

Institute for Software Integrated Systems
Vanderbilt University

Nashville Tennessee 37235

TECHNICAL REPORT

TR #: ISIS-06-706
Title: OASiS: A Service-Oriented Middleware for Pervasive Ambient-Aware
Sensor Networks
Authors: Isaac Amundson, Manish Kushwaha, Xenofon Koutsoukos, Sandeep
Neema, Janos Sztipanovits

OASiS: A Service-Oriented Middleware for

Pervasive Ambient-Aware Sensor Networks

Isaac Amundson, Manish Kushwaha, Xenofon Koutsoukos, ∗
Sandeep Neema, Janos Sztipanovits

Institute for Software Integrated Systems
Department of Electrical Engineering and Computer Science

Vanderbilt University
Nashville, Tennessee 37235, USA

Abstract

Heterogeneous sensor networks consisting of networked devices embedded into the
physical world have a significant role in pervasive computing systems. Such sensor
networks may contain wireless sensor networks that are ensembles of small, smart,
and cheap sensing and computing devices that permeate the environment, as well
as high-bandwidth rich sensors such as satellite imaging systems, meteorological
stations, air quality stations, and security cameras. Emergency response, homeland
security, and many other applications have a very real need to interconnect such
diverse networks and access information in real-time. While Web service standards
provide well-developed mechanisms for resource-intensive computing nodes, linking
such mechanisms with wireless sensor networks is very challenging because of limited
resources, volatile communication links, and often node mobility.

This paper presents a service-oriented programming model and middleware for
ad-hoc wireless sensor networks which permits discovery and access of Web services.
Sensor network applications are realized as graphs of modular and autonomous ser-
vices with well-defined interfaces that allow them to be published, discovered, and
invoked over the network, providing a convenient mechanism for integrating ser-
vices from heterogeneous sensor systems. Our approach provides dynamic discovery,
composition, and binding of services based on an efficient localized constraint satis-
faction algorithm that can be used for developing ambient-aware applications that
adapt to changes in the environment. A tracking application that employs many
inexpensive sensor nodes, as well as a Web service, is used to illustrate the ap-
proach. Our results demonstrate the feasibility of ambient-aware applications that
interconnect wireless sensor networks and Web services.

∗ Corresponding author: Tel.: +1 615 322 8283; Fax: +1 615 343 5459.
Email address: xenofon.koutsoukos@vanderbilt.edu (Xenofon Koutsoukos,).

1 Introduction

Wireless sensor networks (WSNs) consist of small, inexpensive computing de-
vices which interact with the environment and communicate with each other
to identify spatial and temporal patterns of physical phenomena. A sensor
web is a heterogeneous collection of such networks, and can also include high-
bandwidth sensing platforms such as satellite imaging systems, meteorological
stations, air quality stations, and security cameras. Such heterogeneous sensor
networks have a significant role in pervasive computing systems which greatly
benefits applications ranging from emergency response to homeland security.

Sensor network applications often run on networks of hundreds or thousands
of nodes distributed over a wide area. Limited computing resources, volatile
communication links, and node dropout are common occurrences and must
therefore be considered when developing the application. Pervasive computing
environments, in which small-scale networked devices are embedded into the
physical landscape, demand applications to be scalable and support device
heterogeneity. Sensor nodes may have different and varying capabilities, be
manufactured and operated by different vendors, and be accessed by multiple
clients exercising different functionalities [1].

A service-oriented architecture (SOA) offers flexibility in the design of WSN
applications since it provides accepted standards for representing and pack-
aging data, describing the functionality of services, and facilitating the search
for available services which can be invoked to meet application requirements.
SOA deployment has already proved successful on the World Wide Web, how-
ever Web service technologies have been developed assuming standard Internet
protocols and are not realizable in resource-constrained sensor networks.

In this paper, we present OASiS, an Object-centric, Ambient-aware, Service-
oriented Sensornet programming framework for WSN applications. In the
object-centric paradigm, the application programmer is presented with a layer
of abstraction in which an event detected by the sensor network is represented
as a logical object which then drives the application. Furthermore, our model
is ambient-aware, enabling the application to adapt to network failures and
environmental changes by employing a dynamic service discovery protocol.

Applications are realized as graphs of services, executed in response to the
detection of a physical phenomenon. Services are modular and autonomous,
properties which permit them to be dynamically composed into complete ap-
plications. Because applications can consist of multiple services on multiple
nodes, we have encapsulated service discovery, scheduling, and access mech-
anisms into a sensor node middleware. These mechanisms are designed to
function efficiently on resource-constrained sensor nodes, and in the presence

2

of volatile communication links.

In order to effectively execute a service graph, services should be invoked
only if they satisfy a set of constraints specified by the user or required by
the application domain. For example, it may not be desirable for two CPU-
intensive services to be running simultaneously on the same node. Therefore,
this constraint needs to be declared in the service graph and evaluated when
the application must locate and run a select set of services. The process of
ad-hoc service discovery and constraint satisfaction is called dynamic service
configuration.

Our programming model can be used to build a wide variety of dataflow ap-
plications such as mobile vehicle tracking, fire detection and monitoring, and
distributed gesture recognition. As proof of concept, we have developed a sim-
plified indoor tracking experiment, which monitors a heat source as it travels
through the sensor network region. The application employs many resource-
constrained sensor nodes, but it can also access Web services provided by
high-bandwidth nodes. The case study demonstrates the feasibility and util-
ity of a service-oriented WSN programming model. Furthermore, by providing
access to Web services, we can incorporate functionality into our WSN appli-
cations that would otherwise be unavailable.

This paper is organized as follows. Section 2 provides an overview and high-
lights the contributions of OASiS. Section 3 describes our programming model.
Section 4 describes dynamic service configuration. Our middleware implemen-
tation is presented in Section 5. Section 6 presents the details of our case
study. In Section 7, we compare our research to similar work that has recently
appeared in the literature. Section 8 concludes.

2 The OASiS Programming Framework

At present, users wishing to deploy WSN applications must be adept at devel-
oping the sensor network middleware, the domain-specific functionality, and
perhaps even an interactive front-end. Application development will benefit
from a programming paradigm that provides separation of concerns (SoC).
OASiS is a programming framework that facilitates SoCs for application de-
velopment through a multilayer development process. Figure 1 illustrates the
relationship between each development stage in OASiS.

In OASiS, core sensor network functionalities are bundled as middleware ser-
vices including service discovery, service graph composition, failure detection,
node management, and others. The domain services development layer pro-
vides domain-specific service libraries written by the domain experts, which

3

Fig. 1. OASiS: Programming Framework

then can be used by the application developer. OASiS then wires the domain
services onto the middleware to produce node-level executable code for de-
ployment on the network. Application development in OASiS does not require
any expertise in sensor network programming. Instead, complete applications
are developed using model-integrated computing techniques [2].

In addition to providing multilayer development, the proposed programming
framework addresses many design challenges for networked embedded sensor
systems:

• Our ambient-aware middleware supports dynamic service discovery and con-
figuration to address changes in network topology due to failures and unre-
liable communication links.

• Heterogeneity is addressed by employing well-defined services on heteroge-
neous platforms that can be composed together in a seamless manner. For
example, resource-intensive Web services can easily be plugged into OASiS
applications and are treated as ordinary WSN domain services.

• OASiS supports real-world integration in application design by providing the
means to specify spatio-temporal service constraints. The ability to attach
such constraints to services before they are invoked is an important aspect
of WSN application programming.

