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Abstract. Software engineering tools based on Graph Transformation
techniques are becoming available, but their practical applicability is
somewhat reduced by the lack of idioms and design patterns. Idioms
and design patterns provide prototypical solutions for recurring design
problems in software engineering, but their use can be easily extended
into the graph transformation systems. In this paper we briefly present a
simple graph transformations language: GREAT, and show how typical
design problems that arise in the context of model transformations can
be solved using its constructs. These solutions are similar to software
design patterns, and intend to serve as the starting point for a more
complete collection.

1 Introduction

The practical application of Graph Rewriting and Transformations (GRT) [4] is
contingent upon the existence of mathematically well-founded, yet easy-to-use
tools on one hand, and on the real-world engineering experience and knowledge
about the use of the techniques on the other hand. With the arrival of the Model-
Driven Architecture (MDA) [3], GRT is about to become a technology that could
be widely used in the industry. Although there have been a number of GRT tools
developed [18, 19], few tools have been used on practical development projects,
and even lesser engineering experience has been accumulated and documented
about the use of these tools.

We agree with the vision of MDA, where transformations on the artifacts
produced during the design of software are an integral and essential part of the
design process. We envision software development environments, where model
transformations are used to facilitate design automation. Transformations could
take place at different phases of the process, for instance: (1) when design mod-
els are built and some activities (e.g. applying a design pattern) are best im-
plemented by an automated tool that transforms the models [16],(2)when com-
ponents are adapted to suit the needs of a particular design context [20], (3)
when designs have to be transformed into a model that can be analyzed by an



analysis tool [10], (4) when code has to be generated from the models through
instantiating code fragments [21]. As these transformations must be performed
on design models (which are typed multi-graphs in the most general sense), GRT
techniques are applicable.

There are (at least) two major motivations for using GRT in this context: (1)
transformations could be complex, and a concise and precise language to program
them is desirable, and (2) if the transformations are specified in a formal way (as
the GRT technology allows it), we have the opportunity to reason about their
properties, and how they change the properties of the models they are applied
to.

A language to write graph transformation programs in (and thus implement
model transformations), should have a well-defined, yet simple syntax and se-
mantics. However, there are common recurring tasks in model transformations
that should not be directly supported by the language. Rather, they should be
available as well-documented, reusable idioms and design patterns that solve
recurring design problems. The difference between the two is that idioms are re-
stricted to an application domain, while design patterns are domain-independent.
In this paper we describe a few such design patterns and idioms. First we describe
a simple visual language that supports explicitly sequenced graph transformation
and rewriting operations. Next a number of domain-independent design patterns
are described, followed by a description of a non-trivial idiom. The final sections
discuss related and future work.

2 GReAT

The transformation language used to demonstrate the design patterns, algo-
rithms and idioms is Graph Rewriting and Transformation language (GReAT).
GReAT is a language that allows users to specify graph transformations in a
graphical form with formal and executable semantics. In this paper only the
necessary language constructs are explained, [7] describes the full approach and
support tools. The operational semantics of GReAT is formally defined in [9].
GReAT is based on the theoretical work of graph grammars and transforma-
tions [4–6] and belongs to the set of practical graph transformations systems,
like AGG and PROGRES. This language can be divided into four parts:

1. Domain specification and heterogeneous transformations
2. Pattern specification language
3. Graph transformation language
4. Control flow language.

2.1 Domain Specification and Heterogeneous Transformations

Many approaches have been introduced in the literature to capture graph do-
mains. For instance, schemas are used in PROGRES while AGG uses type
graphs. These are proprietary formats for the specification of the graph domain.



We chose UML [1] class diagrams and the Object Constraint Language (OCL)
[2] for the specification of domains because it is standardized and it is more ex-
pressive than both schema and type graphs. The UML class diagram plays the

(a) Hierarchical dataflow (b) Flat dataflow

Fig. 1. Metamodels HDF and FDF

role of a graph grammar such that it can describe all the “legal” object networks
that can be constructed within the domain.

From the UML class diagrams one can generate an object oriented API that
can be used to implement the graphs, to traverse the input graph, and to con-
struct the output graph. To satisfy the second requirement, GReAT allows the
user to specify any number of domains that can be used for the transformation
purposes.

