

Figure 20 Sequence of execution within a Block 

The ForBlock has a different execution semantic: if there are n (> 0) incoming 

packets in a ForBlock then the first packet will be pushed through all its internal 

rules to produce output packets and then the next packet will be pushed through, 

etc. The semantics is illustrated with the help of an example on Figure 21. 

(a) 

(b) 

(c) 

(d) 
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(e) 

(f) 

(g) 

(h)

Figure 21 Rule execution sequence of a ForBlock 

Similarly to the Block, the input interface of the ForBlock can also be associated 

with the input interface of any internal rule or the output interface of the block. 
Function Name : ExecuteForBlock 
Inputs   : 1. List of Packects inputs 
     2. Expression forblock  
Outputs   :  1. List of Packects outputs 
outputs = ExecuteForBlock(forblock, inputs)  
{ List of Packects outputs 
 for each input in inputs 
 { returns = ExecuteBlock(forblock, input) 
  outputs.Add(returns)  
 } 
 return outputs 
} 
Figure 22 For block execution algorithm 

3.5.3. Branching using test case 

There are many scenarios where the transformation to be applied is conditional 

and a “branching” construct is required. GReAT supports a branching construct 

called Test/Case.  

The semantics of a Test/Case is similar to any other rule. When fired, it consumes 

all its input packets to produce some output packets. However, for Test/Cases one 

can have multiple output interfaces. In Figure 23 a test is shown that has two 

cases. The Test has input interface ({IR,IP}) and two output interfaces ({OR1, 

OP1} and {OR2, OP2}). When the test is executed each incoming packet will be 

tested by an embedded Case, and placed on the corresponding output interface. 

 

 
  (Before)   (After) 

Figure 23: Execution of a Test/Case construct 
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The test must contain at least one Case which is a rule with no actions (i.e. no side 

effects). A Case contains a pattern (containing bind objects only), a guard 

condition, and an input and an output interface. If the pattern matches and the 

guard evaluates to true, then the case succeeds and the input packet given to the 

case is passed along, otherwise the case fails. 

 

(Before)    (After) 
Figure 24 Execution of a single (successful) Case 

Figure 24 shows the successful execution of a Case. The input packet has a valid 

match and so the packet is allowed to go forward. 

 
(a)    (b) 

 
(c)     (d)  

 
(e) 

 
Figure 25 Inside the execution of a Test 

When a test has many cases, then each input packet is propagated to each case to 

find which cases are satisfied for the particular packet and the resulting packets 

are placed in the output interface of each satisfied case. This behavior is similar to 

a set of “if” statements without the “else” part. Since the default semantics is that 
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an input packet will be tested with all the cases, more than one case may succeed 

and this may lead to non-determinism.  

A variation on the default behavior is achieved by using the Boolean “cut” 

attribute of a Case. When a Case has its “cut” behavior enabled and the case 

succeeds on a given input, then the input will not be tried with the subsequent 

cases. If each Case in a Test has the “cut” enabled, then the test will behave like 

an “if-elseif-else” programming construct. To implement the “cut” an explicit 

ordering of the cases is required. The order of testing cases is derived from the 

physical placement of the Case within the Test, in the graphical model: the cases 

are evaluated from top to bottom. If there is a tie in the y co-ordinate then the x 

co-ordinate is used from left to right.   

In Figure 25 the execution of a test is shown. An input packet is replicated for 

each case. Then the input packet is tried with the first case, it succeeds and is 

copied to the output of the case. Since the “cut” is not enabled in the first case the 

packet is tried with the second case, this time it fails and the packet is removed. 

Finally, after all input packets have been consumed and the output interfaces have 

the respective packets.  

 
Function Name : ExecuteTest 
Inputs   : 1. List of Packects inputs 
     2. Expression test 
Outputs   :  1. List of Packects outputs 
outputs = ExecuteTest(test, inputs)  
{ List of Packects outputs 
 List of Cases cases =                        
                  test.cases_in_sequence() 
 for each input in inputs {  
  for each case in cases {  
   returns = ExecuteCase(case, input) 
   outputs.Add(returns)   
   if(case has a cut and returns is not empty) 
    break 
  } 
 } 
 return outputs 
} 
Figure 26 Test execution algorithm 

3.5.4. Non-deterministic Execution  

When a rule is connected to more than one follow-up rule, or when there is a test 

with more than successful cases, the execution becomes non-deterministic. The 

execution engine chooses a path non-deterministically, and the chosen path is 

executed completely before the next path is chosen.  



