
MILAN: A Model Based Integrated Simulation Framework
for Design of Embedded Systems �

A. Bakshi
Dept. of EE-Systems
University of Southern

California
Los Angeles, CA

abakshi@usc.edu

V. K. Prasanna
Dept. of EE-Systems
University of Southern

California
Los Angeles, CA

prasanna@usc.edu

A. Ledeczi
Institute for Software
Integrated Systems
Vanderbilt University

Nashville, TN

akos.ledeczi@vanderbilt.edu

ABSTRACT
We present MILAN, a model based extensible framework
that facilitates rapid, multigranular performance evaluation
of a large class of embedded systems, by seamlessly integrat-

ing di�erent widely used simulators into a uni�ed environ-
ment. MILAN provides a formal paradigm for speci�cation
of structural and behavioral aspects of embedded systems,
an integrated model-based approach, and a uni�ed software
environment for system design and simulation. This paper

provides an overview of MILAN, discusses the Model Inte-
grated Computing philosophy, and illustrates the high-level
modeling concepts being developed in the MILAN project
for embedded systems design and evaluation.

1. INTRODUCTION
Design of an embedded system typically involves a balance
between high performance requirements such as latency and
throughput, and constraints on power dissipation, area, de-
sign cost etc. System-on-Chip (SoC) architectures combine

high performance with low power consumption, and are thus
suitable candidates for development of these systems. A
SoC architecture integrates multiple functional units (RISC
processors, con�gurable logic, customized functional units,
on-chip memories, etc.) of a complete end product onto a
single chip. However, the heterogeneous nature of the com-

ponents makes eÆcient mapping of applications onto these
architectures a challenging task. While the availability of
these heterogeneous components on a single platform pro-
vides the designer with increased exibility in mapping ap-
plications, eÆcient design requires an in-depth understand-
ing of their functionality, interactions, and possible tradeo�s

in co-design [8, 15].

�This work is supported by the DARPA Power Aware
Computing and Communication Program under contract
F33615-C-00-1633 monitored by Wright Patterson Air Force
Base.

State-of-the-art methodologies adopt an ad hoc approach to-
wards system design. Programming models and design tools
for each hardware component are utilized independently to
map an application task onto that resource, and integra-

tion is performed much later in the design cycle. Lack of
system-wide performance evaluation and optimization tools
increases the complexity of the design process. System-wide
performance analysis is typically a manual process involv-
ing the use of component speci�c simulators in isolation.
This is tedious, since each simulator requires a di�erent

input/output interface and execution platform. Moreover,
separate simulators are utilized for estimating multiple per-
formance metrics even for the same component. This results
in sub-optimal solutions because global, multi-objective op-
timizations are diÆcult, and traversing the entire design
space is too time-consuming to be practical.

This paper introduces MILAN1, a Model based Integrated
simuLAtioN framework to facilitate embedded system de-
sign and optimization. MILAN is a collaborative project
between the University of Southern California (USC) and
the Vanderbilt University (VU).

The MILAN modeling paradigms facilitate seamless integra-
tion of a variety of simulators at multiple levels of granular-
ity, into the framework. A single graphical user interface
allows designers to specify di�erent aspects of embedded
system hardware and software, and performance require-

ments. This information is automatically translated into
the various simulator-speci�c input formats. The results of
individual simulations are interpreted in the global context
to provide system-wide estimates of di�erent performance
metrics. A design space exploration tool, coupled with a

high-level, coarse-grained performance estimator facilitates
evaluation of a large number of possible solutions and elim-
inates those that do not meet system requirements. The
high-level estimator is designed to provide rapid, coarse-
grained performance statistics, possibly at the expense of
accuracy. MILAN will provide a feedback mechanism for

re�ning high-level model parameters based on results of low-
level simulation, for greater accuracy in future simulations.
This framework incorporates power as an important design
metric. Power estimation and optimization is supported
through integration of existing component speci�c power
simulators, based on system-wide power models.