For example, figure 1(a) shows a UML class diagram that represents the do-
main of hierarchical data flow networks. A hierarchical data flow network consists
of Components, DataflowConnections and Ports. A component can be a either
a Compound or a Primitive component, a Compound component may contain
other components. Components contain port and directed dataflow associations
between these ports represent the flow of data. figure 1(b), represents a flat (non-
hierarchical) dataflow language with FlatComponents and dataflow connections
between them. The hierarchical data flow network and flat representation will
serves us as an ongoing example throughout this paper.

A design challenge for GReAT was to provide a uniform syntax and semantics
for both graph transformations and rewriting. This problem is tackled in GReAT
by allowing the user to compose source and target metamodels by defining tem-
porary vertex and edge types that can span across multiple domains and will
be used temporarily during the transformation. For example, figure 2 shows a
metamodel that defines associations/edges between HDF and FDF. Component
and Dataflow are classes from figure 1(a) while the FlatComponent and Flat-
Dataflow are classes from figure 1(b). This metamodel defines three types of
edges. There is a refersTo edge type that can exist between Component and
FlatComponent, and between Dataflow and FlatDataflow. Another edge type
associatedWith is defined and it can link Component objects. By composing the
domains using temporary cross-links we are able to tie the different domains to-



Fig. 2. A meta-model that introduces cross-links

gether to make a larger, heterogeneous domain that encompasses all the domains
and cross-references.

2.2 The Pattern Specification Language

The pattern specifications found in graph grammars and transformation lan-
guages [4–6] were not sufficient for our purposes. A more expressive, easy-to-use
pattern language has been developed that allows specification of complex graph
patterns. The pattern specification language was developed to extend simple
patterns with a notion of cardinality on each pattern vertex and each edge.
Precise semantics for such a language was developed along with efficient pattern
matching algorithms. For a complete discussion on semantics, expressiveness and
matching algorithms of pattern graphs please see [7].

2.3 Graph Transformation Language

The heart of GReAT is the graph transformation language. It was inspired by
many previous efforts such as [4–6]. It defines the basic transformation entity: a
production/rule. A production contains a pattern graph, in which each pattern
object: a vertex (or an edge) conforms to a type: a class (or an association) from
the metamodel. Apart from this, each pattern object has another attribute that
specifies the role it plays in the transformation. There are three roles that a
pattern object can play:

1. bind : The object is used only to match objects in the graph.
2. delete: The object is used to match objects, but once the match is computed,

the objects are deleted.
3. new : New objects are created after the match is computed.

The execution of a rule involves matching every pattern object marked either
bind or delete. If the pattern matcher is successful in finding matches for the
pattern, then for each match the pattern objects marked delete are deleted and
then the objects marked new are created.

Pre-conditions are often required for additional constraints on the transfor-
mation application. In GReAT, OCL is used for the pre-condition specification
and these constraints are evaluated on the matches before the actions are ap-
plied. There is also a need to provide values to attributes of newly created objects
and/or modify attributes of existing objects. “Attribute mapping” is a specifi-
cation of such attribute manipulation and is executed after the transformation



Fig. 3. Example rule with patterns, guards and attribute mapping

is applied. Figure 3 shows an example rule. Each object in the pattern graph
refers to a class in the heterogeneous metamodel. The semantic meaning of this
reference is that the pattern object should match with a graph object that is an
instance of the class represented by the metamodel entity. The default action of
the pattern objects is bind. The new action is denoted by a tick mark on the
pattern vertex (see the vertex NewPrimitive in figure 3). Delete is represented
using a cross mark (not shown in figure). The In and Out icons in the figure are
used for passing graph objects between rules and will be discussed in detail in
the next section.

2.4 Controlled Graph Rewriting and Transformation

GReAT has a high-level control flow language built on top of the graph trans-
formation language with the following constructs for improving the efficiency of
the transformations: (1) pivoting and (2) sequencing. In this paper these issues
will be briefly touched upon, for a complete discussion please refer to [8].

The performance of the pattern matching can be significantly increased if
some of the pattern variables are bound to elements of the host graph before
the matching algorithm is started (effectively providing a context for the search).
The initial matches, called pivots, are provided to a transformation rule with the
help of ports that form the input and output interface for each transformation
step. Thus a transformation rule is similar to a function, which is applied to the
set of bindings received through the input ports and results in a set of bindings
over the output ports. For a transformation to be executed graph objects must
be supplied to each port in the input interface. In figure 3 the In and Out icons
are input and output ports respectively. Input ports provide the initial match to
the pattern matcher while output ports are used to extract graph objects from
the rule so that they can be passed along to the next rule. The rules thus operate
on packets, which are defined as sets of (port, host graph object) pairs.