• The service-oriented approach enables in-network data aggregation using
services with inputs from multiple sensor services.

• OASiS supports specification of both application-specific and network
QoS requirements and can handle QoS violations using application re-
configuration to satisfy QoS requirements.

4

3 The OASiS Programming Model

This section presents our programming model for object-centric, service-
oriented, ambient-aware sensor network applications. The model defines the
logical elements necessary to support a wide variety of WSN dataflow appli-
cation.

3.1 The Object-centric Paradigm

In an object-centric application, an object is a unique logical entity correspond-
ing to a physical phenomenon under observation. The object is unique because
it resides on only one node at a time. This does not imply the object is confined
to a single node over its entire lifetime; it has the ability to migrate between
nodes as it follows its real-world counterpart. The network application is then
driven by the object; that is, its behavior reflects the object’s current state.

In OASiS, an environmental phenomenon of interest is represented by a finite
state machine (FSM), referred to as the logical object. We elected to use the
FSM representation because this model of computation is an intuitive method
for describing the distinct states a physical object might exhibit. Each FSM
mode corresponds to a different physical state, and contains a service graph
specifying the appropriate actions to take for the specific situation. For ex-
ample, in a gesture recognition application, a target may enter the field of
view of one or more cameras. Depending on the degree of coverage, different
algorithms described by different dataflow graphs and constraints will need to
be executed. In this manner, application execution is driven by the state of
the object. For this work, the service graph in each FSM mode is known a
priori.

Before a logical object is instantiated, a physical phenomenon must be de-
tected. This is achieved by comparing sensor data with an object context. The
object context defines the physical phenomenon in logical terms. For exam-
ple, we might declare an object context for fire as temperature ≥ 100oC.
The object context also specifies how frequently the environment should be
sampled.

Because multiple nodes may detect the same physical phenomenon at roughly
the same time, a mechanism is required to ensure that only one logical object
is instantiated. To provide this guarantee, OASiS employs an object-owner
election algorithm, similar to that of [3]. The object creation protocol, executed
by each candidate node, is outlined in Algorithm 1.

After the object creation protocol completes, exactly one node, referred to as

5

Algorithm 1 Object Creation Protocol

1: if object creation condition == true then
2: declare yourself a candidate
3: if owner election not already in progress for recently detected object

then
4: initiate owner election
5: end if
6: if you win the owner election then
7: declare yourself the owner
8: populate the object state variables
9: identify the object default mode and initiate dynamic service config-

uration
10: end if
11: end if

the object node, is elected owner of the logical object corresponding to the
physical phenomenon. The object initiates in the default mode of the FSM
and starts the process of dynamic service configuration (described below), af-
ter which the application begins execution. The object maintenance protocol
evaluates the mode transition conditions every time the object state is up-
dated. If a mode transition condition evaluates true, the protocol makes the
transition to the new mode. The mode transition involves resetting any object
variables, if applicable, and configuring the new service graph corresponding
to the new object mode.

The object also has a migration condition, which if evaluates true, invokes the
object migration protocol. The selection policy for migration destination is tied
to the migration condition that triggers the protocol. In tracking applications,
for example, an increase in the variance of location estimate can serve as
a migration condition, and the owner selection policy will choose the node
closest to the physical phenomenon. Other migration conditions include the
object-node running low on power, in which case the selection policy chooses a
node with a sufficient power reserve. The migration process consists of running
the owner election algorithm to select the migration destination based on the
selection policy and transferring the object state to the new object node. The
migration protocol is outlined in Algorithm 2.

Algorithm 2 Object Migration Protocol

1: if object migration condition == true then
2: initiate owner election
3: remove yourself as candidate for owner
4: transfer the object to winner
5: end if

When the sensor network is no longer able to detect the physical phenomenon,

6

the logical object must be destroyed. This is a simple matter of resetting the
logical object state to null. After an object has been destroyed, the sensor
network begins searching for a new object context.

The object-centric paradigm provides abstractions which place the focus on
the environmental phenomena being monitored, thus bypassing the complex
issues of network topology and distributed computation inherent to sensor
network application programming. This effectively transfers ownership of com-
mon tasks such as sensing, computation, and communication from the indi-
vidual nodes to the object itself, providing a greater amount of flexibility and
efficiency both at design-time and at run-time.

In addition, object-centric programming tackles scalability issues by focusing
on only a small portion of the network close to the physical phenomenon of
interest. In OASiS, this facilitates ambient-awareness by considering dynamic
service configuration only for a neighborhood of the network and solving a
localized constraint satisfaction problem. Ambient-awareness is discussed in
detail in Section 4.

3.2 Services in Sensor Networks

In our service-oriented architecture, the object contains one service graph for
each FSM mode whose constituent services provide the application with the
required functionality. Specifically, a service graph contains a set of services,
a set of bindings, and a set of constraints, where a service is represented by a
service ID and a port ID, a binding is a connection between two services, and
a constraint is a restrictive attribute relating one or more services.

Figure 2 depicts the service graph used in our tracking application example
(presented in Section 6). Our localization algorithm requires sensor data from
three nodes surrounding the source event, in addition to the current wind
velocity in the region. Therefore, the service graph consists of the three Sensing
services and one Wind Velocity service whose outputs are wired to the inputs
of a Localization service. The Localization service is wired to a Notification
service, which informs us of the source’s current position.

Services are resources capable of performing tasks that form a coherent func-
tionality from the point of view of provider entities and requester entities [4].
They are the basic unit of functionality in OASiS, and have well-defined in-
terfaces which allow them to be described, published, discovered, and invoked
over the network. Each service can have zero or more input ports and zero or
more output ports. For example, the Localization service in our tracking exam-
ple has four input ports, three for sensor readings and one for wind velocity,
and one output port, on which the position estimate is placed.

7

Fig. 2. Service Graph for Tracking Application

One necessary property of OASiS services is that they must be able to com-
municate asynchronously with each other because the network lacks a global
clock for synchronous communication between nodes. Our programming model
accounts for this by means of the globally asynchronous, locally synchronous
(GALS) model of computation [5]. GALS guarantees that communication be-
tween services will occur asynchronously, while intra-service communication
such as method calls will exhibit synchronous behavior. As such, GALS is an
important and desirable feature of sensornet-based service-oriented applica-
tions.

Application services can run on the resource-constrained nodes of the sensor
network or they may be executed on more powerful sensor nodes in a high-
bandwidth network. In our work, these richer services are implemented as
Web services. We elect to use Web services due to their current popularity,
well-defined and documented standards, and the existing functionality they
provide. By taking advantage of these high-bandwidth Web services, applica-
tions have access to a wide range of functionality which would otherwise be
too resource-intensive for the sensor node platform.

Services are modular and function autonomously, properties which both facil-
itate application programming and provide an efficient mechanism for appli-
cation reconfiguration during runtime. Because services provide an interface
describing their functionality in terms of inputs and outputs, the program-
mer does not have to be concerned with their physical placement, hardware
platform, or implementation language. Furthermore, services allow new func-
tionality to be easily inserted into the network without having to redeploy the
underlying WSN application.

8

3.3 Service Constraints

It is often undesirable for multiple services in an application to be running
concurrently on the same node. Conversely, there arise situations in which
two services must be running on the same node. Many localization algorithms
require sensing services to be situated in a precise spatial configuration. Other
sensor node properties such as power level and physical position may also be
important when deciding where to run a service. The ability to specify these
types of constraints is a necessary aspect of service graph creation.

