
GT-VMT 2004 Preliminary Version

Semantic Translation of Simulink/Stateflow
models to Hybrid Automata using Graph

Transformations

Aditya Agrawal 1 Gyula Simon 2 Gabor Karsai 3

Institute for Software Integrated Systems (ISIS)
Vanderbilt University

Nashville, TN 37235, USA

Abstract

Embedded systems are often modeled using Matlab’s Simulink and Stateflow (MSS),
to simulate plant and controller behavior but these models lack support for formal
verification. On the other hand verification techniques and tools do exist for models
based on the notion of Hybrid Automata (HA) but there are no tools that can con-
vert Simulink/Stateflow models into their semantically equivalent Hybrid Automata
models. This paper describes a translation algorithm that converts a well-defined
subset of the MSS modeling language into an equivalent hybrid automata. The
translation has been specified and implemented using a metamodel-based graph
transformation tool. The translation process allows semantic interoperability be-
tween the industry-standard MSS tools and the new verification tools developed in
the research community.

Key words: Graph Transformations, Embedded Systems,
Semantics, Hybrid Systems.

1 Introduction

Model-based development of embedded systems is a process that uses explicit
domain-specific constructs with well-defined semantics to represent, analyze,
and synthesize systems [1]. A model should be a faithful and formal de-
scription of a system, which can be used in analysis (to verify the various
properties of a system), and in synthesis (to actually construct the real sys-
tem). In model-based development often many design tools are used for dif-
ferent needs. These tools need to be integrated in a coherent framework that

1 aditya@isis.vanderbilt.edu
2 simon@isis.vanderbilt.edu
3 gabor.karsai@vanderbilt.edu

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Agrawal,Simon,Karsai

ensures semantic interoperability. The various design tools must share seman-
tics: that is the meaning of a model must be the same across multiple tools.
One such need comes up in the embedded systems community where Matlab
Simulink/Stateflow (MSS) is used for simulation while hybrid automata based
tools (like, for instance, Charon [2]) are used for verification.

This paper describes the ”semantic translator” that transforms models ex-
pressed in the MSS language into Hybrid System Interchange Format (HSIF).
HSIF is an XML based standard developed by a community of researchers to
represent dynamic networks of hybrid automata. The goal of the translator is
to allow MSS models to be verified by HSIF based verification tools. In order
to make the verification results meaningful the translation must preserve the
semantics of the MSS models.

The problem of semantic translation problem between MSS and HSIF can
be posed as follows: Given the model of a dynamic system in MSS, compute
an equivalent dynamic system model in HSIF, which produces the same ex-
ecution traces when executed, given the operational semantics of HSIF. For
pragmatic reasons, we had to relax this requirement. First, MSS includes
procedural components which are impossible to express in HSIF; we had to
impose restrictions on MSS and allow only a subset of the MSS modeling lan-
guage. Second, HSIF was defined using mathematical definitions in English,
and not operationally (i.e. not via a simulation algorithm). Therefore, we
had to come up with a mapping between constructs available in HSIF (e.g.
discrete locations, differential equations, transition guards, etc.) and simi-
lar constructs in MSS such that the two models describe the same dynamic
system.

A graph transformation language called Graph Rewriting and Transforma-
tion (GReAT) has been used to describe (and simultaneously to implement)
the translator from MSS to HSIF. In the subsequent sections we describe the
inputs and the outputs of the tool, specify the translation strategy, describe
how we specified the transformations, and give an illustrative example for the
use of the translator. We have verified the translation using test examples, as
the complexity of the translator precludes the use of currently available formal
techniques.

2 The inputs and outputs of the semantic translator

2.1 The output: HSIF

HSIF is an interchange format that allows representation of hybrid systems
using dynamic networks of hybrid automata. The detailed specification is
available in [3]. The automata in HSIF follow the definition of hybrid au-
tomata [4] with a finite number of locations (or discrete states), where each
location has a number of differential and algebraic equations associated with
it. Differential equations capture continuous time dynamics in that location,

2



Agrawal,Simon,Karsai

while algebraic equations describe dependencies among variables. HSIF is ca-
pable of expressing networks of hybrid automata, where the automata can
interact with each other using signals and shared variables. Signals are sin-
gle writer-multiple reader variables that follow synchronous semantics, while
shared variables can have multiple writers and multiple readers.

