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ABSTRACT 

Heterogeneous embedded systems, where 
configurable or application specific hardware devices 
(FPGAs and ASICs) are used alongside traditional 
processors, are becoming more and more widely used. 
To facilitate rapid design and development of such 
heterogeneous hardware/software systems, it is 
essential to expand the software design cycle to 
integrate hardware modeling and simulation. Co-
simulation and exploration of the joint design space 
are key problems. To design, develop and verify such 
systems, different kinds of simulations at various 
levels of granularity are required. The hardware 
modeling and simulation framework of the Model-
Based Integrated Simulation Framework (MILAN) 
integrates these requirements into a single powerful 
design, development and simulation environment. 

Categories and Subject Descriptors 
E.3 [HW/SW co-design]: specification, modeling, co-
simulation and performance analysis, system level 
partitioning and scheduling. 

General Terms  
Performance, Design, Standardization, Languages and 
Verification. 

Keywords 
Modeling, Orthogonalization, Design space and 
Simulation. 

1. INTRODUCTION 
Configurable FPGAs and fast ASICs are pushing embedded 
systems to implement more and more functionality 
directly in hardware. However, to facilitate the rapid 
design and development of such heterogeneous 
hardware/software systems, it is essential to expand the 

software design cycle to integrate hardware modeling and 
simulation. The Model-based Simulation Integration 
Framework (MILAN) [1][2] provides a unified 
environment for the design and simulation of these 
heterogeneous systems. 

Such a unified environment poses unique requirements that 
need to be fulfilled. One important requirement of the 
heterogeneous design paradigm is the orthogonalization of 
concerns, that is to separate various aspects of design in 
order to effectively explore alternative solutions [9]. For 
example, system requirement specifications and 
implementation or computation and communication are 
good candidate concerns that should be separated.  

In large and complex systems there is a need for modular 
design to mitigate complexity. Systems are typically 
designed in terms of components and component 
interactions. A component usually embodies some kind of 
computation and it has a standardized interface for 
communication. This helps to separate computation from 
communication and the developer can design and 
implement one without being concerned with the other. 

Separation of system requirements and implementation is 
desirable because the former captures the intention of the 
system designer and provide a high level view, while the 
latter is specific and is done at a much finer level of 
granularity. By capturing the intention separate of the 
implementation, the high level abstraction is preserved, 
allowing the user to specify alternate implementations for 
the same intent. These alternatives may be in the form of 
different algorithms to solve the same problem, a choice 
between hardware and software implementation, or a 
selection of programming language. Furthermore, 
implementation is a refinement of the intent and needs to 
be captured at different levels of granularity. Initially a 
coarse grain implementation is used for prototyping. This 



can be transformed in stages to a detailed low-level 
implementation later.  

By capturing alternative implementations at different 
levels of granularity we gain the flexibility of choosing the 
implementation according to the exact needs of the 
system. The development cycle starts from a coarse grain 
implementation. This is tested for functional correctness 
and is then refined to different alternative  
implementations. The feasibility of these alternatives is 
explored by profiling them. This is followed by system 
simulation of a few feasible system wide implementations 
to validate the system with respect to the requirements. 
Simulation becomes more important as testing of these 
applications on actual hardware is expensive and time 
consuming, especially for applications implemented in 
hardware such as FPGAs or ASICs. 

These design and development philosophies exist and are 
used in real world embedded systems and can be used for 
the expanded role of computer-based systems. In the 
absence of an integrated design and development 
environment, a variety of tools are used to achieve all the 
above needs. These tools more often than not are incapable 
of exchanging design, implementation and data between 
each other forcing developers to duplicate information 
manually between tools. This is a time consuming, 
inefficient and a error-prone. In order to speed up the 
design cycle, there is a need for an integrated design and 
development framework that facilitates all these 
requirements. 

The Model-based Simulation Integration Framework 
(MILAN) [1] is a suite of tools developed to integrate the 
following design and development needs: 

• Single design representation to use in different 
simulations and software synthesis, 

• Separation of concerns, 

• Capture different levels of hierarchy for 
refinement. 