1milan (hindi): meeting, uni�cation. http://milan.usc.edu/



The focus of the project is on developing formal model-

ing paradigms that will enable simulator integration and
eÆcient application-to-architecture mapping through auto-
matic design space exploration. The architectures modeled
in MILAN consist of tightly-coupled, heterogeneous, digital
components, speci�cally, emerging SoC architectures such
as [7, 20, 21]. Initially, applications will be modeled as hi-

erarchical signal ow graphs with no control dependences
between tasks. Even with this restriction, the application
model is capable of representing most streaming applica-
tions including signal and image processing applications.

The rest of this paper is organized as follows. Section 2 de-

scribes related work in embedded system design. Section 3
has an overview of the MILAN architecture. Sections 4, 5,
and 6 provide technical details on system representation, de-
sign space exploration and simulator integration in MILAN.
Section 7 has the concluding remarks.

2. RELATED WORK
Several research e�orts have focused on the study of system-
level tradeo�s and performance optimization techniques. No-
tably, various hardware/software co-design groups have de-
veloped formal modeling techniques for the design of embed-
ded systems. The POLIS project [3] provides a hardware-
software co-synthesis tool for design and synthesis of embed-

ded micro-controllers. A single abstract representation, the
co-design �nite state machine model [9], was proposed in
POLIS for speci�cation, partitioning, and implementation
of such systems. Chinook [10] is a hardware-software co-
synthesis CAD tool for control dominated, reactive embed-
ded systems, with emphasis on IP integration. This e�ort

has studied the issues of IP composition, communication
synthesis, and rapid evaluation. The POLIS and Chinook
frameworks enable detailed low-level simulation, evaluation,
and synthesis of an embedded system. However, they model
point solutions in the sense that the user is required to spec-

ify a particular hardware-software partitioning of the appli-
cation. The Ptolemy project [16] provides a formalism to
express various computational models related to embedded
systems and supports heterogeneous concurrent modeling.
Ptolemy also supports modeling of interactions between sets
of components that are represented by di�erent computa-

tional models. Simulink 4 [18] is a commercial tool that
provides an extensive graphical interface to MATLAB for
interactive modeling and functional simulation.

MILAN leverages some of the concepts related to modeling,
co-simulation, and system level analysis techniques, from the

above projects. The primary focus of MILAN is to facilitate
integration of heterogeneous simulators, develop/leverage
models to formally represent the system structure and be-
havior, and provide a high-level abstraction to the system
designer. MILAN enables evaluation of several performance
metrics including power, with a high-level estimation tool

for rapid design space exploration. MILAN also provides
a single graphical user interface for all aspects of system
development.

3. MILAN ARCHITECTURE OVERVIEW
MILAN adopts Model Integrated Computing (MIC) [19] as
the core design philosophy. Model Integrated Computing

is especially valuable for the design of computer-based sys-

tems with strong interdependence between the hardware and

software components. By formally modeling all aspects (ap-
plication, resource, behavior, constraints, etc.) of a sys-
tem and using well-de�ned rules to generate new systems
or manage existing ones, it is possible to avoid the errors
that arise when requirements change and the system has to
be redesigned or reimplemented. While the initial model-

ing e�ort might be costly compared to ad hoc approaches,
the bene�ts are clearly visible for a system that evolves over
time.

Models are essentially abstractions that allow the represen-
tation and manipulation of various aspects of the under-

lying system. The level of abstraction at which a system
is modeled depends entirely on the intended usage of the
model information. For example, the RAM model of com-
putation assumes an in�nite main memory with unit ac-
cess cost. This model is used in arriving at rough estimates
of time complexity of sequential applications. Any anal-

ysis that requires a more accurate estimate of application
performance needs to model memory in more detail, such
as row access cost, column access cost, number of memory
banks, access latencies, etc. An environment that supports
MIC allows designers to create domain-speci�c models of
systems at the required level of abstraction, validate these

models, and perform various computational transformations
on them. Model interpreters are the software components
that translate these models for use in the MILAN execution
environment. A model database stores the translated infor-
mation, which is used in driving various simulators. The

intermediate results are also stored in the model database.