 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

 
Figure 27 A non-deterministic execution sequence 
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Figure 27 shows a non-deterministic execution sequence. Here the non-

deterministic execution is due to a test/case (but it could also have been caused by 

a rule connected to more than one other rule). After the branch, there are packets 
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on both output interfaces of the test. Thus both rule 2 and rule 4 are ready to fire, 

and rule 2 is chosen non-deterministically and fired, followed by the execution of 

following rules. This ends at rule 3. Then rule 4 and 5 are fired. 

3.5.5. Termination 

At one point, the transformation must terminate. A rule sequence is terminated 

either when a rule has no output interface at all, or when a rule having an output 

interface does not produce any output packets. 

If the firing of a rule produces zero output packets then the rules following it will 

not be executed. Hence in Figure 27, if rule 4 produced zero output packets then 

rule 5 would not have been fired. 

4. The Implementation 

The language described above was defined with the help of a metamodel: a UML 

class diagram, which was then compiled into a GME meta-program —resulting in 

a visual modeling environment that allows creating and editing transformation 

programs. The three sublanguages were defined as three separate, but related class 

diagrams, thus yielding a modular design for the language. The metamodel 

composition capabilities of GME [1] allowed this. Such a modular design also 

enables changing and evolving the sublanguages independently. 

The language was implemented using an interpreter first, but later a code 

generator was developed that compiles the transformation rules into executable 

code. The interpreter is supplied with the transformation rules and the starting 

input packets (typically the root model of the dominant hierarchy).   

The underlying technology used for the implementation of GReAT is the 

Universal Data Model (UDM) package [3]. UDM is a reflective, meta-

programmable package that is supported by a development process and a set of 

tools to generate C++ accessible interfaces from UML class diagrams of data 

structures. The generated APIs can utilize a variety of data storage 

implementations (called “backends”) for models (such as XML, GME model 

databases, ODBC databases, etc.). The data storage implementation is transparent 

to the user and the same API can be used to access and store data in any 

(supported) format. Note that UDM includes a reflection package, as the meta-
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models (obtained from the UML class diagram) are explicitly included in the form 

of initialized data structures.   

The GReAT interpreter is an experimental testbed developed for testing the 

transformation language and to validate that the language is powerful enough to 

express common transformation problems. The interpreter takes the input graph, 

applies the transformations to it, and generates the output graph. Inputs to the 

GReAT interpreter include: (1) the UML class diagrams for the input and output 

graphs (i.e. the meta-models), (2) the transformation specification, and (3) the 

input graph: the input models. The GReAT interpreter traverses the rules 

according to the sequencing and produces an output graph based upon the actions 

in the rules. 

The architecture of the run time system is shown in Figure 28.  The interpreter 

accesses the input and output graph with the help of a generic UDM API that 

allows the traversal of input and output graph. The rewrite rules are stored in their 

own language format and can be accessed using the language specific UDM API. 

The GReAT is composed of two major components, (1) Sequencer, (2) Rule 

Executor (RE). The Rule Executor is further broken down into (1) Pattern 

Matcher (PM) and (2) Effector (or ‘output generator’). The Sequencer determines 

the order of execution for the rules using the ‘Execute’ function described above 

and it calls the ExecuteRule for each rule. The rule executor internally calls the 

PM with the pattern of the rule. The matches found by the PM are used by the 

Effector to manipulate the output graph by performing the actions specified in the 

rules.  

The Pattern Matcher finds the subgraph(s) in the input graph that are isomorphic 

to the pattern specification. When a pattern vertex/edge matches a vertex/edge in 

the input graph, the pattern vertex/edge will be bound to that vertex/edge. The 

matcher starts with an initial binding supplied to it by the Sequencer. Then it 

incrementally extends the bindings till there are no unbound edges/vertices in the 

pattern. At each step it first checks every unbound edge that has both its vertices 

bound and tries to bind these. After it succeeds to bind all such edges it then finds 

an edge with one vertex bound and then binds the edge and its unbound vertex. 