Explicit sequencing of rules and a high-level control flow language allows
the precise control of transformations and thus helps to manage the complexity



of the transformation and allows users to write efficient transformations. The
control flow language supports the following features:

1. Sequencing: rules can be sequenced to fire one after another.
2. Non-Determinism: Non-deterministic parallel execution of rules.
3. Hierarchy: Compound rules can contain other rules.
4. Rule reuse: The same rule can be called from different parts of the transfor-

mation specification.
5. Recursion: A level rule can (directly or indirectly) call itself.
6. Test/Case: A branching construct to choose between control flow paths.

Sequencing is used to specify an order of execution for a set of transformation
rules. For example, figure 5 shows a sequence of rules, “HasComponents” and
“Call: CollectPrimitives” are executed sequentially which is in parallel with the
rule “IsPrimitive”. Hierarchy is also shown in figure 5, where the above men-
tioned rules are all contained in a compound rule called the “CollectPrimitives”.

A test/case construct is used to choose between different execution paths,
similar to the ‘if’ statement in programming languages. Figure 11, contains a
test called “TestProxyExistence” that contains two cases (shown in figure 12).
The test will first try case “HasProxy”, if “HasProxy” succeeds then the outputs
will be passed to the respective output ports and similarly for “NoProxy”. Once
all inputs have been evaluated the next rules in the sequence will be executed.

3 Patterns and Idioms for Reusable Graph
Transformations

Software design is commonly regarded as the most difficult stage in the software
development cycle. The goal is to design a system such that it is flexible, ro-
bust and reusable. Some design challenges are common and have been faced by
many software designers. Over the years elegant solutions to such problems have
been identified and implemented. When such a design solution is formally doc-
umented, identifying the participating elements, their roles and collaborations,
and the distribution of responsibilities, a design pattern arises. A design pat-
tern allows some aspect of system structure vary independently of other aspects,
thereby promoting robustness and domain-independent reuse [13].

The same driving forces exist in the area of programming graph transforma-
tions and in the following section a few transformation patterns, algorithms and
idioms will be introduced. Each pattern/idiom will be described in a uniform
way with the following structure: (1) Motivation: a problem, where the need
for the pattern arises. (2) Applicability: the general class of problems where the
pattern is applicable. (3) Structure: the abstract specification of the pattern.
(4) Benefits: the advantages of applying the pattern. (5) Known uses: a set of
transformations where the pattern has been known to be applied.

A single motivating example will be carried throughout the design pattern
discussion, and that is the flattening of hierarchical dataflow (HDF) to a flat
dataflow (FDF) representation. In figure 1(a) the meta-model of the HDF has



been presented with primitives that capture dataflow behavior, and compounds
that are only used for encapsulating other components. The aim is to convert the
tree structure of HDF to an FDF representation (see figure 1(b)) while preserving
the dataflow connectivity. A simple algorithm is: (1) collect all primitive nodes
and copy them to FDF, (2) trace the dataflow connection from each port in each
primitive to a corresponding target primitive port, (3) replace this trace by a
single dataflow association in FDF.

3.1 The Leaf Collector Pattern

Motivation. In step 1 of the HDF flattening algorithm, a requirement is to col-
lect all leaf nodes in the hierarchy. For example, in figure 4, given the root
component C we need to find all leaf primitives P121, P11, P21, P22. Figure 5

Fig. 4. An HDF model

shows the rules that collect all the primitives in a given HDF hierarchy. The top
level rule “CollectPrimitives”, gets as an input the root object of the hierarchy.
It calls “HasComponents” that collects all direct children and on each child a
recursive call to “CollectPrimitives” is made. If the input to “CollectPrimitives”
is a primitive, then the “IsPrimitive” rule will succeed and will be passed to the
output. At the end of the recursion, all primitives will be available at the output
of the top level call.

Applicability. From a starting object, traversal of a particular kind of directed
association is required till leaf objects are reached. Leaf objects are defined as
objects, from which the association cannot be traversed any more.

Structure. The participants of this pattern are shown in figure 6. The “GetDi-
rectNeighbors” rule is responsible for collecting all the direct neighbors of the
input object. The “IsLeaf” rule is responsible for identifying if the input object
is a leaf. This is achieved by a pattern with pattern cardinality equal to zero
(see arrow in “IsLeaf”). The zero pattern cardinality on an association means
that the two objects should not contain the specified association, and it is also
known as the negative application condition. This implementation of “IsLeaf”
is more general than the one seen in the dataflow example.