Typical constraints associated with a dataflow graph can be categorized as
either property or resource-allocation constraints. Property constraints spec-
ify a relation between the properties of services (or the nodes providing the
services) and some constant value. The Enclose property constraint, for ex-
ample, specifies that nodes providing services a, b, and c must surround the
physical phenomenon of interest. The Enclose constraint is very important
for tracking spatial phenomena and is discussed in more detail in Section 4.
Resource-allocation constraints define a relationship between the nodes that
provide the services. For example, a resource-allocation constraint can specify
that services a, b, and c must run on different nodes (or must all run on the
same node).

Constraints can further be categorized as being either atomic or compositional
based on their cardinality, or arity. Hence, a constraint involving a single ser-
vice is an atomic (unary) constraint, while constraints involving two (binary)
or more (n-ary) services are compositional constraints.

In the following, we formally define the constraints considered in our frame-
work. A method for determining a service configuration which satisfies such
constraints in presented in Section 4.

(1) Atomic property constraint:

service.p op K

where, p is a node property, op is a relational operator (op ∈ {>,≥, <,≤, ==
, 6=}), and K is some constant value. For example, the constraint that service
a must be provided by a node at least one meter above the ground is written
as,

a.provider.z ≥ 1

9

(2) Compositional property constraint:

F (p) op K over S

where p and op are defined above, and F is a composition function on property
p for all services in the set S. For example, to specify that the average power
level of nodes providing services a, b, and c must be greater than or equal to
85% is written as,

average(provider.power) ≥ 85 over {a, b, c}

(3) Atomic resource-allocation constraint:

service.provider.type op type set

where, op ∈ {==, 6=,∈,∈/}. For example, the following constraint ensures
that service a does not run on a set of nodes with particular IDs.

a.provider.id ∈/{NODE1, NODE2, NODE3}

(4) Compositional resource-allocation constraint:

F (provider.type) over S

where, F ∈ {allSame, allDifferent}. For example, the constraint that ser-
vices a and b must run on the same node, and c must run on a different node
can be written as

allSame(provider.id) over {a,b} && allDifferent(provider.id) over {a,c}

The types of constraints that can be specified in a service graph are consistent
with those required for modeling typical WSN applications, such as vehicle
tracking and gesture recognition. By placing more constraints on services in
the service graph, the programmer can specify precise application behavior.
However, constraining an application too much may result in an infeasible
configuration during runtime.

3.4 Service Discovery and Composition

Before an object can start executing a service graph, a Service Discovery Pro-
tocol (SDP) is invoked to determine which nodes in the network provide which

10

services. Our model employs passive service discovery, in which a provider ad-
vertises a service only when a request for that service has been received [6].

The SDP maintains a service repository (SR) which catalogs application ser-
vices running both locally and remotely. Should an entry become stale due to
communication failure or node dropout, for example, or a new service request
arrives, the SDP locates a provider for that service by performing the steps
outlined in Algorithm 3.

Algorithm 3 Service Discovery Protocol
1: Input: Service ID
2: search the Service Repository
3: if Service ID is found in SR then
4: send local Service Info to Composer
5: else
6: compose Service Discovery Message
7: broadcast Service Discovery Message
8: receive Service Discovery Reply message
9: record service provider node ID in SR

10: end if
11: send Service Info to Composer

The service discovery algorithm receives as input a service ID, which if not
present in the service repository, will prompt the SDP to broadcast a service
request to other nodes in the network, up to a specified number of hops away.
The outgoing service discovery message contains the ID of the requested ser-
vice and the node ID of the sender. Nodes providing the requested service will
send a service discovery reply message, which includes information containing
node vitals such as physical location and remaining power level. The SDP
caches the provider node information in the SR, and forwards the message to
the Composer.

It is the Composer’s job to produce a set of services and service providers
that satisfy the constraints specified in the service graph. These services are
then bound and eventually invoked. The Composer’s behavior is outlined in
Algorithm 4. The ID of each service in the service graph is passed to the SDP
(lines 3-5). Because several instances of the same service could be residing on
multiple nodes across the network, the Composer can expect multiple replies.
As replies arrive, the Composer checks to see that any atomic service graph
constraints are satisfied, and if so, the node information is stored (lines 6-9).
Compositional constraint satisfaction commences after all replies have been
received. Finally, the connections between the services in the service graph
are examined, and a service binding message is created for each (line 12). The
binding message contains the service and node IDs of the connection source,
as well as the service and node IDs of the connection destination. In addition,
the binding message contains the IDs of the intermediate nodes along the

11

multi-hop path between source and destination. The message is sent to the
connection source node (line 13) so that it may properly direct the output of
its service to the input of the service specified by the connection destination.

Algorithm 4 Composer

1: Input: Service Graph G
2: parse G into sets of Services, Connections, and Constraints
3: for all S ∈ Services do
4: send S to Service Discovery Protocol
5: end for
6: receive Service Discovery Reply from SDP
7: if node satisfies Atomic Constraints then
8: cache node info
9: end if

10: do Compositional Constraint Satisfaction
11: for all C ∈ Connections do
12: create a Service Binding message
13: send Service Binding message to service provider node
14: end for

Once the object has finished initialization, the service graph can be executed.
This involves the invocation of the source services in the service graph. De-
pending on the nature of the object, the service graph may be executed pe-
riodically, in which case the source services are invoked at a predetermined
rate. Because each application service invokes the next, the service graph will
execute to completion without the need for any type of centralized control.

Dynamic network behavior in WSNs can cause problems during application
execution such as service unavailability and violation of constraints. Querying
a centralized service repository each time a new service instance is needed can
be expensive, especially when the repository is located multiple transmission
hops away. The passive service discovery approach was found to be the most
energy efficient for mobile ad hoc networks with limited power resources [6].
Requests are flooded a limited number of hops throughout the network, and
all providers of the requested service respond with a message that follows a
direct path back to the object node. The Composer is then provided with a
list containing only those services requested.

4 Ambient-aware Programming

Before an object is instantiated, each node in the sensor network periodically
takes samples of the environment, which are then compared against an object
context. A positive comparison indicates the network has detected a target,
and an object is then created. During execution of the application, access

12

to a new instance of a service may become necessary if the node providing
the current service drops off the network. This necessitates the ability to lo-
cate a service provider both efficiently and quickly. An application capable of
adapting to the environment in such a manner is said to be ambient-aware.

Ambient-awareness is key to pervasive computing environments. A dynamic
network topology requires each device in the system to have up-to-date knowl-
edge of its neighborhood. Without this information, message transmissions
may never reach their intended destination, network services may not be dis-
covered, and physical phenomena may not be detected. As pervasive comput-
ing systems become more commonplace, ambient-aware mechanisms will play
a vital role in maintaining the graceful execution of the application.

Our SOA is made ambient-aware by means of dynamic service configuration.
Before a service graph is executed, knowing the locations of the services it
contains is irrelevant as this information can become outdated before it is
ever required. Dynamic service configuration composes and binds the service
graph on demand, which results in fewer message transmissions and the most
up-to-date service configuration.

At all times after initialization, each node has a notion of the location of the
services it requires. If a communication failure occurs during the process of
invoking one of these services, the application is able to recover by locating a
new acceptable instance of the service.

4.1 Constraint Satisfaction

Service graph instantiation can be modeled as a constraint satisfaction prob-
lem, where services in the abstract service graph are the constraint variables,
and the nodes that provide a particular service constitute the domain. The
constraint satisfaction problem (CSP) is formally defined in [7].