This process is repeated till all the vertices and edges are bound. The recursive 

algorithm for the matches is shown in Appendices 1 and 2. 



 
Figure 28 The GReAT interpreter 

Once the transformation has stopped, the resulting graph will be compliant with 

the output metamodel. This is enforced by the UDM package, as it does not allow 

creating type-incompatible constructs. However, the checking of the OCL 

constraints over the result is not automatic: the programmer should include 

provisions for invoking this step after the transformation stops. Note that the 

result may not be unique: two runs on the same input may produce different 

results. The main cause of this is the pattern matcher: the ordering of matches 

delivered by the matcher is not deterministic. We are working on extending the 

language to address this issue.  

5. Examples and Results 

To test GReAT and to measure its usability we chose some challenge problems 

that reflect the needs of the model-to-model transformation application area. The 

challenge problems chosen were as follows. 

 Generate a non-hierarchical Finite State Machine (FSM) from a Hierarchical 

Concurrent State Machine (HCSM). This problem introduced interesting 

challenges. To map concurrent state machines to a flat state machine there is a 

need for complex operations that include computing a Cartesian product over 

the state spaces of the concurrent machines. This particular transformation 

required a depth-first, bottom up approach, and also proved that the system 

can allow different traversal schemes. 

 The next example was to generate an equivalent Hybrid Automata [24] model 

from a given Matlab Simulink-Stateflow model. This was another non-trivial 
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example as the mapping is not a straightforward one-to-one mapping.  The 

algorithm used to solve this problem converts a restricted Simulink-Stateflow 

model to an equivalent hybrid automata network model that produces the 

same dynamic behaviour. This algorithm has some complex steps such as state 

splitting, reachability analysis and special graph walks that make it another 

interesting problem to try. 

 The final example was to build a code-generator for a domain-specific 

modeling language. The specific transformation program converted Stateflow 

models into C++ code. For this, we have created a metamodel with classes 

representing specific C++ code fragments (e.g. “GuardExpression”) that were 

instantiated with appropriate strings for attributes generated during the 

transformation. This example was chosen because it is a relevant, practical 

problem. 

All these challenge problems have been solved along with other simple example 

problems using the GReAT language and interpreter.  The state machine 

flattening example was solved using a recursive depth-first bottom up algorithm 

that first calls flattening on its children before flattening itself. A simpler, 

reachability analysis problem uses the mark and sweep algorithm [38].   

The goal of using a graph transformation based specification language is to 

increase programmer’s productivity. Table 1 shows some results by comparing 

the size of and time taken to develop GReAT specifications for model 

transformation problems to the estimated equivalent lines of procedural code. The 

primitive rules are rules that contain graph transformation specification, while 

compound rules are higher-level control flow constructs. These preliminary tests 

have shown that each primitive rule corresponds to approximately 30 lines of 

hand code. The corresponding hand code is fairly complex and not very 

straightforward to write. This makes us believe that the language can actually 

provide increase in productivity. However, better tests need to be designed and 

performed using more experiments to provide more precise results. 
Table 1 Comparison of GReAT implementation vs code 

GReAT Hand-code Problem 

Primitive/Compound 

Rules    

Time (man-hrs) Est. LOC 

Mark and sweep algorithm 

on Finite State Machine  

7/2 ~2 100 



Hierarchical Data Flow to 

Simple Data Flow  

11/3 ~3 200 

Hierarchical Concurrent 

State Machine to Finite 

State Machine 

21/5  ~8 500 

Simulink Stateflow to C code 70/50 ~25 2500 

Matlab Simulink/ Stateflow 

to Hybrid Automata   

66/43  ~20 3000 

 

5.1. HCSM to FSM example 

A model transformer that converts Hierarchical Concurrent State Machine 

(HCSM) models to Finite State Machine (FSM) is described in this section. This 

transformer uses the HCSM metamodel (Figure 2), and the FSM metamodel 

(Figure 3). A metamodel was also introduced to define the (temporary) cross-links 

(Figure 4). The transformation algorithm used can be divided into two parts. The 

first part of the algorithm flattens the HCSM graph within the HCSM domain, and 

in the second part an isomorphic copy of the flattened HCSM is created in FSM 

domain.  