• Synthesize code to drive various simulation 
methodologies: isolated simulation, multi-
granular simulation, full system simulation, 

• Speed up the design and development cycle for 
rapid application development. 

The focus of this paper is on the modeling paradigm for 
applications implemented in hardware and the associated 
tools integrated into MILAN. These tools consist of an 
integrated environment to specify modular system design 
with alternative implementations. At the lowest level, 
designers need to provide SystemC or VHDL 
implementations. The tools are capable to drive various 

kinds of simulations from these specifications to provide 
for verification of functionality and performance. The 
kinds of simulation supported are isolated simulation of 
components, multi-granular simulation of the system, 
complete system simulation and simulation of hardware in 
heterogeneous hardware/software systems.  

We begin in Section 2 by discussing Model Integrated 
Computing (MIC) and an overview of MILAN. In Section 3 
we discuss the modeling methodology of MILAN with 
focus on hardware modeling, followed by the 
interpretation of the models to drive various simulations in 
Section 4. We conclude in Section 5. 

2. MILAN OVERVIEW 
The software infrastructure of MILAN is based on Model 
Integrated Computing (MIC). MIC employs domain-
specific modeling methodology to represent the system 
being designed. The system models are then used to 
automatically synthesize the applications and/or to 
generate inputs to analysis and/or simulation tools. This 
approach speeds up the design cycle, facilitates the 
evolution of the application, and helps system 
maintenance, dramatically reducing costs during the entire 
lifecycle of the system. MIC is implemented by the 
Generic Modeling Environment (GME), a 
metaprogrammable toolkit for creating domain-specific 
modeling environments [6].  

MILAN is a typical MIC application. Its architecture is 
depicted in Figure 1. The domain-specific modeling 
paradigm developed specifically for MILAN enables the 
specification of the system in the form of multiple-aspect, 
hierarchical, primarily graphical models in GME. The 
three main categories of models specify the desired 
application functionality, available hardware resources and 
non-functional requirements in the form of explicit 
constraints. The application models capture the dataflow 
of the system. Both asynchronous and synchronous 
dataflow is supported, as well as their composition. By 
allowing the specification of explicit design and 
implementation alternatives as part of these models, 
MILAN captures the design space [10] of the application, 
not just a point solution. Size, weight, energy, performance 
and timing (SWEPT) requirements are also part of the 
models in the form of formal constraint. 

Only a subset of the potentially exponentially large design-
space satisfies all these constraints. A symbolic constraint 
satisfaction methodology is applied to explore and prune 
the design-space. Once a single design has been selected, 
generators translate the models into the input of the 
selected simulators. Simulators already integrated into 
MILAN include Matlab [8], SystemC [12], HiperE, a high-
level performance estimator developed in parallel with 



MILAN [13], SimpleScalar [4], Armulator [3]. Some 
simulation results need to be incorporated back in the 
models in the form of performance attributes of 
components, for example, to make them available for 
other simulators. For some simulators this will 
necessarily be a human-in-the-loop process, while for 
others the procedure can be automated. 
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Figure 1. MILAN Architecture 

The final component in the MILAN architecture is 
Software Synthesis. Notice that this step is similar to 
driving simulators. Instead of targeting the execution 
model of a simulation engine, the synthesis process needs 
to generate code for a given runtime system. Just like 
there is a need to support multiple simulators, MILAN 
supports multiple target runtime systems. 

The goal of the paper is to describe how a careful 
composition of a variety of modeling concepts can result 
in a highly domain-specific modeling methodology that 
supports the unique needs of the complex application 
domain of simulation of computer-based systems. We 
shall focus on modeling of applications implemented in 
hardware and how the models are used to drive the various 
types of simulation.  

3. MODELING METHODOLOGY 
Modeling is an abstraction of the system and captures 
specific details required to best represent, understand, 
implement and modify the system. Traditional hardware 
design approaches and the need for integrating with the 
expanding domain of computer-based systems motivated 
us to incorporate various modeling methodologies to 
mitigate complexity, separate concerns and to provide for 
effective management and maintenance of these systems.  

The wide variety of domain specific modeling concepts 
that has been incorporated are as follows.  