A finite CSP P = (X,D, C) is defined as a set of n variables X = {x1, ..., xn},
a set of finite domains D = {D1, ..., Dn} where Di is the set of possible values
for variable i, and a set of constraints between variables C = {C1, ..., Cm}. A
constraint Ci is defined on a set of variables (xi1 , ..., xij) by a subset of the
Cartesian product Di1 × ...×Dij . A solution is an assignment of values to all
variables which satisfy all the constraints.

The design space for a constraint satisfaction problem is the set of all possible
tuples of constraint variables. Formally,

D = {(v1, v2, ..., vn)|v1 ∈ D1, v2 ∈ D2, ..., vn ∈ Dn}

13

Constraint satisfaction prunes the design space as much as possible for all
different types of constraints, followed by backtracking until a feasible solu-
tion is found. The specific pruning method depends on the constraint under
consideration, specifically the constraint property, constraint operator, and
composition function.

1) Atomic Constraint Satisfaction: Atomic constraints are straightforward to
satisfy. Because each atomic constraint is defined on a single variable, pruning
the domain of that variable will leave the domain consistent, and hence satisfy
the constraint. In Algorithm 5, the resulting pruned domain D̃i for constraint
variable xi is consistent.

Algorithm 5 Atomic Constraint Satisfaction

1: D̃i = Di

2: for all vi ∈ D̃i do
3: if !satisfy(Ci, vi) then
4: D̃i = D̃i − vi

5: end if
6: end for

2) Compositional Constraint Satisfaction: Algorithm 6 outlines the process
of compositional constraint satisfaction.

Algorithm 6 Compositional Constraint Satisfaction

1: for all Ci ∈ C do
2: D̃ = prune design space(Ci,D)
3: end for
4: okay = false
5: while !okay do
6: sol = {(vindex1 , vindex1 , ..., vindex1)|∀i vindexi

∈ D̃i}
7: okay = true
8: for all Cj ∈ C do
9: if !satisfy(Cj, sol) then

10: okay = false
11: backtrack()
12: end if
13: end for
14: end while

a) Compositional Property Constraints: The compositional property con-
straints are described in Section 3, where F is the composition function. Our
programming model includes definitions for several common aggregate func-
tions such as sum, average, and median.

Many tracking applications employ localization algorithms which require mea-

14

surement data to come from multiple sensors surrounding the physical phe-
nomenon of interest. The quality of the localization estimate often depends
on how well the spatial configuration of these sensors is described. We have
therefore defined an additional composition function called enclose which is
useful for specifying the spatial configuration of sensor nodes. For example,
in our tracking application we use enclose to specify that we would like to
have at least three different sensor nodes enclosing the tracked phenomenon
at all times. The constraint enclose(L) over S = {s1, s2, s3}, specifies that
the location L must be enclosed by the sensor nodes which provide services s1,
s2, and s3. The enclosure location, L can be specified as a fixed location or as
a node ID. For example, enclose(s4.location) over S = {s1, s2, s3} specifies
that the location of the node providing service s4 must be enclosed by sensor
nodes that provide services s1, s2, and s3.

In general, higher-level, complex constraints are more difficult and demand-
ing to satisfy. However, such constraints can be transformed into lower-level,
simple constraints that provide the desired result, while minimizing the power
and resources expended in satisfying it [8]. We model the enclose constraint
based on the am i surrounded query described in [8]. The two-dimensional
definition of enclose is as follows: L is surrounded by {s1, s2, s3} if there
is no line in the plane that can separate L from all of {s1, s2, s3}. For this
definition, the constraint can be reduced to enclose(L) over {s1, s2, s3} ⇒
ccw(L, s1, s2) & ccw(L, s2, s3) & ccw(L, s3, s1), where ccw(a, b, c) specifies
that locations a, b, and c form a counter-clockwise-oriented triangle in 2-D. The
geometric constraint ccw(L, s3, s1) is easy to satisfy by simple computation.

The definition of enclose varies for different sensor domains. For example,
one domain can define an enclosed region to be the overlap of member sensing
ranges. Consider another example of camera sensors with orientation and lim-
ited field-of-view. The enclosed region in this case is the intersection of fields
of view recorded by all member cameras. Figure 3 illustrates various enclosed
region definitions.

Fig. 3. Enclose Constraint

b) Compositional Resource-Allocation Constraints: There are two types of
composition functions for compositional resource-allocation constraints, all-

15

Same and allDifferent. Satisfying the allSame constraint is relatively straight-
forward; the design space is the intersection of domains of all the participating
constraint variables. To satisfy the allDifferent compositional constraint, a so-
lution is picked from the domain for each constraint variable. If the current set
of solutions satisfies the constraint, a valid solution has been found. Otherwise,
a backtracking algorithm is required to replace the solution for one constraint
variable and re-evaluate the constraint. At the end of the backtracking step,
either a solution has been found or the entire design space has been searched
without finding any valid solution.

Other than property and resource-allocation constraints, quality of service
(QoS) constraints can also be specified for an application. For example, in
our tracking application, we have a QoS constraint that requires the variance
of the location estimate from the Localization service to be below a certain
threshold. These constraints are evaluated by the object upon completion of
each periodic service graph execution.

Although solving CSPs can be computationally expensive [9], by limiting the
scope of the service discovery protocol in a neighborhood of the object node
and by keeping the constraint specification syntax simple, the problem can be
solved on resource-constrained sensor nodes. For example, our results in Sec-
tion 7 show that the problem can be solved online for a 3-hop neighborhood.
The constraint specification syntax still permits the user to accurately specify
desired application behavior. OASiS implicitly assumes constraint satisfaction
will terminate with a valid configuration. This assumption is reasonable for
WSNs, since redundancy is one of their main characteristics. Note that OA-
SiS does not attempt to find an optimal configuration, because this can be
too computationally expensive. Instead, the first feasible configuration that
satisfies all the constraints is selected.

5 The OASiS Middleware

We have developed a suite of middleware services which support the features of
our programming model. The middleware provides a layer of network abstrac-
tion, shielding the application programmer from the low-level complexities of
sensor node operation such as resource management and communication. It
gracefully handles the decomposition of desired application behavior to pro-
duce node-level executable code for an object-centric, service-oriented WSN
application.

16

5.1 Middleware Services

The middleware services, which include a Node Manager, Object Manager, and
Dynamic Service Configurator, provide support to the application services.
Figure 4 illustrates the relationship between our middleware and the sensor
network, while Figure 5 illustrates the relationship between the different types
of middleware and application services at the sensor node level.

Fig. 4. Middleware

Fig. 5. Middleware node architecture

The Node Manager is responsible for message routing between services, both
local and remote. The first nine bytes of any message handled by the Node
Manager consist of a control structure which contains source and destination
node IDs (2 bytes each), source and destination service IDs (1 byte each),
message type (1 byte), and hop number (1 byte). The Node Manager exam-
ines the control structure and determines the appropriate destination for the
message. For efficiency, it has short circuit functionality that allows it to catch
outgoing messages bound for local services and reroute them directly.

17

Three key types of messages are handled by the Node Manager. Service dis-
covery messages come from neighboring nodes inquiring if a specific service is
available. The Node Manager passes these messages to the local Service Dis-
covery Protocol. An incoming service binding message indicates that a local
service has been registered for use by an object, and includes information on
where to send its output data when complete. A service access message is a
request to run a local service, and may also contain input data. The Node
Manager invokes the specified service and passes in the data.