The Generic Modeling Environment (GME) is a con�gurable
graphical tool suite supporting MIC [11]. The con�guration
of the environment to support domain-speci�c modeling is
done in a formal manner through the use of metamodels.

The metamodeling language is the UML class diagram no-
tation [6]. Well-formedness rules that are also part of the
metamodels are speci�ed using the Object Constraint Lan-
guage (OCL). These constraints, along with the syntactical
rules of the domain language, are enforced by the automat-
ically generated target environment. MILAN exploits the

MIC technology to present an environment tailored for em-
bedded system design, evaluation, and optimization.

Figure 1 shows the architecture of MILAN and also depicts
the system design ow from the users' perspective. The
graphical interface is provided by GME con�gured to sup-

port the modeling paradigms developed for MILAN. These
modeling paradigms can be categorized into two broad classes.
The �rst consists of resource, application and constraint
models that primarily capture the system structure (layout,
interconnections, and parameters). The second consists of

performance and communication models that characterize
those aspects of the hardware/software that enable analy-
sis and performance estimation. These two models are not
visible to the designer through GME, and therefore are not
part of the design ow implied in Figure 1.

Resource models describe available hardware components
and their interconnectivity in a hierarchical block diagram-
like notation. Application models are based on a hierar-
chical signal ow representation with important extensions.



Generic Modeling
Environment

(GME)

Application
Models

Constraints
Resource
Models

Design-space
Exploration and

Pruning

High-Level
Simulator

System Simulation

DESIGN

SYSTEM

i

i i

i i
i

ii

Performance
Simulator

Functional
Simulator

Power
Simulator

i Model Interpreters

Figure 1: MILAN Architecture

Most notably, the modeling language allows for the speci-
�cation of explicit design or implementation alternatives of
any component. This enables modeling of the entire de-
sign space of the application as opposed to a point solution.

To manage this design space, application requirements, re-
source constraints and other speci�cations are captured ex-
plicitly through OCL. Performance modeling of SoC archi-
tectures involves characterizing desired performance metrics
of a given mapping in terms of architecture parameters. The
communication model provides a common formalism to en-

able interoperability of simulators that represent the same
information in di�erent formats. Section 4 discusses these
models in detail.

The design-space exploration and pruning tool takes the
potentially very large design space2 and applies the con-

straints using a symbolic constraint satisfaction technique
to �nd the set of solutions that satisfy all the constraints.
The goal of design space exploration is to identify a small
number of valid candidate designs. To �nd the balance be-
tween an under-constrained and an over-constrained model
is a highly iterative, human-in-the-loop process. One of the

design goals of the modeling environment and the design-
space exploration tools is to support this activity. The next
step in the design process is to utilize the integrated simu-
lators to simulate candidate designs one-by-one. Each sup-
ported simulator has a corresponding model translator (or

model interpreter, to use MIC terminology) that con�gures
the simulation from the system models.

MILAN supports di�erent classes of simulators. Functional
simulators, such as MATLAB or SystemC, verify the func-
tionality of the application. The integrated high-level esti-

mation tool provides a rapid, reasonably accurate estimate
of di�erent performance criteria of the system. The per-

2Design space, as used in this and subsequent sections, refers
to the space of application-to-SoC mappings from an overall
system design point of view, and not just the set of options
at the hardware synthesis level.

formance model is utilized to evaluate system design for a

quick estimation of critical performance parameters without
the use of any cycle accurate simulation. This quick estima-
tion is enabled by use of functions or heuristics evaluating
various performance attributes based on architecture param-
eters. For example, rapid prediction of performance and
power consumption of various cache con�guration is possi-

ble through a fast estimation equation generated using linear
approximation [12].

Lower-level simulators such as SimpleScalar [17] are also
supported. While they can be very accurate, their slow
speed may prevent the simulation of all possible design choices.

MILAN allows multi-level simulation, which exploits the
trade-o� between accuracy of results and simulation speed.
Simulator integration is described in detail in Section 6.