2.2 The input: A subset of the MSS language

Simulink has a rich set of model elements (Simulink blocks) covering various
areas of signal processing, and continuous dynamics and discrete behavior can
be mixed in arbitrarily. On the other hand, HSIF has a clean separation
between continuous and discrete behavior. Mapping arbitrary MSS models
that have complex interactions between continuous and dynamic behavior are
very difficult to transform into a HA. The pragmatic solution was to choose
a subset of Simulink/Stateflow that maintains a clean separation between
the continuous and discrete behavior. We have also restricted the supported
primitive blocks from MSS to a carefully chosen set that provides a useful
coverage. The supported Simulink blocks are as follows:

• Continuous time blocks: Integrator, State-space, Transfer Function, Zero-
Pole

• Mathematical operators: Product, Sum, Gain, Min/Max, and any single-
input/single-output function (Abs, Trigonometric, etc.) No logical blocks
are allowed in the current implementation.

• Sources: Constant, In, and Sinks: Out

• Nonlinear elements: Switch

• Stateflow diagrams

The input models must comply with the following restrictions: (1) Stateflow
diagrams can receive and provide continuous signals from and to Simulink. (2)
Stateflow can also provide switching signals, that are always connected to the
control input of a Switch block. (3) Switches can be controlled only by these
switching signals. These restrictions result in a clear separation of discrete
and continuous behavior where all structural changes on the system are made
through switches. Intuitively, each combination of these switches corresponds
to a discrete location of the HA.

3 Example: Tank Level Control

To illustrate what steps a translation algorithm has to take, an example is
provided in this section. As shown in Figure 1, there is a tank containing
fluid, with an inlet pipe and two outlet pipes. Each pipe has a valve, named
V1, V2 and V3 that can be in either open or closed state. A valve is modelled
as a switch in MSS. Sensors can sense the height of fluid in the tank (h) and
the flow through valve V3 (em flow). A controller regulates the system using

3



Agrawal,Simon,Karsai

the state machine shown on the figure. In the initial state of the system V1
is closed and V2 is open. When the height of the tank goes above 10 units
then outlet values V1 and V3 are opened. When the flow through V3 becomes
greater than 5 units the inlet value V2 is closed. The inlet V2 is opened and
outlet V1 is closed when the fluid level drops below 8 units.

Fig. 1. A tank with three valves

Looking at the models, the number of locations in the final hybrid au-
tomata is not apparent. On closer inspection we see that the in the initial
state Low, valve V1 is closed and V2 is open however the value of value V3
is unspecified, thus the initial state has discrete behavior, represented by the
opening or closing of V3. Thus state Low needs to be split into two states such
that one of the states is active when V3 is open, while the other one is active
when the V3 is closed, connected via a state transition. Having inspected the
entire system and the controller’s state machine, the resulting state machine
diagram can be drawn up as shown in Figure 2.

Fig. 2. The ”true” (hybrid automata) state machine for the tank example

After all the discrete states are identified, the next step is to find the
differential equations for each state. Since the value of the switches are all
defined for a given state, the Simulink diagram is now purely continuous and a
variable substitution can be used to find the differential equation. Differential

4



Agrawal,Simon,Karsai

equations are calculated from the output of the integrator block (see block with
1/S in Figure 2). For example, for location High111 in Figure 2 the differential
equation for the tank (block 1/S in Figure 2) block can be found as follows. Let
the output of each block have the same name as the block. Then, d

dt
(tank) =

Sum, where Sum is the output of the summation block that can be substituted
with the sum of its inputs: d

dt
(tank) = (−Switch1 + Switch2− Switch3)

Since the settings of the switches for this location are known, those paths
will be chosen. Value 1 indicates that the top most input of the switch is
passed through. Thus, Switch1 will be replaced by the tank variable. Switch2
is replaced by 36*1 and Switch3 is replaced by the output of the MATLAB
function which is 3*max(0,tank-15). Finally the differential equation of the
tank level is:

d

dt
(tank) = −tank + 36− 3 ∗max(0, tank − 15)

4 The translation algorithm

This section gives a formal definition for the transformation algorithm.

Definition 4.1 The flat Stateflow state machine contains the set of states
S = {s1, s2, s3, ...sN}, s1 being the initial state. The set of transitions is T ⊆
S×S where ti,j ∈ T is a transition from si to sj. The corresponding transition
condition is denoted by wi,j.