 
Figure 29 The top-level rule 

The flattening algorithm is depth-first/bottom-up.  This is achieved using a 

recursive block Top-level (shown in Figure 29). The Top-level gets input from the 

input port InState. The input can be of type Or-state, And-state or Simple-state. 

The first expression inside Top-level is a test/case called Test that branches 

according to the type of input. If the input is an And-state it is passed to the block 

called And that flattens the And-state. If the input is an Or-state it is passed to the 

block called Or that deals with the flattening the Or-state, and if the input is a 

Simple-state it is passed directly to the output port OutState without any 

processing. 
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Figure 30 Inside the OR rule 

Figure 30 shown the rules inside the Or block of Figure 29. These internal rules 

are used to flatten an or-state. The first rule in the rule chain is 

CallRecursiveOnChildren, a block that finds all the contained states of the or-

state being processed and then called the top-level rule (Figure 29) for each of 

them. The next expression TestForChild will only execute after the recursive calls 

have been executed and thus at this point the or-state being flattened will only 

contain flat Or-states (And-state when flattened will also produce an equivalent 

flat Or-state) and primitive states. TestForChild is a test/case and it tests to see if 

the or-state contains any Or-state type children. If not then the or-state is already 

flat and is passed to the output port. If the or-state contains other or-states then it 

is passed to ElevateChildOr rule (Figure 31).  

 
Figure 31 ElevateChildOr rule 
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Figure 31 shows ElevateChildOr rule. In the rule the or-state being flattened is 

Or1 and for each contained Or1x child or-state having a child State a new 

StateNew is created as the child of Or1. The next rule in sequence is 

CreateInitTransition. This rule is used to create equivalent transitions for the init 

transition within Or1. ElevateTrans is the next rule and it creates transitions for 

each transition contained in Or1x. CreateOrTrans The next rule is used to create 

equivalent transitions for each transition that is incident upon Or1x. The last rule 
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in the sequence DeleteChildOrs is used to delete Or1x. At this stage the Or1 state 

is a flat Or-state.  

Flattening an And-state is more complex and requires more rules. For the sake of 

brevity we have not described the flattening of the and-states. However, the full 

transformation is available as an example in the software distribution, available 

from our website.  

6. Comparison with related work 

GReAT has been developed as a new tool for building model transformation 

applications. As such, it relies on the intellectual heritage of other transformation 

tools. Here we give a short overview of these tools and their relationships to 

GReAT.  

PROGRES [49] is arguably the first widely used tool for specifying 

transformations on structures represented as graphs. PROGRES has sophisticated 

control structures for controlling the rewriting the process, in GReAT we have 

used a similar, yet different approach: explicitly sequenced rules that form control 

flow diagrams. PROGRES also supports representing type systems for graphs, in 

GReAT we use UML diagrams for this purpose. The very high-level notion of 

graph transformations used in PROGRES necessitates sophisticated techniques for 

efficient graph matching; in GReAT we mitigate this problem by using less 

powerful rules and (effectively) perform a local search in the host graph.  

Fujaba [27] is similar to GREAT in the sense that it relies on UML (the tool was 

primarily built for transforming UML models) and uses a technique for explicitly 

sequencing transformation operations. However, Fujaba follows the state-

machine-like “story diagram” approach [20] for scheduling the rewriting 

operations; a difference from GReAT.  