4. MODELING PARADIGMS
As discussed earlier, various modeling paradigms are being
developed for MILAN to capture the structural and behav-

ioral aspects of an embedded system. A modeling paradigm
(metamodel in GME nomenclature) captures the syntactic,
semantic, and presentation information necessary to create
models of systems within a particular domain [11]. Model-
ing paradigms are developed based on an exhaustive char-
acterization of the underlying domain, and are used by the

designer to instantiate domain-speci�c system architectures
in terms of models.

4.1 Resource Model
Resource models represent the hardware components of the
system. Hardware components of SoC architectures typ-
ically consist of general-purpose processor cores, applica-

tion speci�c accelerators, interconnect, memory, and con-
�gurable logic among others. Recent advances in hardware
synthesis have enabled design of hardware with various mal-
leable parameters (e.g. frequency, voltage, memory size).
These parameters are critical for system optimizations and
need to be identi�ed and their e�ect evaluated early in the

design cycle.

The MILAN resource metamodel is based on a hierarchical
classi�cation of hardware components related to embedded
system design, within the scope of the project. The resource
metamodel will not represent analog/RF components, pe-

ripheral devices, wireless networks, etc. The top level of the
hierarchy consists of the generic components - processing el-
ement, storage element, interconnect, sensor, and actuator.
Although we do not model I/O components, the sensors and
actuators are included to represent the source and destina-

tion of data. All possible hardware components for the tar-
get embedded system architectures in the MILAN project
can be classi�ed under one of these general categories.

To facilitate a logical structure for the resource representa-
tion, our metamodeling process follows a design technique

similar to object-oriented programming. The models consist
of specialized components, which inherit the parameters of
the base component and are associated with additional ca-
pabilities. For example, an FPGA and a RISC core are
both processing elements, but an FPGA has additional fea-
tures, such as the capability to be con�gured to a speci�c

task. Therefore, in the resource model hierarchy, the FPGA



Figure 2: Screenshot of Resource Modeling

Paradigm on GME

forms a separate category - con�gurable processing elements
- inherited from the more generic \processing element" cate-
gory. While frequency and voltage are common parameters
of all processing elements, recon�guration cost, hardware

area usage, etc. are some parameters applicable speci�cally
to con�gurable processing elements. Figure 2 is a screenshot
of the resource metamodel created using GME [11].

Another important characteristic being captured by the re-
source model is the architecture parameters, which can be

varied to optimize system performance. For example, volt-
age is a constant parameter for many components, whereas
for devices such as the Intel StrongARM processor, it can be
varied by application programs. Variable parameters such
as these characterize a design space. The choice of param-
eters depends on several factors such as (a) desired detail

of simulation, (b) capability of the resource, (c) parameters
explicitly manipulated by the application, (d) availability of
simulators with desired capabilities, and (e) range of design
choices to explore.

4.2 Application Model
Application models are used to represent the algorithm to
be implemented by the resulting system. Many di�erent
types of application representations may be used to repre-
sent embedded systems. We have chosen to initially focus on

an enhanced hierarchical signal ow notation, that models a
system as distinct components with well-de�ned interfaces.
The \ports" that form these interfaces allow data to be ex-
changed between components. The signal ow de�nes the
(partial) order of processing for an application. Each compo-
nent in the signal ow graph receives data from other compo-

nents, performs some transformation on the data, and then

outputs new data to other system components. Figure 3 is

a screenshot of the Automatic Target Recognition (ATR)
application using a signal ow graph created in GME.

Figure 3: Screenshot of ATR Application Model

The following features are included in the application model:

� Both asynchronous and synchronous dataow (ASDF,

SDF) semantics are supported.

� Signals are strongly typed. A separate metamodel (de-
veloped for data typing) is used in conjunction with
the application model, to specify and associate data
types with ports. The environment enforces the type
consistency of connections.

� Component level functionality implemented in hard-
ware (i.e. con�gurable logic) can also be represented,

thereby supporting SystemC and VHDL simulations.