Definition 4.2 An output variable in the Stateflow diagram is called a switch-
ing signal if it is connected to a Control Input of a Switch block in the
Simulink diagram. The set of switching signals in the state machine is Q =
{q1, q2, q3, ...qM}. The value of the switching signal q in state s is value(q, s).

Definition 4.3 The switch value of a switching signal q in state s is the
following:

switchvalue(q, s) =

 1 if value(q, s) ≥ threshold(b)

0 otherwise

where b is the unique Switch block connected to q.

Definition 4.4 For a switching signal q and state si, defined(q, si) = true if
either of the following conditions hold:

• q is explicitly set in si, or

• there exist a switch value u, such that for all j for which tj,i ∈ T it is true
that defined(q, sj) and switchvalue(q, sj) = u.

Definition 4.5 The rank of state s is the number of switching signals that
are defined in s. The defect of s is defined as defect(s) = M − rank(s).

Definition 4.6 The sequence of undefined switching signals in si is defined
as Ui = 〈qk1 , qk2 , qk3 , ..., qkdefect(si)

〉, where defined(qkl
, si) = false for all l =

5



Agrawal,Simon,Karsai

1, 2, ...defect(si), and k1 < k2 < k3 < ... < kdefect(si).

The algorithm consists of the following steps.

Step 1.Each state si is split into D = 2defect(Si) locations. The set of locations
generated from si is

∑
i = {σi,1, σi,2, ..., σi,D}.

Definition 4.7 The switch code of location σi,j is a binary sequence of length
M , denoted by Ci,j = 〈bi,j,1, bi,j,2, ..., bi,j,M〉 . The binary values are defined as
follows:

bi,j,k =

 switchvalue(qk, si) if qk 6∈ Ui

bit(j − 1, n) if qk = qkn , where Ui = 〈qk1 , ..., qkdefect(si)
〉

The function bit(x, y) defines the yth bit of the binary representation of x, the
1st bit being the least significant bit.

Definition 4.8 The coloring is defined on the elements of the switch code.
The binary values of the code are either black or red, as follows:

color(bi,j,k) =

 red if qk ∈ Ui

black if qk 6∈ Ui

Step 2. The locations are coded and colored according to Definition 4.7 and
Definition 4.8.

Step 3. Create a transition τi,j,n,m between σi,n and σj,m if ti,j ∈ T , and there
is no k such that bi,n,k 6= bj,m,k and color(bj,m,k) = red. The transition guard
for this transition is the predicate wi,j.

Definition 4.9 The set of all transitions in the HSIF description is denoted
by Φ.

Definition 4.10 The Simulink diagram containing M Switch blocks describes
the reconfigurable dynamic system χ. The dynamic system with a partic-
ular setting of the switches with switch values x1, x2, ..., xM is denoted by
χ(x1, x2, ..., xM).

Step 4. For each state si copy the algebraic equations defined in the state
to locations σi,j, for all j = 1, 2, 3, ..., 2defect(si). For each location σi,j generate
the additional algebraic and differential equations of the system χ(Ci,j).

Step 5. Choose σ1,1 to be the initial location.

Step 6. Add the following invariants to location σi,j:

• switching signal values from the entry action of si, and

• ¬(
∨

m Wi,m) for all indices m for which there exist n such that τi,m,j,n ∈ Φ.
The operations ¬ and ∨ are the logical not and or operations, respectively.

Definition 4.11 The location dependency graph is a directed graph on the
set Σ1 ∪Σ2 ∪ ...∪ΣN with edges Φ. A location σ is unreachable if there is no
directed path in the location dependency graph from σ1,1 to σ.

6



Agrawal,Simon,Karsai

Step 7. Prune all unreachable locations from the HSIF description. Also
delete the transitions connected to unreachable locations.

5 GReAT: The transformation language

The translation algorithm described in the previous section has been im-
plemented in the Graph Rewriting and Transformation (GReAT) language.
GReAT is a tool that allows users to specify graph transformations in a graph-
ical form with precise formal and executable semantics. In this paper only the
necessary language constructs are explained, [5] describes the full approach
and support tools, and the operational semantics of GReAT is formally de-
fined in [10]. GReAT is based on the theoretical work of graph grammars and
transformations [6][8][9] and belongs to the set of practical graph transforma-
tions systems, like AGG and PROGRES.