The middleware supports multi-hop routing, and employs a protocol similar to
DSR [10], optimized for the OASiS architecture. There are three types of mes-
sages that require routing information: (i) service discovery reply messages, (ii)
service binding messages, and (iii) service access messages. Note that service
discovery request messages are flooded throughout the network, and therefore
do not require any routing information. The Node Manager provides routing
functionality by maintaining a next-hop table which stores the node ID of a
known service provider, along with the ID of the next node along the mul-
tihop path to that provider. As a service discovery message travels from the
object node to service provider nodes, the Node Manager at each intermediate
forward point records the node ID of the previous forward point. This gives
the service provider a direct path back to the object node for service discovery
reply messages.

A service discovery request message will flood the network up to a maxi-
mum number of hops, MAX HOPS, which is a value specified a priori by the
domain-service or application developer. At each forward point, the hopNum
counter in the message header is incremented, and the message will not be
forwarded once the counter reaches MAX HOPS. Note that MAX HOPS is
the maximum number of hops from the object node to a service provider. This
implies that service-to-service communication could possibly travel twice as
many hops, if each service provider were MAX HOPS from the object node
on opposite sides. Service-to-service communication presents a challenge for
multi-hop routing because, although the object node knows the shortest path
from itself to each service provider, it has no way of knowing the shortest path
between the providers themselves. Rather than expending energy by sending
out numerous path-probing message transmissions, the shortest path between
two service providers is estimated by using the knowledge of the physical lo-
cation of the service provider and the maximum physical distance a message
can be transmitted. This method does not guarantee that the shortest path
selected will be a feasible one, in which case the next shortest path should be
selected.

The Dynamic Service Configurator contains the SDP and Composer, and func-
tions as described in Section 3. Dynamic service configuration is a relatively
energy-intensive operation, due to the number of message transmissions in-

18

volved in service discovery and composition. A node performing these op-
erations will transmit 2S messages, where S is the number of services in the
service graph. Nodes responding to service discovery requests transmit at most
S replies, one for each service they provide. However, these transmissions only
occur during configuration, and not during service graph execution, thus power
consumption is kept to a minimum.

The Object Manager is responsible for 1) parsing the object-code byte string,
2) detecting the object context and evaluating the object creation condition
at each sample period, 3) invoking the object creation protocol and owner
election algorithm, and 4) maintaining the object state variables and evaluat-
ing the migration and FSM mode transition conditions. Essentially, the object
manager implements the object-centric programming operations described in
Section 3.

5.2 WWW Gateway

In order to take advantage of high-bandwidth Web services, the sensor network
must have access to at least one World Wide Web Gateway. The Gateway
resides on a base station and provides access to Web services by translating
node-based byte sequence messages to the comparatively bulky XML-based
messages used in most Web service standards.

As such, it is also the job of the Gateway to speak the language of Web services.
When a service discovery message arrives, the Gateway must locate this service
on the Internet. This is accomplished by using the Universal Description,
Discovery and Integration (UDDI) protocol [11], a Web service standard used
for locating and accessing services. Given the proper keys, a UDDI inquiry
returns the access point for a specific service as an URL string. Service access
is achieved by means of XML-based SOAP [12] messages. If the service returns
a value, it is also enclosed in a SOAP message. The Gateway to composes and
parses these various XML messages and marshals the data appropriately when
translating between the sensor network and the World Wide Web.

The role of the Gateway is transparent to the rest of the network. It appears
simply as another node, running identical middleware services and providing
a set of application services. That the available application services happen to
be remotely located is of no interest to the object node making the request.
Similarly, other application services inputting data from, or outputting data
to a Web service believes the Web service is being provided by the Gateway
node.

Note that communication between the sensornet and Internet is bi-directional.
Not only can OASiS WSN applications access Web services, but OASiS ser-

19

vices can be accessed from the World Wide Web. This permits users, who
have no understanding of wireless sensor networks, to access sensor data or
run sensor network applications, from a website with access to the OASiS
Gateway.

To return to our tracking example, suppose we could improve our localization
estimate if we knew the present wind velocity. However, our sensor nodes are
not equipped to take wind measurements, so instead we rely on an Internet-
based WindVelocity service. The service interface definition is provided in a
Web Service Definition Language (WSDL) [13] file available on the host. This
provides us with the information necessary to access the Web service, including
input and output parameters and their data types.

While the tracking application is running on the sensor network, the Gateway
receives a service discovery message for the WindVelocity service. It receives
this message because one of the nodes in the sensor network is attempting to
bind a service graph requiring this service. If the Gateway does not already
have the WindVelocity service in its cache of recently accessed services, it
makes a UDDI inquiry to a registry at a known location which returns the
WindVelocity accesspoint URL, if available. The Gateway stores this informa-
tion, then responds to the Service Discovery Protocol of the requesting node
that the WindVelocity service is available.

The Gateway may then receive a service binding message, indicating that
the WindVelocity service may be accessed in the near future. The message
contains the IDs of the node and service to send the wind velocity data. This
information is cached for rapid future access.

When the Gateway receives a service access message from the sensor network,
it packages the input data into a SOAP message and invokes the WindVelocity
service. The reply is parsed using an XML parser and forwarded to the next
service specified in the service binding repository.

5.3 Implementation

Our middleware was implemented on the Mica2 mote hardware platform [14]
running TinyOS [15]. Our main objective in developing the middleware was
to minimize resource requirements while maintaining a robust component-
based architecture. The code was developed using galsC [16], a GALS-enabled
extension of nesC [17], the de facto programming language for the motes. The
Gateway application was developed in Java. Our Web service implementation
was realized using a suite of Apache services [18], including the Tomcat 5.5
web server, Axis 1.4 SOAP implementation, and jUDDI 0.9rc4, a Java-based
UDDI implementation. MySQL 5.0 was used for the UDDI repository.

20

Table 1 lists each middleware service, with its code size and memory require-
ments. These memory sizes are suitable for executing applications on the
motes, which have approximately 64 KB of programming memory and 4 KB
of RAM. It should be noted that these components can be optimized to fur-
ther reduce memory size, however there is a tradeoff between an application’s
compactness and its robustness.

Service Program memory (bytes) Required RAM (bytes)

Node Manager 8500 367

Dynamic Service Configurator 11894 822

Object Manager 3560 151

TinyGALS queues & ports 702 1013

Total 24656 2353
Table 1
Implementation Memory Requirements

6 Case Study

Our case study is motivated by an application for tracking chemical clouds.
By distributing chemical sensors on the ground, we can detect the passage of
a chemical cloud, and alert emergency management teams for containment,
rescue, and evacuation. Because the speed and direction of the cloud is heavily
dependent on current wind conditions in the region, leveraging this informa-
tion could greatly improve our trajectory estimate. However, obtaining wind
velocity information for an entire region is not a trivial task. One solution
would be to deploy anemometers over the region and periodically aggregate
wind velocity data, at great expense in terms of time and money. A more
practical solution would be to have the tracking application access a public
wind velocity Web service on the Internet. We demonstrate the features of
the OASiS programming model and middleware by developing such an ap-
plication. In place of a chemical cloud, our experimental setup consists of a
simplified indoor WSN application for tracking a heat source. The case study
demonstrates the feasibility and benefits of using OASiS.

6.1 Experimental Setup

Our experimental setup consists of a simplified indoor sensor network appli-
cation for tracking a heat source, as shown in Figure 6. There are 5 sensor
nodes in the field each having a unique ID. Each node also contains a number

21

of pre-loaded services. Table 2 summarizes the sensor node attributes. The
heat source follows the trajectory along the path shown in the figure. The
path is a straight line from [180, 180] to [670, 670] with Gaussian process noise
(N [0, 10]).