1. Modeling of hardware applications using domain 
specific concepts and to separate the concerns.  

2. Strong data typing of communication ports for 
accurate simulation of data exchange and to catch 
modeling errors at design time. 

3. Parameterization of components to develop 
generic modules for reuse, as well as to design a 
set of solutions instead of a single solution. 

4. Data abstraction and information hiding to better 
manage complexity using multiple aspects of the 
same module. 

5. Explicit designs of alternative implementations to 
capture design choices in order to better explore 
different solutions. 

6. A paradigm to compose hardware and software 
components together to facilitate the design of 
heterogeneous systems. 

3.1 Hardware Modeling  
The goals while developing the hardware application 
modeling paradigm were separation of concerns, 
flexibility to capture the implementation in different 
languages and at different levels of granularity. Another 
goal was to mitigate complexity to help design more 
manageable systems.  

The model of computation in hardware is unbuffered 
hierarchical dataflow. Hierarchical dataflow implies that a 
dataflow node can contain a dataflow subgraph.  
Unbuffered dataflow means that the receiver and sender 
need to be synchronized. This model of computation can 
alternatively be looked at as the structural description. 

The hardware modeling paradigm consists of a set of 
modules implementing behavior and directed links 
connecting modules specifying the dataflow graph of the 
system. The modules are hierarchical, that is they can 
contain other modules and module associations forming a 
dataflow subgraph. Figure 2 shows the basic meta model of 
MILAN’s hardware-modeling paradigm. 

hwModule is the basic building block. It is a hierarchical 
module as it can contain subgraphs. Ports define the input 
and output interface of the module, while hwSignalConn 
is an association between ports representing a data path. 
These ports can also be connected to and from a hwBus. 
Modules also contain hwDataStore which represent 
memory elements. 

A module that doesn’t contain a subgraph has processes 
associated with it. Processes specify the behavior of a 
module. This is captured as functions implemented in a 
hardware description language such as VHDL or SystemC. 
Notice that, hwModule contains hwFunctionBase, an 



abstract base class. This class has been specialized for 
SystemC and VHDL. It can also be specialized to 
supported other languages later. The functions can be event 
driven or sequential. Events are specified using the 
hwTrigger connection between processes and ports. 

 
Figure 2. Meta model of the hardware application 

paradigm. 

Hierarchy in the modeling paradigm serves two purposes. 
First, it helps separate intention from implementation. 
Using hierarchy the system is designed according to the 
intention, that is the high-level dataflow of the system. 
Then the design in refined by designing the modules in 
details until it is low-level enough to provide an 
implementation. Second, it helps to mitigate complexity. 
The dataflow graph of large systems can be very complex; 
hierarchy hides data at different levels to make the 
systems more manageable. The functions can be specified 
at any level of granularity and can be in either VHDL or 
SystemC. This provides the user with the flexibility to 
choose between different HDLs. Moreover 
implementations in different languages can coexist 
providing the user with design choices. 

3.2 Data Type 
Data type models in MILAN are used for several purposes. 
First of all, to accurately simulate communication 
performance, the amount of data exchanged needs to be 
captured. Furthermore, as data type models are attached to 
hardware modules, or more precisely to their input and 
output ports, they define the interface of those 
components. When the components are attached using 
signal connections, their interfaces are checked to ensure 
that only compatible objects are connected. Finally, the 
data type models can also be used to generate the 

corresponding definitions in the target hardware 
description language ensuring consistency. 

The MILAN data type modeling paradigm allows the 
specification of both simple and composite types. Simple 
types, such as floats and integers, specify their 
representation size, i.e. the number of bits used. 
Composite types can contain simple types and other 
composite types. Attributes of the fields specify extra 
information such as array size or signed/unsigned type. 
Data types supported by the C programming language can 
be modeled in MILAN. Preexisting data types, specified in 
a DSP library for example, can also be modeled. Their 
name and size in bytes are the only information MILAN 
requires. 

The hardware application and the data type modeling 
paradigms are composed together according to precise 
rules (not shown). OCL constraints ensure that every port 
has exactly one type specification and that dataflow 
connections are only allowed between ports having 
compatible data types. 

3.3 Parameters 
In order to support parametric hardware modules, such as 
an FFT block with configurable data points, MILAN allows 
for the specification of such parameters. 