GReAT has two parts: (1) graph transformation language, and (2) con-
trol flow language. The graph transformation language is used to specify
transformations on localized subgraphs and follows the Single Pushout (SPO)
algebraic approach [6]. A production (also referred to as rule) is the basic
unit of transformation and it contains a pattern graph that consists of pat-
tern vertices and edges. Each pattern element has an attribute called role that
specifies what happens during the transformation step. A pattern element can
play one of three roles: Bind, Delete, New. The execution of a rule involves
matching every pattern object marked either Bind or Delete. If the match is
successful and an (optional) guard condition is true, then for each match the
pattern objects marked Delete are deleted from the match and objects marked
New are created.

Traditionally, in graph grammars and transformations there is no ordering
imposed on the productions, but practical model-to-model transformations of-
ten require strict control over the execution sequence. GReAT has a high-level
control flow language built on top of the graph transformation language with
the following constructs: (1) sequencing, (2) non-Determinism, (3) hierarchy,
(4) recursion and (5) branching.

Sequencing is used to specify an order of execution for a set of transfor-
mation rules. For example, Figure 3 shows a sequence of rules, CreateHier-
archicalStateChart, HSM2FSM, CreateVarAs, StateSplitting and Reachability
which are executed sequentially. Hierarchy is also shown: the sequence is
contained in a compound rule called the StateflowPart rule.

A ”Test/Case” construct is used to choose between different execution
paths, similarly to the ’if’ statement in programming languages. In Figure
5, the compound rule SetImplicitValues contains a test called TestImplicit
that contains two cases. The test will first try Case?, if Case? succeeds
then the outputs will be passed to the respective output ports and similarly
for CaseDifferent. Once all inputs have been evaluated the next rules in the
sequence will be executed.

7



Agrawal,Simon,Karsai

6 Implementing the algorithm in GReAT

The translation algorithm mentioned in Section 4 has been implemented using
GReAT. It contains 131 rules, 40 compound rules and 22 test/cases. The
implementation is divided into two parts, the first deals with finding all the
discrete locations in the Simulink/Stateflow diagram and the second deals
with inferring the continuous dynamics for each location.

6.1 Translating Stateflow

In the Stateflow part of the algorithm (see Figure 3), first the Stateflow models
are converted into an internal representation in CreateHierarchicalStateChart.
Next, the hierarchical concurrent state machine is converted to its equivalent,
“flat” finite state machine in HSM2FSM. Then in CreateVarAs, associations
of Simulink switches with the states are transferred to the flat machine. At
this stage StateSplitting, the splitting algorithm is performed (explained in
detail in next paragraph). After all the required discrete states/locations
have been found, Reachability is executed that performs reachability analysis
on the models to eliminate all unreachable states. At this state we know the
number of discrete states in the system and create the corresponding locations
in HSIF.

Fig. 3. The StateflowPart Rule

StateSplitting (see Figure 4) is one of the most complex parts of the map-
ping and it is done in stages. The first stage is Infer Implicit Signals and
it implements Step 2. This is followed by NewMachine which creates an
empty state machine. The Create State Tribes performs state splitting based
on Step 1. The next step is Transfer Transitions which implements Step
3 by appropriately mapped transitions to the new machine. If the initial
state was split, an initial state is selected according to Step 5 in CreateInit.
CarryBlockRef and In2Out perform housekeeping operations at the end.

The Infer Implicit Signals block in Figure 4 is performed repeatedly. In
every iteration step, for every state the SetImplicitValue rule (see Figure 5) is
called. In the SetImplicitValue block all switching signals with color red are
chosen. If there is an incoming transition, which alters the state of the signal,
then the transition is used to infer the new state of the signal. The translator
will iterate until none of the signals changes during a run, i.e. the iteration
reaches a fixpoint.

8



Agrawal,Simon,Karsai

Fig. 4. The StateSplitting rule

There are two main cases that can change the default interpretation of
switching signal values. The first case is shown in Figure 5. For a given State
and switch variable (called Data in the diagram), if there exists another state
(OtherState) with a transition to State, OtherState may influence the value of
Data. Each state has a relation with Data, and the relation has two attributes:
color and value. Color can be either black or red, black implying that the
state is set to the value, while red implying that the value was inferred. Value
can be 0, 1, ?, X, where ‘?’ specifies that the state doesn’t influence data,
while ‘X’ specifies that the state can set the data to either ‘0’ and ‘1’.

