
Dynamically Reconfigurable Monitoring in Large Scale Real-Time Embedded
Systems

Shikha Ahuja, Di Yao, Sandeep Neema, Ted Bapty, Shweta Shetty, and Steven G. Nordstrom

Institute for Software Integrated Systems
Vanderbilt University

shikha@isis.vanderbilt.edu

Abstract

Many large scale real time distributed embedded
systems are computation and communication intensive.
Some examples of such systems are the data acquisition for
high energy experiments performed in Fermi Lab (e.g. the
BTeV experiment). This data system contains thousands of
processors involved in performing real-time event filtering
of particle collisions. A tremendous amount of message
passing takes place continuously between these nodes. The
physicists need to monitor such a large scale system to
ensure its correct operation. Configurable user interfaces
will enable the physicist to dynamically view data as well
as error conditions in ways that aid analysis as well as
enable them to configure and control the state of the
system.

This paper presents a language that enables the
configuration of the user interfaces dynamically,
supporting large-scale system monitoring and control.
These configurable user interfaces are implemented using
Model Integrated Computing [1]. The domain specific
Modeling language (DSML) and associated tools
developed can be used to generate software for a variety of
runtime platforms. Currently, the target environment for
the user interfaces is Matlab. To transport data from many
sources throughout the distributed system to many potential
consumers, a publish-subscribe mechanism called Elvin is
used in the system and is briefly described in the paper,
along with its role in the system monitoring and control.
The paper ends with a brief discussion emphasizing the use
of this domain specific modeling language in the BTeV
system.

1. Introduction

Software development for embedded systems is
challenging as these systems are not just required to be
computationally and functionally correct but are also
heavily time bound. In addition, these systems are required
to be robust enough to tolerate failures. A reasonable
behavior is expected from these systems even under fault
scenarios.

Monitoring of these systems is essential to ensure their
correct functioning. However, monitoring different aspects
of the system at different times would require several
variations of the user interfaces, which are difficult to

maintain. In order to meet the requirements of continuously
changing user interfaces and in order to bridge the gap
between the developers and the users of the system, the
need for configurable user interfaces arises. However, in
order to support the evolving requirements of the system, a
low level programming based approach cannot be used to
efficiently achieve configurability in the design of user
interfaces. Automated tools abstracting the system are
required to assist the developers in managing the
complexity. The tools should also be capable of
synthesizing low level implementations from higher level
of abstractions.

In order to address these issues, we have applied the
concepts of Model Integrated Computing (MIC) [1], a
methodology for developing tool driven embedded
software solutions developed and refined over two decades
of research at Institute for software Integrated
Systems(ISIS), Vanderbilt University.

MIC is an approach to designing complex computer-
based systems. Models capture system design information,
environmental interactions, and other constraints on system
composition. The models are composed in a customized,
multi-aspect, domain-specific language. Specialized
software generators, called Interpreters, traverse these
models to extract design information, make decisions on
system implementation, and synthesize code. MIC has been
successfully applied in several domains [2][3][4][5].

These domain-specific modeling languages are defined
in an environment called Generic Modeling Environment
(GME) [6]. The Generic Modeling Environment developed
at the Institute for Software Integrated Systems at
Vanderbilt University is a configurable toolkit for creating
domain-specific modeling and program synthesis
environments.

Using the capabilities of Model Integrated Computing
and using the Generic Modeling Environment, we are
developing tools for designing dynamically reconfigurable
user interfaces. Using model-based approach to developing
user interfaces has been talked about for a long time now,
however not much work has been done in this domain. [7]
briefly talks about the various advantages in developing
model based user interfaces. The rest of this paper is
organized in the following manner: Section 2 provides a
description of the System development environment that
includes the metamodeling environment as well as example
domain models. Section 3 briefly describes the data transfer

using the Elvin publish-subscribe mechanism. Section 4
describes the system generation from the models.

2. System Development Environment

The application scenarios that we at Vanderbilt are
working on are the data acquisition for high energy physics
experiments performed in Fermilab, in particular the BTeV
experiment. The BTeV experiment [8][9] includes a trigger
that encompasses several thousands of processors
distributed over three level trigger architecture. Time
critical event filtering algorithms that run on the trigger
farms are likely to suffer from a number of failures within
the software and hardware systems. It is necessary for the
system to run as efficiently as possible for long periods of
time with faults present. A fault management software
component called Adaptive, Reconfigurable and Mobile
Objects for reliability (ARMOR) [10][14][15] developed
by the University of Illinois is currently used in the system
to provide fault tolerance. Modeling techniques are used to
facilitate customizable fault handling in the system. A
modeling language has been developed using GME that
enables the physicists to introduce custom self adaptive
behaviors in case of failures [11][22].