Fig. 5. Collecting primitives in HDF

Benefits. The traversal scheme and the leaf recognition are independent of each
other. The processing of the leaves is separate from collecting the leaves and
is typically done in a rule following the leaf collector pattern, and thus leaf
collection and leaf processing can vary independently.

Fig. 6. The structure of the Leaf Collector pattern

Known Uses. (1) Collecting primitives in hierarchical structures. (2) Starting
from a port finding all ports at the end of the dataflow connection chain. For
example, in figure 4, given port O121, find O21 and O221.

3.2 The Map-Using-Link Pattern

Motivation. In flattening HDF, step 1, given a set of primitives, we need to cre-
ate components in FDF. In step 2, given the source and destination ports of
a dataflow connection in HDF, we need to find the corresponding source and



destination ports in FDF, and make the equivalent dataflow connection. In tra-
ditional programming a map would have been used to store the correspondence
between HDF and FDF objects. In a graph transformation language graphs are
the only data structure. Thus the maps should be encoded as graphs. In figure

(a) (b)

Fig. 7. Rules copying dataflow connections

7(a) the rule “CreateFlatComponent” creates the corresponding FDF compo-
nent for a given HDF primitive. The rule also creates a temporary association
between P and FC. Creation of this association is functionally equivalent to the
addition of an entry into a map. In figure 7(b) the rule “CreateCorresponding-
DataflowConnection” creates a corresponding association in FDF for a given
pair of source destination ports. This is achieved by traversing the temporary
associations from the parents of these ports, which is functionally equivalent to
the map lookup operation.

Applicability. When it is necessary to store/lookup correspondence between ob-
jects from different paradigms in the course of the transformation.

Structure. A temporary association type needs to be defined between the two
types of objects in question. Then, in the rule where the corresponding object is
created/identified the temporary association is created. In subsequent rules, to
lookup the corresponding object, the temporary association is used to find the
correspondence.

Benefits. Temporary associations that are used for representing the correspon-
dence between objects are specified in a different UML class diagram. The im-
plementation is such that the temporary associations are managed separately,
leaving the source and target diagrams intact. Using graphs to represent these
temporary data structures provides the flexibility of implementing any data
structure required, without loss of generality. Since the temporary data struc-
tures are treated in the same manner as the source and the target graphs, the
transformation language remains simple.



Known Uses. In every transformation where there is more than one graph be-
ing manipulated, and correspondence between the graph objects needs to be
maintained.

3.3 Transitive Closure

Motivation. In the FDF a data dependency analysis needs to be performed. For
such an analysis the transitive closure [23] (see figure 8) of the dataflow con-
nection needs to be found. Figure 9 shows the transformation to compute the

Fig. 8. A directed graph G and its transitive closure G’

transitive closure on FDF. The first step of the algorithm is to find all FDF
components that do not have any incoming associations. This is achieved in
“FindSource” using the zero cardinality association pattern. These FDF com-
ponents are used as the initial value for the “TransitiveClosureStep”. In one
“TransitiveClosureStep”, given a set of components, all their next and previous
neighbors are found. If there is no association from the previous neighbor to the
next neighbor, a new association is created between them. The “TransitiveClo-
sureStep” is called again with the set of next neighbors as input.

Applicability. In all situations where the transitive closure needs to be computed.

Structure. The algorithm presented in figure 9 works only on directed acyclic
graphs. Preprocessing steps can be used to convert an arbitrary graph into a
directed acyclic graph by reducing all strongly connected components to a single
vertex. In the general case the type of the association and the type of the vertex
can be changed to suit the requirements of the problem.

Known Uses. Used to perform reachability analysis of distributed and parallel
systems and in the construction of a parsing automata.

3.4 The Proxy Generator Idiom

So far this paper has discussed design patterns that have applicability to a large
set of problem domains. This section will discuss the proxy generator design
idiom, which is also reusable, but is restricted to a particular problem domain.



Fig. 9. Transformation rules to find the transitive closure

Motivation. A model for a distributed service based system (DSBS) is shown in
figure 10. The distributed system (System) is composed of multiple processors
(Processor), each processor hosts different objects (Object), and objects may re-
quest service (Request) from other objects. An object could be a proxy (Proxy)
of a remote master object (Master) on a local processor, and such a relationship
could be represented by the association Distribute between two objects. There-
fore a proxy is a placeholder for another object and provides access control to
it. In such distributed systems, in order to reduce network traffic as well as to

Fig. 10. UML class diagram of a general distributed system

abstract network communication from object interactions, we can use proxies on
each processor to represent remote components locally. This optimization can
be performed by identifying the need for proxies using static analysis methods
on the object network, and then automatically generating them.