Components contain ParameterPorts capturing their 
parameter interface. A Parameter can be connected to a 
ParameterPort supplying a value to it. Each port has a 
default value that is used if no Parameter is attached to it. 
Both the ParameterPort and the Parameter are data typed, 
using the same modeling technique as for ports. Typing 
information is used to verify that the supplied parameter is 
compatible with the parameter interface of the component. 

Parametric modeling plays an important role in 
representing design spaces. A parametric component 
encapsulates multiple implementations that can be 
selected by supplying an appropriate value for the 
parameter.  For example, an N-point FFT model 
encapsulates a number of FFT implementations spanning 
the valid range of N.  Thus, a number of options can be 
represented in the models instead of an implementation. 
Furthermore parameterization helps to design and develop 
generic components that can be reused.   

3.4 Multiple Aspects 
The MILAN application modeling paradigm is quite 
complex. However, the hardware description, data type 
specification and parameter modeling are largely 
orthogonal concepts. Therefore, they can be separated into 
different aspects to allow the user to better manage and 
understand the system. In the Hardware aspect, only 
module, ports, buses, data stores and the true 
implementation scripts are shown. In Type aspect, Ports, 



Parameters, ParameterPorts and data type references are 
displayed. Finally, Components, Parameters, 
ParameterPorts and their corresponding connections are 
visible in the Parameter aspect. Multiple-aspect modeling 
is a natural way to implement separation of concerns. 

3.5 Software application modeling 
The software application modeling paradigm is based on a 
dataflow representation. A dataflow graph consists of a set 
of compute nodes and directed links connecting them 
representing the flow of data. A flat graph representation 
does not scale well for human consumption, so we 
extended the basic methodology with hierarchy.  

There is extensive literature on various dataflow 
representations. At the two ends of the spectrum are 
synchronous [7] and asynchronous dataflow. Both these 
models of computation are supported by MILAN and have 
been discussed in greater details in [6].  

3.6 Alternatives 
Till now we have discussed the modeling environment and 
a lot of its feature, however we haven’t discussed how 
alternative designs are represented in the models. 
Parameterized components are one way of representing 
design alternatives. Being able to use multiple languages 
of implementation provides for alternative 
implementation.  

MILAN also allows the user to have an explicit choice 
between synchronous, asynchronous data flow and 
hardware implementation. This is achieved by using 
alternatives. Alternatives are models that can contain 
synchronous, asynchronous software dataflow and 
hardware modules and the containment implies an or 
condition. That is one and only one of the given 
implementations will be used. Furthermore choice 
between different algorithms to solve the same problem 
can also be captured using explicit alternatives.  

3.7 Composition of hardware and software 
MILAN supports the composition of hardware and 
software models. 

  
Figure 3. Composition of hardware and software 

The metamodel in Figure 3 specifies that a dataflow 
component can contain hardware modules and signal 
connections. Furthermore, hardware and dataflow can be 
associated using the connection DFHWConn. This 
represents a data path between software and hardware 
components. Thus, a hardware implementation of a sub-
SystemCan reside in any dataflow component. 

4. SUPPORT FOR SIMULATION 
After creating a design environment that allows us to 
model applications and is able to capture hardware and 
software designs, parameterized components and design 
alternatives, there is a need to drive various simulations 
from these models.  

A typical development cycle starts from a coarse grain 
implementation, which is tested for functional 
correctness. With respect to hardware applications, 
SystemC is a good language to provide a coarse grain 
implementation. Simulation of the SystemC 
implementation can be used to verify functional 
correctness. The user will normally refine one block at a 
time and so he/she may need to simulate the refined 
module with coarse grain implementations of the other. 
MILAN’s support of simulation at different levels of 
hierarchy is called multi-granular simulation. After 
refining the design to various alternative implementations, 
the feasibility of the implementations is explored by 
profiling the modules. Profiling of modules requires 
simulation of each component in isolation to come up with 
performance numbers such as throughput, latency, power 
consumption and memory requirements. This kind of 
simulation in MILAN is referred to as isolated simulation. 
After profiling the modules a few feasible designs are 
chosen for system wide simulation to validate the system 
requirements. This is referred to as full system simulation.  