Large-scale data transfer and message passing takes
place both locally as well as between different nodes across
the network. To transport data from many sources
throughout the distributed system to many potential
consumers, a publish-subscribe mechanism is used by the
nodes to receive data. A specific publish subscribe
mechanism called Elvin [12] is used in the system.

Real-time monitoring of data needs to be done to ensure
that the system runs efficiently at all times. Configurable
user interfaces will enable the physicists to dynamically
view data as well as error conditions in ways that aid
analysis as well as log data for comparison of results. User
interfaces also enable them to dynamically configure and
control the state of the system. A modeling language has
been developed in GME that enables the physicists to
configure user interfaces. In addition, another modeling
language developed in GME enables the physicists to
configure the data that is to be sent across the network. A
detailed description of these languages is provided in the
subsequent sections.

2.1. User Interface Modeling Environment

The language for configurable user interface modeling
can be summarized as follows:

• The language should let the users create multiple
user interface panels. It should hence provide a
way for the users to specify these panels as well as
the plots/controls that are a part of these panels.
This can be depicted with containment hierarchy.

• For each of the plot/control, two primary
properties have to be specified, namely its location
as well as the data from outside the environment

that is to be plotted/controlled. This can be
depicted as two different aspects of the
plot/control objects.

• The user also needs to specify the properties of all
the objects in the environment. This can be
depicted as attributes of each of the objects.

• The environment should be flexible enough to let
the users create customizable plots that show
certain properties e.g. Strip charts etc. This can be
achieved by letting the users send the raw data to
user-defined computation blocks where certain
computations may be performed on the data before
sending the data to the plots. This can be depicted
as connections/associations.

• Once the user has modeled the system using the
language provided, the tool should be capable of
generating the code necessary to create the user
interface.

• The tool should be capable of generating software
for a variety of run-time platforms.

The Generic Modeling Environment (GME) supports all
the features defined above i.e. hierarchy, associations,
containment as well as multiple aspects.

2.2. MetaModeling Environment

The first step in the development of a new language is to
specify the syntax and semantics of the language in the
GME metamodeling environment.

Figure 1. Metamodel describing the language

The metamodel which defines the syntax as well as the
semantics of the language uses the UML based notations to
describe the different associations and interactions between
the components.

Figure 1 shows the metamodeling language modeled in
GME. As can be seen from the figure, the panel can contain
different types of plots as well as controls and the Plotting
Environment can contain more than one of these panels.
The metamodel shows two aspects – Display aspect as well
as the Dataflow aspect. Each of the plots as well as controls
has these two aspects. In the dataflow aspect, the user also
needs to specify the data that is to be plotted or controlled.
As shown in figure 1 and in figure 2, the environment
provides Computation blocks that can be connected to the
data to perform computations on the data before sending
the data to the plots. These Computation blocks enable the
users to create custom plots like strip charts etc which do
not come as a part of the package.

2.3 Domain Modeling

Figure 2. A simple example of a modeled user
interface

A simple example of a user interface model is shown in
figure 2. This example shows three panels called
MonitorGUI, RunControlGUI and FaultGUI. These panels
are simplified examples of three user interfaces panels
required in the BTeV system.

In this simplified example, RunControlGUI is used to
start and stop the system application. MonitorGUI is used
to plot different data/messages in the system, as configured
by the user. FaultGUI notifies the operator of different
faults that occur in the system. As an example, it notifies
the user in case the memory usage exceeds a certain
threshold value.

In the model above, MonitorGUI contains three plots.
The figure shows the dataflow environment aspect. This

aspect shows the data that is to be plotted in each of the
plots. The structural information for the user interface is
obtained from the display aspect. The properties for each of
the plots are shown as plot attributes.

3. Data transfer using Elvin

As mentioned previously, due to the presence of thousands
of distributed processors, large-scale data transfer and
message passing takes place both locally as well between
different nodes across the network. A publish-subscribe
mechanism is used to transfer data between the nodes. A
specific publish-subscribe mechanism called Elvin is
currently being used in the system. The user interface in
this scenario can be a producer as well as a consumer of
messages. In case of monitoring messages, the user
interface acts as a consumer and in case of control
messages, the user interface acts as a producer. In figure 2,
the MonitorGUI subscribes to monitoring type of messages
and RunControlGUI publishes start/stop messages. The
Data Type Link element shown in the model above is a link
to a model that defines the structure of the message. This
message is modeled using another language defined in
GME called the Data type Modeling Language (DTML).
The data shown in the figure above are monitoring type
messages and the three Cartesian plots connected to them
plot these data.

3.1. Data Type Modeling Language

Figure 3. An example of a Data type model

The Data type Modeling Language (DTML) in the
BTeV system serves the following purposes:

1. Provides communication abstraction APIs thus
providing a standard way of defining the structure
of data as well as a standard way of serializing and

deserializing the data using the Elvin
Communication protocol

2. Since the DTML language provides an abstraction
to the internal implementation details of the
communication system, the communication
scheme may change later without affecting the
users.