� The modeling paradigm allows the speci�cation of ex-
plicit implementation alternatives at any level of the
hierarchy. For example, a �lter may be implemented
in the time or the spectral domain, it may be imple-
mented on a DSP chip in assembly language, a RISC
processor in C, an FPGA or an ASIC, etc. These al-

ternatives, each with di�erent performance character-
istics and resource constraints, can be captured in the
models. Alternatives allow the environment to support
the modeling of the design-space of the application, as
opposed to a single-point solution.

� The environment supports multi-granular simulations

by allowing the user to specify implementation scripts
at any level in the hierarchy. Implementation scripts
can be in C, Java, MATLAB, SystemC, or VHDL.
Specifying these is mandatory at the leaf level of the
signal ow graph; this information is utilized during
system synthesis. However, the user may choose to

provide a C implementation of a high-level component
directly. This provides �ne control over simulation
granularity.

4.3 Constraint Model
Constraints in MILAN are broadly of two types, semantic

and design constraints. Semantic constraints are described



as part of the MILAN metamodels. These constraints de-

�ne composability rules that are enforced by the domain-
speci�c model building environment used by the designer to
instantiate a particular system architecture. For example,
a semantic constraint in a traditional uniprocessor system
metamodel can specify that individual components can only
be connected to the bus, and not directly to each other.

Design constraints, on the other hand, are speci�ed by the
user as part of the model building process, and formally
specify the requirements (latency, throughput, power dissi-
pation, etc.) of the �nal system. They also restrict mapping
of tasks onto hardware components. For example, an FFT

algorithm speci�ed as a C program, should be mapped only
to an Instruction Set Architecture (ISA)-based component
such as a RISC core.

4.4 Performance and Communication Models
Performance and communication models are di�erent from
the models described above in two respects. Firstly, the pri-

mary purpose of application, resource, and constraint mod-
els is to enable the user to instantiate a system and provide
the information required to drive simulation, synthesis, etc.
These models de�ne the designer's visualization of the sys-
tem. Performance and communication models, on the other
hand, determine the structure of MILAN itself since they

form the basis for high-level performance estimation and
simulator integration respectively. Secondly, application, re-
source, and constraint meta-modeling can be expressed in
the GME tool as UML-like class diagrams that are used to
synthesize the domain-speci�c modeling environment. Per-
formance and communication models are not de�ned in MI-

LAN through such meta-modeling.

A performance model is essentially a set of functions that
relate the functionality and parameter values of a particu-
lar hardware component to the desired performance metrics

of the task that is mapped onto that resource. This model
will be used in a high-level estimation tool for rapid, coarse-
grained performance evaluation of a given mapping. MILAN
will leverage prior USC work in high-level modeling of both
traditional and advanced architectures [1, 14]. Performance
can also be modeled at a very low architecture level, which

greatly improves the accuracy of statistics. However, ac-
curate performance estimation typically results in low-level
(cycle-accurate) simulation, which is too time intensive for
evaluating a large set of possible mappings.

The motivation behind a communication model is the need

for a common data-exchange layer/methodology between
simulators. Most widely-used simulators are designed to
be used as stand-alone tools, and making such simulators
interact with each other is a non-trivial task. The com-
munication model will form the basis for a canonical rep-
resentation for information exchanged between simulators.

Using this representation, a translation mechanism will con-
vert one simulator-speci�c I/O format into another.

5. DESIGN SPACE EXPLORATION
Emerging SoC architectures provide a large number of hard-
ware parameters - knobs - which can be manipulated by a
designer to optimize application performance. In addition,

diverse memory and I/O organizations, and alternative im-

plementations of application tasks contribute to the expo-

nentially large design space that needs to be explored to
arrive at an optimal solution.

The traditional, combinatorial view of mapping de�nes a
design space as the (large) set of all possible hardware-
software partitions that are implied by the task implementa-

tions speci�ed in the application model. For instance, if the
resource model includes a RISC processor and an FPGA,
and one of the application tasks is speci�ed in both VHDL
and C code, the design space doubles. MILAN will use a
tool developed at VU [4], that uses Ordered Binary Deci-
sion Diagrams for exploration and pruning of this design

space.