Node id Position Preloaded Services

1 [400 800] read temp, notify

2 [700 400] read temp, notify

3 [0 500] read temp, notify, localize track

4 [200 0] read temp, notify

5 [800 1000] read temp, notify

6 N/A wind velocity

Table 2
Experimental Setup

The application takes periodic temperature readings from thermistor-equipped
sensor nodes. Simultaneously, a Web service is accessed and the current wind
velocity obtained. For purposes of this experiment, the wind velocity service
returns predetermined values based on the location of the object. At each
iteration, these data are processed by a Localization service which estimates
the position of the heat source. This estimate is then sent to a Notification
service, which reports the location estimate to the user. The object FSM
consists of a single mode with a service graph containing six services, shown
in Figure 2. We have three instances of the Temperature-sensor service, and
specify that each must reside on a different node and in a specific spatial
configuration. Our Wind-velocity service is a Web service, which we specify
via an atomic onWeb resource allocation constraint. The object context is set
to “temperature ≥ 30”.

The Localization service in this application was implemented using an ex-
tended kalman filter (EKF) [19]. The system state is a vector of heat source
coordinates, x = [x y]T . The measurement vector is the collection of measure-
ments from three temperature-sensor services. The system model that we use
is represented by the equation,

 xk

yk

 =

 xk−1

yk−1

 +

 ux

uy

 +

 wx

wy

 (1)

where [xk−1 yk−1]
T is the previous system state, [ux uy]

T is the wind velocity,

and [wx wy]
T is the process noise with zero mean and covariance Q. The

22

observation model is given by,

zi
k =

T

||xk − ξi||
+ vi (2)

where, zi
k is the kth measurement at the ith sensor node, ξi and vi are the

location and measurement noise at ith sensor, and T is a constant. The sensor
node measurement noise is normally distributed with covariance R.

The EKF is initialized with process and measurement noise covariances Q
and R, observation model constant T , and initial system state estimate x0

and its covariance P0. At each time-step, the service accepts temperature
measurements, sensor locations, and wind velocity data as input and produces
the estimated source location as output.

Fig. 6. Experimental setup

6.2 Performance Evaluation

The feasibility and effectiveness of OASiS was evaluated by performing a set
of experiments around object maintenance and Web service integration in a
multihop network. We present the number of messages transmissions and re-
sponse time for each stage of execution, which are indicators of bandwidth
utilization, energy consumption, and responsiveness of the sensor nodes. We
also present the localization estimation error when invoking the WindVelocity
Web service versus localization without the Web service. Finally, we com-

23

pare the overall performance of OASiS against a similar macroprogramming
framework, EnviroTrack [20].

Experiment 1: Object creation and application execution

The heat source originates at [180, 180]. Nodes 3 and 4 register temperatures
higher than the detection threshold and start the object creation protocol.
Since node 4 registered the highest temperature, it is elected as the object-node
and instantiates an object. The object then parses the pre-loaded object-code,
retrieves the service graph for the current object mode, and initiates dynamic
service configuration, including service discovery, constraint satisfaction and
service binding. The application is configured by invoking instances of the
read temp service on nodes 2, 3 and 4, the localize track service on node
3, and the notify service on node 4. Once the service graph is configured,
application execution commences. The number of message transmissions for
object creation and application configuration is summarized in table 3. The
delay for object creation and application configuration is 2000 and 3000 time
units respectively (1024 time-units = 1 second). The time delay for each action
depends on pre-defined timeout values; an owner-election timeout for object
creation and a service-configuration timeout for service graph configuration.

number of messages

object creation 5 (owner-election messages)

service graph configuration 15 (3 service request messages)

(9 service information messages)

(3 service binding messages)
Table 3
Experiment 1 results

Experiment 2: Object migration

Once the physical object goes beyond the enclosure of nodes 2, 3, and 4,
the variance in the location estimate starts to grow. This increase in location
estimate variance causes a QoS violation and triggers object migration. As part
of the migration protocol, node 4 starts a new owner election procedure by
broadcasting a migration message. Nodes reply to the migration message with
their most recently sampled temperature values. The current owner elects the
node with the highest temperature value as the migration destination, sends
the object to it, and unbinds all previously bound services. For this experiment,
node 4 sends the object to node 2. Table 4 presents the number of messages

24

communicated for object migration and service graph unbinding. The delay
for object migration is approximately 2000 time units.

number of messages

object migration 8 (5 migration messages)

(1 object-migration)

(1 object-migration ack)

(1 object-migration notification)

service graph unbinding 3 (un-binding messages)
Table 4
Experiment 2 results

These experiments indicate that OASiS incurs an overhead on the number of
messages required and the time delay for object creation, maintenance, mi-
gration and service graph maintenance. The tables above demonstrate that
the number of messages communicated is reasonably small. The time delays,
which were dependent on various timeout constants and were found to be
insignificant in this experiment, exhibit the responsiveness of an OASiS appli-
cation.

Experiment 3: Tracking

Tracking performance was evaluated by comparing the actual heat source
trajectory with the estimated trajectory. The tracking accuracies for cases
with and without wind velocity data (ux = uy = 0) was also measured. Figure
7 (a) and (b) shows the tracking results for tests with and without wind
velocity data. Figure 7 (c) and (d) shows the tracking results with varied
system and measurement noise parameters.

Message transmissions were kept to a minimum due to the passive service
discovery protocol as well as the service-oriented architecture itself. Because
service messages for this application are small, only one transmission per mes-
sage was required. Service discovery and binding required a total of 14 trans-
missions, while a complete execution of the service graph required only six
transmissions.

Response times for various operations were also obtained, and are displayed in
Table 5. The service discovery response time is provided with and without the
Web service. Additionally, Web service access is not included in the service
graph execution time, but is provided separately. This is to illustrate the over-
head imposed on the system by adding Web service capability. It should be

25

Fig. 7. Tracking results

noted that our Web service implementation is not optimized for speed, how-
ever the current service discovery and constraint satisfaction latency is quite
acceptable for performing dynamic service configuration. Similarly, the current
access latency is acceptable for tracking slower-moving, wide-area phenomena
such as chemical clouds and fire. Applications that require service graph ex-
ecution at higher frequencies should not include Web service access in each
iteration.

Operation Response Time (ms) Standard Deviation (ms)

Service discovery 4092 113

Service discovery w/o Web service 1400 0.01

Constraint satisfaction 15 0

Service graph execution w/o Web service 81 13

Web service access 502 65

Localization service access 11 0
Table 5
Operation Response Times

6.3 Comparison with EnviroTrack

EnviroTrack [20] is an object-centric macroprogramming framework which en-
ables the run-time system to dynamically instantiate objects corresponding to
external events. Like OASiS, objects are unique logical entities that undergo
owner election and migrate between nodes following the geographical move-
ment of their equivalent real-world phenomena. Because EnviroTrack provides
similar abstractions to OASiS, it serves as a good side-by-side comparison. En-
viroTrack has been extended into the EnviroSuite [3] framework (Section 8).
However, at the time of publication, only the EnviroTrack source code was

26

available for testing.