Figure 11 shows the transformation that identifies the need for proxies and
creates them. For each Master, Client pair, such that the Client needs to make
requests on the remote Master, the first step is to determine whether the Master
has a proxy on the ClientProcessor. This is done in “TestProxyExistence”. If it
succeeds in finding a proxy, then “AssociateWithProxy” is called, which replaces
the request to the master with a request to the local proxy. Otherwise, “Cre-



ateProxy” is called, which creates the equivalent proxy on the client’s processor,
followed by a call to “AssociateWithProxy”.

Fig. 11. Transformation rules for the proxy generator idiom

Step 1. Determine proxy presence on local processor: This is achieved
using a test called “TestProxyExistence”. It has two cases, “HasProxy” which
checks the existence of a proxy for the Master in the ClientProcessor. If “HasProxy”
is successful, the Master, Client, and Proxy are passed to the “AssociateWith-
Proxy” rule. Otherwise the “NoProxy” case is called, that always succeeds and
will pass the Master, Client pair to the next rule.

Fig. 12. TestProxyExistence

Step 2. Create the proxy (optional): In the rule “CreateProxy” as shown
in figure 13(a), given the Master and Client, a Proxy is created on the client’s
local processor along with a distribute association with the Master. The newly
created Proxy, its corresponding Master and the client are passed to the “Asso-
ciateWithProxy” rule.



Step 3. Migrate the services: In the rule “AssociateWithProxy” as shown in
figure 13(b), given the Master and the corresponding Proxy, the clients request
to the master is replaced by the clients request to the proxy.

Applicability. In any distributed system where remote interactions need to be
abstracted and optimized. These interactions could be service/request, event
source/sink, and dataflow interactions. The idiom can be used to perform a
static analysis on a network of distributed objects for optimization, or can be
used at runtime when the need for remote interaction arises.

Structure. In the general case the idiom has three distinct parts. (1) Given a
master-client pair, test for the presence of the proxy. (2) If proxy is present,
remove client-master association and create client-proxy association. (3) If proxy
not present, first create a proxy and link it with the master, then remove client-
master association and create the client-proxy association.

(a) CreateProxy rule (b) AssociateWithProxy rule

Fig. 13. Create and associate proxy

Consequences. The pattern separates the proxy identification, proxy creation
and proxy association steps such that each can be modified independently.

Known Uses. Used in the Embedded System Modeling Language (ESML) [22].

4 Related Work

Software design patterns were documented since the early 1990’s. The pioneering
work was [12] where C++ idioms were introduced. However, it was [13] that
contributed best of all to the acceptance and extensive use of patterns in object
oriented design. In [14] ‘generic patterns’ or ‘pattern templates’ demonstrated
extensible designs in generic languages.

Graph transformation has been used to automate the application of design
patterns. [16] describes an approach which uses graph queries and graph rewrit-
ing rules to apply design patterns. In particular, a PROGRES-based tool is



presented that transforms an application such that it conforms to a specific pat-
tern. In [17] the suitability of GRS for the specification and execution of complex
transformations on the static aspects of design is argued. Examples in the paper
illustrate how GRS can be used to implement the design transformations pro-
posed by MDA. [15] proposes to allow particular portions of the design to be
specified in an abstract manner, with the goal of using these as patterns in order
to search for corresponding implementation components. GRS is introduced as
a formal method to perform the search and integration of those components.

The adoption of design patterns to Graph Rewriting Systems (GRS) has just
started recently. Hence little work exists in this area.

5 Conclusions

We have shown how the idea of design patterns applies in the context of graph
transformation programs. We demonstrated the concept using three (domain-
independent) design patterns and one (domain-dependent) idiom. We believe
that documenting design patterns in this manner is useful for practitioners of
graph transformations and we call the community to contribute to this body of
knowledge. Further research in this area could lead to comprehensive compilation
of design patterns and idioms that could be used to educate developers using the
graph transformation technology. At this time, our tool GReAT does not have
direct support for design patterns. However, we believe that templatized rules
(similar to template classes in C++) could serve as the foundation for design
patterns. However, the implementation of this capability is a subject for future
research.
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