The characteristics of architectures described above, necessi-
tates a new de�nition of design space. In this new scenario,
DSE also includes exploring tradeo�s in algorithm design
that are enabled by exploiting hardware knobs. Structured

languages like C are not expressive enough to capture such
information. Part of the MILAN e�ort will focus on design-
ing a new application representation to capture the e�ect
of architecture knobs on system performance. The design
space exploration and pruning tool will use this representa-
tion to explore the multitude of design possibilities unique

to such SoC architectures.

6. SIMULATOR INTEGRATION
Integrating simulators poses a multitude of challenges. Lack
of standard interface among the simulators hinders integra-
tion of component speci�c simulators which is desirable for
simulation of SoC type of architectures. Such integration
involves the issues of uniform interpretation of simulation

results, use of results to modify the high-level estimation
tool or drive other simulations, and in the long run, develop-
ment of tools and techniques for semi-automatic integration
of third-party simulators into MILAN. MILAN addresses
these issues through a model-based approach.

In MILAN, model interpreters are employed to address the
issue of interpretation of results of dissimilar simulators.
Model interpreters speci�c to each simulator provide a bridge
between the MILAN models and the simulator. For ex-
ample, the SimpleScalar model interpreter will extract the
required architecture parameters from the resource model

of the uniprocessor component and con�gure the simulator.
The C �les speci�ed as part of the application model, also
have to be compiled with the SimpleScalar compiler. After
running SimpleScalar, the simulation results can be used for
verifying satis�ability of the performance constraints. Para-

metric re�nement of the high-level estimator for a system-
wide performance evaluation can also be done using the re-
sults of this low-level simulation. Note that the interpreta-
tion of the results will be a human-in-the-loop process.

Providing the functionality of a single system-wide SoC sim-

ulator, by suitably integrating both the execution and the re-
sults of component-speci�c simulation, involves vertical and
horizontal simulation.

Vertical simulation addresses the issue of providing multi-
granular simulation, and refers to interpretation of low-level,

component-speci�c simulation results in a global context [13].



The assumption here is that all the simulations are run in-

dependent of each other, i.e. there is no data exchange or
any other communication between simulators at any granu-
larity level. Component-speci�c low-level simulators might
not be capable of representing system-wide e�ects that a�ect
overall system performance (like communication delays be-
tween components). Vertical simulation is partially enabled

by model interpreters that use the results of low-level sim-
ulations to compute parameters required by tools at higher
levels of granularity. For instance, while SimpleScalar pro-
vides detailed simulation results (e.g. number of instructions
executed, cache access, TLB access) a high level estimator
might need just the energy consumed (as a function of num-

ber of instructions executed), and total execution time.

Horizontal simulation refers to the concurrent execution of
component-speci�c simulators for system-wide performance
evaluation. Unfortunately, none of the existing widely-used
simulators lend themselves to easy modi�cation that will en-

able them to trap selected events and eÆciently interact with
similar simulators in real time. Also, there is no common in-
put/output format used by di�erent simulators to represent
information such as architecture parameters, application de-
scription, desired level of simulation, output statistics, etc.
A possible approach towards solving this problem is de�n-

ing a standard API for simulators to synchronize on events,
and either modifying existing simulators or requiring new
simulators to con�rm to the standard.

7. CONCLUDING REMARKS
MILAN leverages previous ISIS [4, 11] and USC research [1,
14] in adaptive and data-intensive computing systems. The

performance modeling paradigm is based on an extension of
the hybrid system architecture models developed at USC [5].
The structural modeling paradigms are based on the exten-
sive experience of the VU team in modeling a wide variety
of embedded systems using MIC [19]. Currently, the frame-

work supports SDF and ASDF application models, other
models such as Finite State Machine and Discrete Event
will be included in the future. A preliminary performance
model for representing uniprocessor and memory hierarchy
has been developed. A high-level model for power dissipa-
tion in such a system has also been de�ned. The current

version of resource model captures a majority of structural
details of DSPs, FPGAs, memories, interconnects, etc. A
power/performance estimation tool (with limited capabili-
ties) is also available. SimpleScalar, MATLAB, and Sys-
temC have been integrated into MILAN. Other simulators
(DSP, VHDL, etc.), and also simulator synthesis frameworks

[2] will be integrated in due course. De�ning interfaces be-
tween these simulators to enable horizontal and vertical sim-
ulations will be a challenging task. Therefore, we are also
developing generic guidelines and an extensibility toolkit for
integrating third-party simulators. We expect a preliminary
version of the framework to be available for public use by

the end of the year.