We developed an EnviroTrack application based on our case study. A typical
EnviroTrack application executes as follows:

• Individual nodes sense the environment for the phenomenon of interest
• When the phenomenon is detected, leader election starts
• When a leader is elected, it aggregates sensor data from neighboring nodes
• Sensor data is analyzed, then output to base station
• When leader is no longer close to object, a new leader is elected and the

object migrates

In OASiS, data is aggregated across the network according to the configura-
tion of the service graph. EnviroTrack includes an aggregation library, which
contain typical aggregation functions such as average, max, and min. Al-
though it is possible for the programmer to add custom aggregation functions
to the library, it is a complicated task. We therefore chose not to implement an
aggregation function for the Kalman filter but we used EnviroTrack’s default
functionality. This choice does not allow us to compare the tracking results
but we can compare the message transmission overhead as well as the memory
requirements.

Both EnviroTrack and OASiS transmit heartbeat messages during leader elec-
tion, in which messages are broadcast at a given heartbeat rate over a given can-
didacy period. However, unlike OASiS, EnviroTrack leaders continue transmit-
ting periodic heartbeat messages for group maintenance, which inform neigh-
boring nodes that the leader is alive, and that a phenomenon of interest is
in the region. Although EnviroTrack does employ mechanisms for energy-
efficiency, we feel that heartbeat messages result in unnecessary power con-
sumption, and therefore use them in OASiS only during object-owner election.
Table 6 compares messages transmission overhead for each operation in both
frameworks, where C is the number of candidate leader nodes, H is the heart-
beat rate, N is the number of nodes currently participating in tracking the
target, and S is the number of services in the service graph.

Operation OASiS EnviroTrack

Leader Election O(C * H) O(C * H)

Dynamic Service Configuration O(N + S) 0

Group Maintenance 0 O(H)

Application Execution O(S) O(N)
Table 6
Message Transmission Overhead in OASiS and EnviroTrack

Overall, OASiS transmits fewer messages than EnviroTrack. Although OA-

27

SiS must perform dynamic service configuration, this occurs at infrequent
intervals, such as when service graph constraints are no longer satisfied and
immediately after migration.

Table 7 compares the memory required by both applications. The EnviroTrack
application requires less memory, however, the OASiS application is still be-
low the limit, and we believe the additional capabilities of OASiS justify the
memory requirements.

Framework Program Memory (bytes) Required RAM (bytes)

OASiS 40248 2820

EnviroTrack 23646 1184

Available Mica2 Memory 64000 4000
Table 7
Memory requirements of OASiS and EnviroTrack

7 Scalability

Scalability is a major challenge in the design of sensor networks. Our approach
tackles scalability by focusing on small network neighborhood around the ob-
ject node. Nevertheless, there is a need to perform a scalability analysis of the
service discovery protocol in order to measure its effectiveness.

Our analysis is based on Prowler [21], a probabilistic wireless network simula-
tor capable of simulating wireless distributed systems, from the application to
the physical communication layer. Although Prowler provides a generic sim-
ulation environment, its current target platform is the Berkeley MICA mote
running TinyOS.

We consider two different types of network topology: (i) a grid topology where
nodes are placed in a 2-dimensional grid and (ii) a random uniform topology
where node locations are randomly distributed. We assume that it is required
to gather service information from all the nodes in the n-hop neighborhood of
the object node. For each type of network topology, we compute the overhead
of the OASiS service discovery protocol as a function of the number of hops
of the network neighborhood of the object node. The overhead is measured by
(i) the number of message transmissions, (ii) the number of nodes discovered,
and (iii) the time required for completing the service discovery.

Each sensor node host a number of services and replies with the list of ser-
vices when queried. For the analysis in Prowler we measure the number of
nodes discovered, which presumably provides us with the complete list of ser-

28

vices running on those discovered nodes. In other words, node discovery is an
implicit measure of service discovery.

We perform the analysis in Prowler by keeping a number of local variables
at each node. Specifically, we keep a list of discovered nodes, the number of
messages sent, and a hop number on each node. At the end of service discovery
we compute the total number messages sent by all the nodes, the total number
of nodes discovered at the object node, and the total time required by the
service discovery.

Figure 8 shows the number of message transmissions for n-hop service discov-
ery, figure 9 shows the number of sensor nodes discovered, and figure 10 shows
the time taken for n-hop service discovery for each of the network topologies.

Fig. 8. Number of message transmissions for (a) grid and (b) random topology

Fig. 9. Number of discovered nodes for (a) grid and (b) random topology

In addition, we define a parameter called discovery ratio as the ratio of service
discovery messages to the number of nodes discovered at the object node.
In other words, discovery ratio is the number of service discovery messages
per discovered node. Figure 11 shows the discovery ratio for different network
topologies.

29

Fig. 10. Time taken for n-hop service discovery for (a) grid and (b) random topology

Fig. 11. Discovery ratio with number of hops for all four network topologies

From the results above, we can make some general useful observations. The
number of discovery messages seems to increase quadratically with the num-
ber of hops, and increases approximately linearly with the node density. The
total time taken for service discovery increases linearly with number of hops,
while it remains approximately constant with sensor node density. The most
interesting obsrvations are concerned with the discovery ratio which increases
linearly with number of hops, i.e. the protocol requires approximately n dis-
covery messages per discovered node for n-hop service discovery. Interestingly,
discovery ratio remains approximately constant with node density.

Our results indicate that the service discovery protocol in OASiS performs
linearly for the number of discovery messages per discovered node with respect
of number of hops. Hence, the optimal number of hops for service discovery
can be specified in an OASiS application based on the number of services
required for the application and the distribution of services in the network.

30

8 Related Work

Design principles for traditional distributed computing middleware are not
directly applicable to WSNs because sensor nodes are small-scale devices with
a limited power supply, directly affecting computation, sensing, and (espe-
cially) communication, and often operate unattended for prolonged periods
of time. The design of a successful WSN middleware must address the vari-
ous challenges imposed by these characteristics. Many middleware challenges
have already been identified [22]. Recently, the WSN community has seen the
emergence of a diverse body of macroprogramming languages, frameworks,
and middleware which provide solutions to some of these challenges (see [22]
and the references therein). In the following, we focus on the frameworks that
are more closely related to OASiS.

SONGS [1] is a service-oriented programming model, similar to ours in many
respects. However, unlike our object-centric approach to driving application
behavior, SONGS dynamically composes a service graph in response to user-
generated queries. While this technique works well as an information retrieval
system, SONGS lacks the ability to alter its behavior based on a change in
environmental conditions.

The object-centric paradigm has been successfully used in the EnviroSuite
programming framework [3]. EnviroSuite and OASiS provide a similar level
of network abstraction to the application developer, however by employing a
service-oriented architecture, OASiS is able to incorporate aspects of modular
functionality, resource utilization, and ambient-awareness more efficiently.

The Abstract Task Graph (ATaG) [23] is a macroprogramming model which
allows the user to specify global application behavior as a series of abstract
tasks connected by data channels for passing information between them. Cur-
rently, the ATaG is only a means for describing application behavior. A model
interpreter must be employed to decompose this behavior to node-level exe-
cutable code. In addition, the ATaG provides no means for delegating tasks
to sensor nodes which satisfy specific property or resource constraints.

The Agilla framework [24] adopts a mobile agent-based paradigm. However,
unlike most other frameworks, Agilla does not require the sensor network ap-
plication to be deployed statically. Instead, autonomous agents, each with a
specific function, are injected into the network at run-time, a technique re-
ferred to as in-network programming. This approach allows the underlying
network application to only be uploaded once onto the node hardware, after
which applications can be swapped out or reconfigured at any time. The pri-
mary disadvantage of using an Agilla network, compared with our middleware,
is that all nodes must be executing the Agilla run-time application. This rules

31

out access to a variety of devices operating on different architectures.