An example of a domain model using the DTML language
is shown in figure 3.

The Data Type Modeling language allows the
specification of simple data types like floats and integers as
well as composite data types such as struct, enum, union
etc. Composite types can contain simple types as well as
other composite types. The environment is flexible enough
to support the modeling of data types supported by C
programming language.

4. System Generation

Figure 4. Code synthesis from the models

Once the user interface has been configured using the
models by the user, the code for the UI needs to be
generated. The models may be used to generate software
for a variety of run-time platforms like Matlab,
Experimental Physics and Industrial Control System
(EPICS)[13], etc. Currently the target environment for the
user interface is Matlab.

As shown in the figure4 below, the code synthesis
process involves the generation of the following from the
models:

1. Structure - The structure of the user interface e.g.
the positioning of the various components as well
the width, height of the components is a direct

mapping from the GME models to the generated
Matlab user interface. The code for the structural
information is generated as Matlab .m files

2. Dataflow - The data that needs to be plotted in the
model. The user interface receives data
continuously. As mentioned previously, the user
interface could be an Elvin consumer or an Elvin
Producer. In case of Elvin consumer, once the data
is received by the consumer element, it needs to be
plotted in Matlab. The Matlab Component Object
Model (COM) interface is used for this purpose.
The code for the data flow aspect is generated in
C++.

Figure 5: Generated user interface from the models

5. Related Research

Our research can be summarized as a demonstration of
the use of model based user interface development
technique for the development of configurable user
interfaces for large scale real-time distributed embedded
applications.

 A wide range of model-based user interface tools have
been developed often specialized to the different levels of
the model [21]. These tools range from text editors to build
textual specifications of models (ITS [16]), forms-based
tools to create and edit model elements (Mecano [17]) and
specialized graphical editors (Humanoid [18], many
others). Most of these tools fall mainly in two categories:

1. Automatic Interface design tools- The primary
goal for tools that fall in this category is to
automate as much as possible the design and
implementation of the user interface. Most tools in
this category are oriented towards database

applications and produce interfaces that allow the
end-users to browse the database, to edit the
contents of objects, to define new objects, and to
delete objects. E.g. Janus [19].

2. Specification-based tools – The tools that fall in
this category do not try to automate interface
design, but rather give developers convenient
languages for expressing designs. Most tools in
this category are oriented towards data
management applications. Most business-oriented
applications fall in this category, but many
engineering and data visualizations applications do
not, because they have interfaces whose graphical
components are too complex to be expressed in
their interface specification languages. E.g. ITS,
Humanoid.

6. Discussion

 Most of the tools presented above are oriented towards
applications related to databases and data management.
Some of these tools suffer from drawbacks like restraining
the user from restructuring the raw information provided to
them as well as their inability to show elements such as
plots as pointed in [20].
 The tool defined in this paper is specific to real-time
applications where reconfigurability of user interfaces by
domain experts is desired. In addition, the tool overcomes
some of the challenges faced by traditional model based
user interfaces e.g. its ability to configure plots as well as
letting the user restructure raw information using
customizable computation blocks.
 By adding an extra layer of abstraction, there is one extra
level of indirection which slightly affects the performance
of the system, however, it significantly reduces the time
and saves the efforts of the physicists, that would otherwise
be required to change the user interface in order to monitor
different aspects of the system as well as to control the state
of the system at different times.

7. Conclusions

 This paper presents a tool that enables dynamic
reconfigurable monitoring and control in large scale real-
time embedded systems and thus fulfils the demands of the
users for evolving user interfaces. This is achieved through
model based user interfaces. The model based approach
provides higher level abstractions, thus allowing the users
to configure new user interfaces dynamically without
knowing the underlying implementation details.
 Prototype implementations of software generators have
been implemented to directly transform models into target
user interfaces. These user interfaces execute under the
Matlab runtime environment and interface with the BTeV
prototype system.
 This tool along with other modeling tools developed for
the BTeV prototype system provides a framework for

achieving fault-tolerance in large-scale distributed real-time
embedded systems.

8. Acknowledgments

This work is supported by NSF under the ITR grant ACI-
0121658. The authors also acknowledge the contribution of
other RTES collaboration team members at Fermi Lab,
UIUC, Pittsburgh and Syracuse University.

9. References

[1] Sztipanovits J.,Karsai G. “Model Integrated Computing”,

IEEE Computer, pp. 110-112, April, 1997.

[2] Bapty T., Neema S., Scott J., Sztipanovits J., Assad S.

“Model-Integrated Tools for the Design of Dynamically
Reconfigurable Systems”, VLSI Design, 10, 3, pp. 281 –
306, 2000.