AGG [52] is a graph transformation tool that relies on the use of type graphs, 

similar to (but different from) UML diagrams. Recent work related to AGG 

introduced a method for handling inheritance, as well as a sophisticated technique 

for checking for confluence (critical pair analysis). In GReAT, inheritance is 

handled in the pattern matching process, and the confluence problem is avoided 

by using explicit rule sequencing. AGG has support for controlling the 

transformations in the form of layered grammars; a problem solved differently in 

GReAT.  
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VIATRA [9] is yet another graph transformation tool that interesting capabilities 

for controlling the transformations (state machines), and the composition of more 

complex transformations.  In GReAT similar problems were addressed via the 

explicit control flow across rules and the formulation of blocks. Higher-order 

transformations were also introduced in VIATRA, there is no similar capability in 

GReAT currently.  

In summary, PROGRES, AGG, Fujaba, and VIATRA together with GReAT 

belong to the same family of model transformation tools. Where GReAT is 

different from these tools can be summarized as follows: (a) GReAT supports an 

unlimited number of  input and output graphs that the transformation can operate 

on, (b) it follows the UML (class diagram) style for specifying the type system for 

the graphs (with the implications for the pattern matcher),  (c) it uses explicitly 

sequenced rewriting operations that always operate within a context provided by 

the initial bindings for pattern variables, (d) one can introduce new, “temporary” 

type systems for the transformations that allow, for instance, cross links across 

graph elements from different UML class diagrams, (e) it uses control flow 

diagrams and structuring constructs for the detailed programming of  the 

transformations, (f) it uses limited-context pattern matching for efficiency,  and 

(g) it supports checking the well-formedness of the results via the constraints 

specified in the UML class diagram of the target domain.  

GReAT solves some theoretical issues through its implementation. For instance, 

confluence problems are avoided through the use of explicit sequencing, the 

resulting graphs are always compliant with their metamodels, hence they are 

consistent with respect to the UML class diagram, and the OCL constraints can be 

checked against the result of the transformation after. However, there are a 

number of other issues that necessitate further investigation, such as compliance 

with OCL constraints and termination of the transformation.  

GReAT can also be compared to the recent QVT submission [43] to the OMG 

MDA standardization process. However, we should emphasize that GReAT was 

meant to be a research tool and not and industry standard. Before comparing 

GReAT to the QVT proposal, it should be compared to the Request for Proposal. 

We believe GReAT satisfies most of the requirements of the QVT RFP, with the 

exception of the bi-directional transformations: GReAT transformations are 

inherently uni-directional. With respect to the QVT submission, the biggest 
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difference is in the highly declarative nature of the QVT: it focuses on relation 

mappings. This is a very high-level approach, and it is far from the pragmatic, 

efficiency-oriented approach followed in GReAT. We conjecture that describing a 

transformation in QVT is probably more compact, but the same transformation in 

GReAT is more efficient. We have done a number of non-trivial transformations 

in GReAT, and it would be an interesting experiment to compare these to their 

equivalents in QVT.  

In a more general setting, we need compare GReAT and the environment it is 

hosted in: the MIC tools that include GME to other similar tools. Honeywell’s 

DOME [18], MetaCASE’s MetaEdit [27], and the ATOM3 [30] environment are 

the most relevant examples that support domain-driven development. Our main 

difference is the use of UML and OCL for metamodeling and they way these 

metamodels are simultaneously used for instantiating a visual modeling 

environment. Also, our transformations follow a high-level method for describing 

the transformation steps expressed in the context of the metamodels. With 

exception of ATOM3, all the above tools use a scripting language, in contrast.  

Recent work on semantic anchoring [10] describes how the metamodeling in the 

UML/OCL style can be coupled to providing a semantic foundation for domain-

specific modeling languages via the model transformation approach described in 

this paper.  

7. Conclusion and Future Work 

This paper has shown a technique and a language for model transformations based 

on graph transformations. Model transformations have some specific requirements 

such as (1) multiple graph domains may be involved in the transformation and 

edges linking nodes from different domains are needed, (2) inheritance must be 

handled in the pattern matching process, and (3) explicit sequencing of 

transformation rules is desirable.  

Graph Rewriting and Transformations (GReAT): a new, graphical language that 

addressed these requirements was introduced.  GReAT is based on the use of 

UML class diagrams (and OCL) for representing the domains of the 

transformations, including structural integrity constraints over those domains. 