In heterogeneous systems, that is systems having hardware 
and software components interacting with each other, 
verification of design becomes a more challenging task. 
Simulation of the hardware having communication with 
software components can be achieved by providing a 
communication bridge between the hardware and software 
components. This helps to simulate hardware with the 
software implementation providing more accurate results.  

To drive the various simulations mentioned above and to 
automate this process the models captured in the design 
environment need to be interpreted to generate code for 
simulation.  

4.1 Model Interpretation 
The interpreter of the hardware-modeling paradigm in 
MILAN generates code for simulation. Currently SystemC 
code generation is supported, that is if the behavior of the 
system is described in SystemC, the interpreter can 



generate the code for isolated, multi-granular and full 
simulation. The generated code can be compiled and run to 
get simulation results. Furthermore simulation of 
hardware in a heterogeneous system is also supported.  

The interpreter traverses through the graph and gathers the 
required information, like ports, signals, data elements, 
event driven functions and their dependencies. These are 
then used to generate SystemC glue code.  

4.2 Multi-granular Simulation 
In the hierarchical graph representing the system, typically 
the lowest level modules contain the behavioral 
information. Using multi-granular simulation the user can 
choose to provide behavioral information for any module 
at any level of hierarchy. Thus the user can simulate a 
system with a mixture of coarse grain and fine grain 
implementations. The high level behavioral information is 
captured in the Coarse Grain Aspect of the module.  

The interpreter generates the code for the system and 
whenever it finds a module marked for using the coarse 
grain implementation it uses that and doesn’t traverse 
deeper in that module.  

4.3 Isolated Simulation 
In order to simulate a module in isolation the module 
needs to be driven by sourcing functions and the output of 
the module needs to be sent to sinking functions. In 
MILAN we allow the user to capture the exact sourcing 
and sinking function associated with each communication 
port.  

Hence to synthesize for an isolated simulation of a 
module, the true implementation of the module in question 
is used along with the sourcing and sinking functions from 
adjacent modules. The interpreter generates code of the 
module in question and creates sourcing and sinking 
modules for it. The sourcing and sinking modules contain 
simulation scripts specified by the user in the Substitute 
aspect of the adjacent modules. Isolated simulation can be 
performed not only on a single module but on a subgraph 
also, that is a connected subgraph can be chosen for 
simulation and the modules adjacent to this graph will be 
used to supply and consume data.  

4.4 Full Simulation 
For a complete simulation of the entire system a single 
design needs to be chosen. The user can choose between 
alternative implementations by marking one of various 
alternative implementations to use. Alternatively, the 
design-space exploration tool can identify the point 
designs that satisfy the all constraints [10] and mark the 
selected alternatives automatically. The interpreter then 
traverses through the models and picks up the chosen 
alternative implementations to form a single design. The 

true implementations of the design are then used to 
generate SystemC code for a full simulation.  

4.5 Simulation in Heterogeneous Systems 
To simulate hardware in a heterogeneous system, it is 
necessary to facilitate communication between hardware 
and software components. In a real-world system, 
hardware software interactions are facilitated using device 
drivers. However, we do not require device drivers to 
simulate the system. The communication is achieved by 
using entities called proxies. At a hardware software 
interface proxies are generated on both sides of the 
interface. For example, a hardware proxy will read data 
from the hardware module at the interface and pipe it to its 
software counterpart using TCP. Similarly it will read data 
from the pipe and provide it to the hardware module. The 
software proxy does the same at the other end.  

The interpreter breaks the heterogeneous graph into 
hardware and software graphs. It then generates the proxies 
and connects the respective graphs at the interface. Finally, 
the two graphs are sent through their respective 
interpreters. The hardware and software code can finally be 
compiled independently and then run together to simulate 
the hardware.  