[3] Davis J., Scott J., Sztipanovits J., Martinez M.: Multi-

Domain Surety Modeling and Analysis for High Assurance
Systems, pp. 254-260, Nashville, TN, March, 1999.

[4] Karsai G., DeCaria F. “Model-Integrated On-line Problem-

Solving Environment for Chemical Engineering”, IFAC
Control Engineering Practice, 5.5, pp. 1-9, 1997.

[5] Misra A., Karsai G., Sztipanovits J., Ledeczi A., Moore M.

“A Model-Integrated Information System for Increasing
Throughput in Discrete Manufacturing”, International
Conference and Workshop on Engineering of Computer
Based Systems, pp 203-210, Monterey, CA, March 24, 1997.

[6] Ledeczi A., Maroti M., Bakay A., Karsai G., Garrett J.,

Thamason IV C., Nordstrom G., Sprinkle J., Volgyesi P.:
The Generic Modeling Environment, Workshop on
Intelligent Signal Processing, Budapest, Hungary, May 17,
2001

[7] José A. Macías and Pablo Castells. An EUD Approach for

Making MBUI Practical. Workshop on "Making Model-
Based User Interface Design Practical: Usable and Open
Methods and Tools". Intelligent User Interfaces and
Computer-Aided Design of User Interfaces Conference
(IUI/CADUI'2004). Funchal, Madeira Island, Portugal, 13-16
January

[8] BTeV Webpage http://www-btev.fnal.gov/

[9] http://www-btev.fnal.gov/DocDB/0021/002115/012/part-

4.pdf

[10] Kalbarczyk Z., Iyer R.K., Bagchi S., Whisnant K.,

“Chameleon: A Software Infrastructure for Adaptive Fault
Tolerance”, IEEE Transaction on Parallel and Distributed
Systems, vol. 10, no. 6, pp. 560-579, June 1999.

[11] Shetty, S., S. Neema, et al. (2004). Model-based Self-

Adaptive Behavior Language for Large Scale Real-Time
Embedded Systems. IEEE Conference on Engineering of
Computer based Systems (ECBS-2004). Brno, Czech
Republic.

[12] Elvin Webpage http://elvin.dstc.edu.au/

[13] Epics Webpage http://www.aps.anl.gov/epics/

[14] Bagchi S., Srinivasan B., Whisnant K., Kalbarczyk Z., Iyer

R.K., “Hierarchical Error Detection in a Software
Implemented Fault Tolerance (SIFT) Environment”, IEEE
Transactions on Knowledge and Data Engineering, vol. 12,
no. 2, pp. 203-224, 2000.

[15] Whisnant K., Kalbarczyk Z., Iyer R.K., “A System Model for
Dynamically Reconfigurable Software”, IBM Systems
Journal, Special Issue on Autonomic Computing, vol. 42, no.
1, pp. 45-49, 2003.

[16] Wiecha, C., Bennett, W., Boies, S., Gould, J., Green, S.: ITS:
A Tool for Rapidly Developing Interactive Applications.
ACM Transactions on Information Systems, Vol.8, No. 3,
204-236 (July 1990).

[17] Puerta, A.: The Mecano Project: Comprehensive and
Integrated Support for Model-Based Interface Development.
In: Vanderdonckt J. (ed.): Proceedings of CADUI’96.
Namur: Presses Universitaires de Namur: Presses
Universitaires de Namur 1996(pp. 19-36).

[18] Luo, P., Szekely, P., Neches, R.: Management of Interface
Design in Humanoid. In Ashlund S., Mullet K., Henderson
A., Hollnagel E., White T. (eds.): Proceedings of
INTERCHI’93. New York: ACM Press 1993 (pp. 107 –
114).

[19] Balzert, H., Hofmann, F., Kruschinski, V., Niemann, C.: The
JANUS Application Development Environment- Generating
More than the User Interface. In: Vanderdonckt J. (ed.):
Proceedings of CADUI’96. Namue: Presses Universitaires de
Namur 1996 (pp. 183-207).

[20] Harning, M.: An Approach to Structured Display Design-
Coping with Complexity. In: Vanderdonckt J. (ed.):
Proceedings of CADUI’96. Namur: Presses Uni versitaires
de Namur 1996(pp. 121-138).

[21] P. Szekely, "Retrospective and Challenges for Model-Based
Interface Development", Proc. of 3 rd Int. Workshop on
Computer-Aided Design of User Interfaces CADUI'96
(Namur, 5-7 June 1996), Presses Universitaires de Namur,
Namur, 1996, pp. xxi-xliv.

[22] S.Neema, Ted Bapty, S.Shetty, S.Nordstrom Developing
Autonomic Fault Mitigation Systems, Special Issue on
Autonomic Computing and Grids at the Journal- Engineering
Application of Artificial Intelligence, Elsevier Publication,
2004.