8. ADDITIONAL AUTHORS
V. Mathur, S. Mohanty, C. S. Raghavendra, M. Singh, A.
Agrawal, J. Davis, B. Eames, S. Neema, G. Nordstrom,
email: fvaibhav, smohanty, raghu, mitalisig@usc.edu,
faditya.agrawal, james.r.davis, brandon.eames,

sandeep.k.neema, greg.nordstromg@vanderbilt.edu.

9. REFERENCES
[1] Algorithms for Data Intensive Applications on

Intelligent and Smart Memories (ADVISOR), Univ. of
Southern California. http://advisor.usc.edu.

[2] A. Bakshi and V. K. Prasanna, \Abstract Resource
Representations for Custom Design of System-on-Chip
Architectures," submitted to IFIP VLSI-SOC 2001,
Montpellier, France, December 2001.

[3] F. Balarin et al., \Hardware-Software Co-Design of
Embedded Systems: The POLIS Approach," Kluwer
Academic Publisher, Massachusetts, 1997.

[4] T. Bapty et al., \Model-Integrated Tools for the
Design of Dynamically Recon�gurable Systems," ISIS
Technical Report/Vanderbilt University, 2000.

[5] K. Bondalapati and V. K. Prasanna, \Mapping Loops
onto Recon�gurable Architectures," International
Workshop on Field Programmable Logic and
Applications, Tallinn, Estonia, August 1998.

[6] G. Booch et al., \The Uni�ed Modeling Language
User Guide," Addison-Wesley Pub Co., 1999.

[7] Chameleon Systems Recon�gurable Communications

Processor, http://www.chameleonsystems.com/.

[8] H. Chang et al., \Surviving the SOC revolution - A
guide to Platform-Based Design," Kluwer Academic
Publisher, Boston, November 1999.

[9] M. Chiodo et al., \A Formal Speci�cation Model for
Hardware/Software Codesign," Proc. of the
International Workshop on Hardware-Software

Codesign, October 1993.

[10] P. Chou et al., \IPCHINOOK: An Integrated IP-based
Design Framework for Distributed Embedded
Systems," Design Automation Conference, June 1999.

[11] Generic Modeling Environment, http://www.isis.
vanderbilt.edu/projects/gme/default.html.

[12] T. D. Givargis et al., \Fast Cache and Bus Estimation
for Parameterized System-on-a-Chip Design," Design,
Automation and Test in Europe, March 2000.

[13] V. Mathur and V. K. Prasanna, \A Hierarchical
Simulation Framework for Application Development
on System-on-Chip Architectures," submitted to the
14th IEEE Intl. ASIC/SOC Conference, Washington
DC, September 2001.

[14] Models, Algorithms and Architectures for
Recon�gurable Computing (MAARC), Univ. of
Southern California, http://maarc.usc.edu.

[15] T. Mudge, \Power: A First Class Design Constraint
for Future Architectures," 7th Intl. Conference on
High Performance Computing, Bangalore, India,
December 2000.

[16] The Ptolemy Project,
http://ptolemy.eecs.berkeley.edu.

[17] SimpleScalar Tool Set, http://www.simplescalar.org/.

[18] Simulink 4, http://www.mathworks.com/.

[19] J. Sztipanovits and G. Karsai, \Model-Integrated
Computing," IEEE Computer, April 1997.

[20] Triscend Con�gurable System-on-Chip Family,
http://www.triscend.com

[21] D. C. Wyland, \The Universal Micro System:

Hardware Performance with Software Convenience,"
Cradle Technologies White Paper,
http://www.cradle.com/literature/tech papers.html.