5. EXAMPLE APPLICATION 
Image processing systems and specifically, missile 
Automatic Target Recognition (ATR) systems face many 
challenges due to extremely large computational 
requirements and physical, power, and environmental 
constraints [11]. Thus, it is a good example to demonstrate 
some of the capabilities of MILAN. 
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Figure 4. ATR application block diagram 

The design and simulation of a system in the MILAN 
framework starts with application modeling.  Given the 
size of the ATR application and the large number of design 
choices, both hierarchy and alternatives are used 
extensively. Figure 5 shows a model of the do-peaks block 
of the ATR in the MILAN framework. This model captures 
one of the core computations in the ATR application. 
When designing the application it was determined that the 
functionality of the peak to surface ratio (PSR) can be 
realized in hardware or software. Instead of making the 
selection upfront, the alternative realizations are captured 
in the models and the selection postponed till a later phase 
of design.  Notice that in Figure 5 PSR is modeled as an 



AsyncAlternative (colored differently) Figure 6 shows the 
alternative realizations of PSR. 

 
Figure 5. do_peaks model of the ATR application 

The software implementation of PSR is an asynchronous 
dataflow node and uses regular C code. The hardware 
implementation, on the other hand, is a high-level node 
representing a dataflow subgraph (Figure 7b).  In the early 
phases of the design it is not necessarily clear which one 
is a better implementation. The suitability of one or the 
other depends upon the actual resources that are available, 
the runtime execution environment that is employed, and 
other factors. The various simulation tools assists the 
designer in making these selection decisions based on the 
requirements of the system.  

 
Figure 6.  Alternatives in ATR application 

Figure 7 shows two aspects of the hardware model of the 
PSR. In addition to the input and output ports, the 
Hardware aspect contains a data flow sub-graph of the 
model showing the refined realization of the module. The 
coarse grain aspect shows the high level implementation 
of PSR. It contains a SystemC-script, and a VHDL-script.  
The SystemC-script is a placeholder for the high level 
SystemC code implementing the PSR, while the VHDL-
script is a placeholder for VHDL code. An appropriate 
script is selected based on the target simulator.  

A typical design cycle will begin with the designer wanting 
to verify the functional correctness of the alternative 
hardware application with a coarse grain implementation. 
So the designer will choose the hardware version of the 
PSR and mark it to specify the use of a course grain 

implementation. Then the user will simulate the system 
with the coarse grain implementation. The next step will 
require the user to profile the hardware alternative in order 
to allow him to choose between the hardware and software 
at a later stage. This will require an isolated simulation of 
the detailed hardware implementation of the PSR. The 
designer will select the hardware version in the alternative 
model and run isolated simulation on it. The interpreter 
will then use the hierarchical implementation of the PSR 
and use sourcing and sinking functions from 
Calculate_Mean_Std and Calculate_Distance to generate 
SystemC code for isolated simulation. After deciding on 
the implementation to use the designer will want to run a 
full simulation of the system with the right design choice. 
In this example, let’s say that the hardware implementation 
is chosen. Then the user selects that alternative and runs 
the full system simulation. In this case the interpreter uses 
the hierarchical implementation of the PRS implemented 
in hardware as well as the complete implementation of the 
rest of the system. The full simulation allows the user to 
verify the design with respect to system requirements. 

 
(a) Coarse grain aspect 

  
(b) Hardware aspect 

Figure 7. Two aspects of the hardware model of PSR  



Subsequent to application modeling, the next step in the 
ATR design is resource modeling.  In this step the target 
resources are modeled as per the resource-modeling 
paradigm. 

6. CONCLUSION 
Needs of embedded applications have expanded with the 
advent of FPGA’s and ASIC’s. The increasing complexity 
and heterogeneity of such systems drives the need to have 
an integrated framework to support design and 
development to speed up the design cycle and to explore 
various alternative solutions.  

MILAN is a framework that provides an integrated 
environment to design embedded system applications 
using domain specific concepts. It allows for the design of 
alternative solutions and abstracts the implementation 
from design. Separation of concerns and modular design 
are the pillars of MILAN. 

Modeling of hardware using domain specific concepts in a 
heterogeneous system allows for better representation of 
the design and helps developers to design systems in an 
intuitive manner. Support for various simulation needs by a 
composite environment helps to speed up the design cycle 
and allows for better exploration of alternative solutions.  

The framework, specifically the hardware paradigm has 
been applied to various small and medium sized projects 
with a great deal of success in terms of increasing 
efficiency and reducing the design time.  
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