Ambient-aware computing [25] is an emergent technology in which applica-
tions are given the ability to interact with their environment such that all
devices and services within a fixed geographical range are known at all times.
However, for sensor networks consisting of resource-constrained nodes, com-
munication with neighboring devices is often costly. Hence a tradeoff exists
between the rate at which a node can update its understanding of the sur-
rounding environment and the amount of time the node can run before de-
pleting its power supply.

Bridging a sensornet-based SOA with the Internet has been realized in the
CodeBlue project [26] in which sensors used for healthcare monitoring are
able to relay data to a Web service. This provides a convenient mechanism
for transferring a patient’s vital signs, obtained through an embedded sensor
device, to a medical records system or monitoring alert center. CodeBlue’s
gateway application is similar to our own, with the exception that it translates
sensor data into the HL7v3 format, a standard used for communicating medical
information.

Dynamic software reconfiguration in sensor networks has been achieved in [9]
by expressing system requirements as constraints on design space quality-of-
service parameters. A run-time search of the design space is made possible by
situating the reconfiguration controller on a powerful base station, a strategy
which cannot be realized in resource-constrained sensor nodes such as the
motes.

MiLAN [27] is a middleware which aids in WSN application development by
optimizing the tradeoff between application quality of service and network re-
source utilization. Quality of service constraints are specified in graphs, which
MiLAN interprets and uses to maintain a minimum set of active devices which
provide the functionality required by the application. Although MiLAN em-
ploys a dynamic service configuration mechanism similar to that of OASiS, it
only assists the application developer in managing quality of service, and is
not a complete macroprogramming framework.

9 Conclusion

We have developed OASiS 1 an object-centric, service-oriented programming
model and middleware for ambient-aware sensor network applications. Our
service-oriented model permits the composition of any type of dataflow appli-
cation. Upon detection of an external event, the sensor network instantiates
a unique logical object which then drives the application. Application func-

32

tionality is bundled in modular, autonomous services distributed across the
network, and overall behavior is specified by a service graph. Dynamic service
configuration is employed at run-time to locate and bind these services. This
process involves an efficient search of the design space to ensure all constraints
have been satisfied. In addition, a Gateway application, deployed on a base
station, permits the sensor network to discover and access Web services. This
capability provides a substantial benefit to WSN applications, as they are able
to perform computations and access information using methods unavailable
to resource-constrained sensor nodes.

The utility of our programming model was demonstrated with a simple indoor
heat-source tracking application. A service graph was composed consisting of
sensing, Web, and computational services, and the application deployed. Our
results indicate not only the feasibility of our approach, but the benefits of
using a sensornet-based SOA and dynamic service configuration as well.

The ambient-aware behavior of our programming model can be further devel-
oped to react gracefully to communication failures and node dropout during
application execution. This will involve failure detection, isolation, and recov-
ery mechanisms that restore the network application to a stable configuration
both quickly and efficiently. This can be achieved by taking advantage of the
OASiS service-oriented architecture. By placing an upper bound on the execu-
tion time of the service graph and appending a token to service messages that
traverse the graph, a failure will be assumed if the token does not come full
circle. The object can then initiate dynamic service configuration, reconstruct
the service graph, and resume application execution. This is the subject of our
current work.

References

[1] J. Liu, F. Zhao, Towards semantic services for sensor-rich information systems,
in: Basenets, 2005.

[2] G. Karsai, J. Sztipanovits, A. Ledeczi, T. Bapty, Model-integrated development
of embedded software, in: Proc. IEEE, Vol. 91, 2003.

[3] L. Luo, T. Abdelzaher, T. He, J. Stankovic, Envirosuite: An environmentally
immersive programming system for sensor networks, in: TECS, 2006.

[4] Web services architecture, ‘http://www.w3.org/TR/ws-arch/’.

1 The source code for the OASiS programming framework, including the application
used in our case study, can be found on our project website at http://www.isis.
vanderbilt.edu/Projects/OASiS/.

33

[5] E. Cheong, J. Liebman, J. Liu, F. Zhao, Tinygals: a programming model for
event-driven embedded systems, in: SAC, 2003.

[6] P. Engelstad, Y. Zheng, Evaluation of service discovery architectures for mobile
ad hoc networks, in: WONS, 2005.

[7] J.-C. Regin, A filtering algorithm for constraints of difference in CSPs, in: AAAI,
1994.

[8] L. J. Guibas, Sensing, tracking, and reasoning with relations, in: IEEE Signal
Processing Magazine, 2002.

[9] S. Kogekar, S. Neema, B. Eames, X. Koutsoukos, A. Ledeczi, M. Maroti,
Constraint-guided dynamic reconfiguration in sensor networks, in: IPSN, 2004.

[10] D. B. Johnson, D. A. Maltz, Dynamic source routing in ad hoc wireless
networks, in: Mobile Computing, Kluwer Academic Publishers, 1996.

[11] Universal description, discovery, and integration, ‘http://www.uddi.org’.

[12] Soap, ‘http://www.w3.org/TR/soap/’.

[13] Web service description language, ‘http://www.w3.org/TR/wsdl/’.

[14] U.c. berkeley, ‘http://www.tinyos.net/scoop/special/hardware\#mica2’.

[15] P. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk, A. Woo, E. Brewer,
D. Culler, The emergence of networking abstractions and techniques in tinyos,
in: NSDI, 2004.

[16] E. Cheong, J. Liu, galsc: A language for event-driven embedded systems, in:
DATE, 2005.

[17] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, D. Culler, The nesc
language: A holistic approach to networked embedded systems, in: PLDI, 2003.

[18] Apache web services, ‘http://ws.apache.org/’.

[19] G. Welch, G. Bishop, An introduction to the kalman filter, Tech. Rep. TR 95-
041, Department of Computer Science, University of North Carolina at Chapel
Hill (2004).

[20] T. Abdelzaher, B. Blum, Q. Cao, Y. Chen, D. Evans, J. George, S. George,
T. He, L. Luo, S. Son, R. Stoleru, J. Stankovic, A. Wood, Envirotrack: Towards
an environmental computing paradigm for distributed sensor networks, in:
ICDCS, 2004.

[21] G. Simon, P. Volgyesi, M. Maroti, A. Ledeczi, Simulation-based optimization
of communication protocols for large-scale wireless sensor networks, in: IEEE
Aerospace Conference, 2003.

[22] S. Hadim, N. Mohamed, Middleware: Middleware challenges and approaches for
wireless sensor networks, in: IEEE Distributed Systems Online, Vol. 7, 2006.

34

[23] A. Bakshi, V. Prasanna, J. Reich, D. Larner, The abstract task graph: A
methodology for architecture-independent programming of networked sensor
systems, in: EESR, 2005.

[24] C.-L. Fok, G.-C. Roman, C. Lu, Rapid development and flexible deployment of
adaptivewireless sensor network applications, in: ICDCS, 2005.

[25] J. Dedecker, T. V. Cutsem, S. Mostinckx, T. D’Hondt, W. D. Meuter, Ambient-
oriented programming, in: OOPSLA, 2005.

[26] S. Baird, S. Dawson-Haggerty, D. Myung, M. Gaynor, M. Welsh, S. Moulton,
Communicating data from wireless sensor networks using the hl7v3 standard,
in: BSN, 2006.

[27] W. B. Heinzelman, A. L. Murphy, H. S. Carvalho, M. A. Perillo, Middleware
to support sensor network applications, in: IEEE Network, Vol. 18, 2004.

35