Fig. 5. The SetImplicitValues Rule

In Case? if State’s relation with Data is ‘red’ and value is not ‘X’ and
OtherState’s relation with the Data is ‘?’ then we can infer the value of the
current state’s relation with data is also ‘?’. In CaseDifferent if OtherState’s
relation with Data is not ‘?’ and is not the same as State’s relation with Data.
In this case the State’s relation with Data is altered according to the following
rules. If State’s relation was ‘?’ then it will take OtherState’s relation. If
State’s relation is not the same as OtherState’s then it will take the value of
‘X’.

6.2 Translating Simulink

After all the states of the hybrid automata have been created, the next step is
to identify the algebraic and differential equations for each location (Step 4).
The various steps in this translation are (1) identification of state variables, (2)

9



Agrawal,Simon,Karsai

identification of input and output variables (3) discovery of algebraic equations
for dependent variables and (4) discovery of the differential equations for the
state variables.

Each integrator block in Simulink is assigned a state variable. Each input
port to the entire system becomes an input variable. Each source block of
Simulink also becomes an input variable. Sink blocks and output ports be-
come output variables. Some intermediate variables are created for interfacing
with Stateflow. These variables depend on other independent variables in the
system.

After all the variables have been identified, the next step is to determine
algebraic equations of dependent variables and differential equations for state
variables. These equations are location dependent, thus for each location
the differential and algebraic equations are inferred using a backward trace
algorithm. Starting from a Simulink block/port the variable is associated
with a backward trace is used to determine the blocks that provide input to
the block. For each such block the block’s type determines the kind of sub
expression the block will add to the equation (see Table 1). The back trace
yields a tree with the termination points being state variables, input variables
and constants.

Table 1
Mapping Simulink blocks to sub expressions

7 Translating the Tank Level Control example

This section shows how the algorithm described in Section 4 and implemented
using GReAT in Section 6 can be used to translate the Simulink/Stateflow
example described in Section 3 and Figure 1.

Initially, in state Low, the value of V3 is undefined while the value of
V2 is undefined in state High. In state Too High the value of V1 and V3
is undefined. After running the Infer Implicit Signals block there are some
implicit values for undefined variables (see Figure 6(b)). For example, in state
Low, the value of V3 can be both 0 and 1, while in state High the value of V2
was set to 1. After we determined the value of the switches in each state we
can split the states that have switches with undefined values. In this example

10



Agrawal,Simon,Karsai

Fig. 6. Stages of Stateflow splitting

the state Low will be split into two while the state Too High will be split into
four new states (see Figure 6(c)).

After the states are split, transitions from the original machine need to be
transferred to the new larger machine. The algorithm takes care of mapping
the transitions correctly. After the equivalent machine is created, reachability
analysis is performed. The analysis will reveal that state Too High with value
of V1 = 1, V2 = 0 and V3 = 0 will never occur and it can thus be elimi-
nated. Figure 6(d) shows the locations in HSIF. The visualization is provided
by HyVisual [12]. After all the discrete locations have been identified, the
continuous time dynamics for each location will be found using the backward
trace algorithm.

8 Related Work

Semantic mapping between different design tools is a common problem one
often encounters in practice. Frequently the mapping is implemented in code,
although automated mappings have been discussed in literature and a subset
of these have been implemented. In [16] graph transformations have been
used to specify program transformations. Semantics of a hierarchical state
machine have been defined by specification of a transformation to FSM in
[17]. [18] describes the support of design patterns, while tool integration is via
transformations in described in [19]. [13] describes the algorithm for mapping
discrete-time Simulink blocks to Lustre. Verification of Simulink/Stateflow
models has been performed in [14] using a model checker. The mapping how-
ever was performed by hand. Semantics of Stateflow have been described by

11



Agrawal,Simon,Karsai

defining a mapping to pushdown automata in [15].

9 Summary and future work

We have described a method for converting MSS models into HSIF mod-
els. The MSS models may contain continuous time blocks, Stateflow blocks,
and switches, while the resulting HSIF model consists of a hybrid automaton
that exhibits the same dynamic behavior as the original MSS model. The
transformation has been specified using a formal technique based on graph
transformations.

A natural next step for extending this work is the formal verification of
the transformation itself. For practical applications, more features from the
MSS blocks could be implemented, provided they are expressible in HSIF.
Yet another potential work could be to extend HSIF with the capability of
representing sampled-data systems, and extend the translator to map the
“discrete time” blocks in MSS into the corresponding HSIF constructs. The
latter one requires further research on the verification of hybrid automata that
also have discrete-time dynamics.