Transformations over multiple domains are supported, and cross-links among 

domains are defined at the metamodeling level.  
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The transformation language itself is divided into three sublanguages: (1) Pattern 

Specification language, (2) Graph Rewriting/Transformation language and (3) the 

language for Controlled Graph Rewriting and Transformation. The Pattern 

Specification language introduced a concise way to represent fairly complex 

graphs, and various pattern-matching algorithms were also developed. The Graph 

Rewriting/Transformation language is used to define graph transformation steps. 

Pattern graphs are embellished with roles like new, bind, and delete to express 

actions within a transformation. Pre-conditions for the transformations are 

captured in the form of a guard, and attribute mappings are used to modify the 

values of attributes. The language for Controlled Graph Rewriting and 

Transformation defines high-level, hierarchical control structures for rule 

sequencing, modularization, and branching. We have shown the syntax and the 

informal semantics of the graph transformation language, and its implementation. 

A number of small to medium size model transformation problems have been 

solved using this language.  

There are a number of open questions that we would like to address in our 

ongoing research. Although the current language is powerful enough for writing 

complex transformation programs, we need to verify it on more complex 

examples.  The language needs to be based on a formal theory, such that 

theoretical results could be used to verify interesting properties of the 

transformations. More experiments need to be performed that measure efficacy of 

the GReAT implementation with respect to hand code. The primary goal of this 

research was to decrease the development and maintenance time of model 

transformers. To verify the increase in productivity, experiments need to be 

carefully designed and performed using many subjects. We plan to address these 

issues in further research.  
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Appendices 

Appendix 1: Pattern matching algorithm using simple 
patterns 

 

Function Name : PatternMatcher 
Inputs  : 1. Pattern Graph pattern  
    2. Match p_match (a partial Match) 
Outputs : 1. List of Matches matches  
 
matches = PatternMatcher (pattern,  p_match)  
{  
 foreach pattern edge that has both Src and Dst vertices having     
              valid binding 
 { if(corresponding graph edge doesn’t exists between  
           graph vertices)  
   { bind pattern and host graph edge, add binding to p_match 
     delete the pattern edge from the pattern 
           return an empty match list 
   } 
 } 
 edge = get pattern edge with one vertex bound in host graph 
 if(edge exists)  
 { vertices = collect vertices of the host graph adjacent to the 
                   bound vertex 
   make a copy of pattern in new_pattern  
   delete edge from new_pattern 
   foreach vertex v in vertices  
   { new_match = p_match + new binding(unbound pattern vertex, 
                                            vertex) 
     ret_match = PatternMatcher(new_pattern,new_match)  
     add ret_match to matches 
   } 
   return matches  
 } 
 if(all pattern edges are bound)  
 { add p_match to matches 
   return matches 
 } 
 else 
   return empty list 
} 
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Appendix 2: Pattern matching algorithm with fixed 
cardinality 

 

Function Name: PatternMatcher 
Inputs  : 1. Pattern Graph pattern 

    2. Match p_match (a partial Match) 
Outputs : 1. List of Packects matches 
 
matches = PatternMatcher (pattern, p_match)  
{ new_pattern = copy of pattern 
  foreach pattern edge with both Src and Dst vertices bound 
     { if(corresponding edge doesn’t exists between host graph vertices)    
       { add edge binding to p_match   
   delete edge from new_pattern 
   return empty list 
       } 
     } 
 
 edge = pattern edge with one vertex bound to host graph 
 if(edge exists) 
 { delete edge from new_pattern. 
 foreach vertex v in bound vertices of edge 
 { peer_vertices[v] = vertices adjacent to vertex bound to v 
 } 
 intersect all the peer_vertices to form new list peer 
  if(cardinality of peer Ci >= Cd cardinality of corresponding  
                                       pattern vertex) 
 { for each combination of Cd from Ci 
  { peer_c is the unique combination 
    new_match = p_match + new binding(pattern vertex,  
                                                 peer_c) 
    ret_match = PatternMatcher(new_pattern, new_match)  
    add ret_matches to matches 
  } 
  return matches  
  } 
 } 
 if(all pattern matches are bound) 
 { add p_match to matches 
 return matches 
 }else 
 return empty list 
} 
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