10 Acknowledgement

The DARPA/IXO MOBIES program (F30602-00-1-0580) and the NSF ITR:
”Foundations for Embedded and Hybrid Systems” has supported, in part, the
activities described in this paper.

References

[1] J. Sztipanovits, and G. Karsai, “Model-Integrated Computing”, IEEE
Computer, Apr. 1997, pp. 110-112.

[2] R. Alur, T. Dang, J. Esposito, R. Fierro, Y. Hur, F. Ivancic, V. Kumar, I.
Lee, P. Mishra, G. Pappas, and O. Sokolsky, “Hierarchical Hybrid Modeling
of Embedded Systems.” Proceedings of EMSOFT’01: First Workshop on
Embedded Software, October 8-10, 2001.

[3] The Hybrid System Interchange Format, for details see
http://www.isis.vanderbilt.edu/Projects/mobies/downloads.asp

[4] T. A. Henzinger. “The Theory of Hybrid Automata”, In Proc. of IEEE
Symposium on Logic in Computer Science (LICS’96), IEEE Press, pp 278–292,
1996.

[5] Agrawal A., Karsai G., Ledeczi A., “An End-to-End Domain-Driven Software
Development Framework”, 18th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications (OOPSLA),
Anaheim, California, October 26, 2003.

12



Agrawal,Simon,Karsai

[6] Rozenberg G. (ed.), “Handbook on Graph Grammars and Computing by Graph
Transformation: Foundations”; Vol.1-2. World Scientific, Singapore, 1997.

[8] D. Blostein, H. Fahmy, and A. Grbavec: “Practical Use of Graph Rewriting”; 5th
Workshop on Graph Grammars and Their Application To Computer Science,
Lecture Notes in Computer Science, Heidelberg, 1995.

[9] Andries, M. et al., “Graph Transformation for Specification and Programming”,
Sci. Comput. Program., Vol. 34, No. 1, pp. 1-54, 1999.

[10] Karsai G., Agrawal A., Shi F., Sprinkle J., “On the Use of Graph
Transformations for the Formal Specification of Model Interpreters”, JUCS,
November 2003.

[12] Hylands, C., Lee, E., Liu, J., Liu, X., Neuendorffer, S., Zheng, H.,“HyVisual: A
Hybrid System Visual Modeler,” Technical Memorandum UCB/ERL M03/1,
University of California, Berkeley, CA 94720, January 28, 2003.

[13] P. Caspi, A. Curic, A. Maignan, C. Sofronis, S. Tripakis, “Translating Discrete-
Time Simulink to Lustre”, pp 84-99, Proc. of EMSOFT’03, Philadelphia, USA,
13-15 Oct., 2003.

[14] S. Sims, K. Butts, R. Cleaveland and S. Ranville, “Automated Validation
Of Software Models”, 16th International Conference on Automated Software
Engineering, pages 91-96, Coronado Island, California, November 2001. IEEE
Computer Society Press.

[15] A. Tiwari , “Formal Semantics and Analysis methods for Simulink Stateflow
Models”, Technical report, SRI International, 2002.

[16] U. Assmann, “How to Uniformly specify Program Analysis and
Transformation”, Proceedings of the 6 International Conference on Compiler
Construction (CC) ’96, LNCS 1060, Springer, 1996.

[17] A. Maggiolo-Schettini, A. Peron, “A Graph Rewriting Framework for
Statecharts Semantics”, Proc. 5th Int. Workshop on Graph Grammars and
their Application to Computer Science, 1996.

[18] A. Radermacher, “Support for Design Patterns through Graph Transformation
Tools”, Applications of Graph Transformation with Industrial Relevance,
Monastery Rolduc, Kerkrade, The Netherlands, Sep. 1999.

[19] A. Bredenfeld, R. Camposano, “Tool integration and construction using
generated graph-based design representations”, Proceedings of the 32nd
ACM/IEEE conference on Design automation conference, p.94-99, June 12-16,
1995, San Francisco, CA.

13


	Introduction
	The inputs and outputs of the semantic translator
	The output: HSIF
	The input: A subset of the MSS language

	Example: Tank Level Control
	The translation algorithm
	GReAT: The transformation language
	Implementing the algorithm in GReAT
	Translating Stateflow
	Translating Simulink

	Translating the Tank Level Control example
	Related Work
	Summary and future work
	Acknowledgement
	References

