
Efficient Integration of Web Services in
Ambient-aware Sensor Network Applications1

Isaac Amundson, Manish Kushwaha, Xenofon Koutsoukos, Sandeep Neema, Janos Sztipanovits
Institute for Software Integrated Systems

Department of Electrical Engineering and Computer Science
Vanderbilt University

Nashville, Tennessee 37235
{isaac.amundson, manish.kushwaha, xenofon.koutsoukos, sandeep.neema, janos.sztipanovits}@vanderbilt.edu

Abstract— Sensor webs are heterogeneous collections of sensor
devices that collect information and interact with the environ-
ment. They consist of wireless sensor networks that are ensembles
of small, smart, and cheap sensing and computing devices that
permeate the environment as well as high-bandwidth rich sensors
such as satellite imaging systems, meteorological stations, air
quality stations, and security cameras. Emergency response,
homeland security, and many other applications have a very
real need to interconnect such diverse networks and access
information in real-time. While Internet protocols and Web
standards provide well-developed mechanisms for accessing this
information, linking such mechanisms with resource-constrained
sensor networks is very challenging because of the volatility of
the communication links.

This paper presents a service-oriented programming model
for sensor networks which permits discovery and access of Web
services. Sensor network applications are realized as graphs of
modular and autonomous services with well-defined interfaces
that allow them to be described, published, discovered, and in-
voked over the network providing a convenient way for integrat-
ing services from heterogeneous sensor systems. Our approach
provides dynamic discovery, composition, and binding of services
based on an efficient localized constraint satisfaction algorithm
that can be used for developing ambient-aware applications that
adapt to changes in the environment. A tracking application that
employs many inexpensive sensor nodes, as well as a Web service,
is used to illustrate the approach. Our results demonstrate
the feasibility of ambient-aware applications that interconnect
wireless sensor networks and Web services.

I. INTRODUCTION

Wireless sensor networks (WSNs) consist of small, inexpen-
sive computing devices which interact with the environment
and communicate with each other to identify spatial and
temporal patterns of physical phenomena. A sensor web is
a heterogeneous collection of such networks, and can also
include high-bandwidth sensing platforms such as satellite
imaging systems, meteorological stations, air quality stations,
and security cameras. The ability to seamlessly assemble a
sensor web from various sensor network architectures greatly
benefits applications ranging from emergency response to
homeland security.

Sensor nodes may have different and varying capabilities,
be manufactured and operated by different vendors, and be
accessed by multiple clients exercising different functionalities

1This work is partially supported by Microsoft Extended Research and by
NSF Grant CCR-0225610

[1]. A service-oriented architecture (SOA) offers flexibility in
the design of WSN applications since it provides accepted
standards for representing and packaging data, describing
the functionality of services, and facilitating the search for
available services which can be invoked to meet application
requirements. SOA deployment has already proved successful
on the World Wide Web, however Web service technologies
have been developed assuming standard Internet protocols and
are not realizable in resource-constrained sensor networks.

In this paper, we present an object-centric, ambient-aware,
service-oriented programming model for WSN applications.
In the object-centric paradigm, the application programmer is
presented with a layer of abstraction in which an event detected
by the sensor network is represented as a logical object which
then drives the application. Furthermore, our model is ambient-
aware, enabling the application to adapt to network failures
and environmental changes by employing a dynamic service
discovery protocol. In this paper, we emphasize the service-
oriented and ambient-aware aspects of our model, and do not
discuss object-centric behavior in detail.

Applications are realized as graphs of services, executed in
response to the detection of a physical phenomenon. Services
are modular and autonomous, properties which permit them to
be dynamically composed into complete applications. Because
applications can consist of multiple services on multiple
nodes, we have encapsulated service discovery, scheduling,
and access mechanisms into a sensor node middleware. These
mechanisms are designed to function efficiently on resource-
constrained sensor nodes.

In order to effectively execute a service graph, services
should be invoked only if they satisfy a set of constraints as
warranted by the user and the application domain. For exam-
ple, it may not be desirable for two CPU-intensive services
to be running simultaneously on the same node. Therefore,
this constraint needs to be declared in the service graph and
evaluated when the application needs to locate and run a select
set of services. The process of ad hoc service discovery and
constraint satisfaction during initialization and in the event of
node failure is called dynamic service configuration.

Our programming model can be used to build a wide variety
of dataflow applications such as mobile vehicle tracking, fire
detection and monitoring, and distributed gesture recognition.
As proof of concept, we have developed a simplified indoor

tracking experiment, which monitors a heat source as it travels
through the sensor network region. We compose a service
graph containing temperature-detection services, a localization
service, a notification service, and a Web-based hypothetical
wind velocity service. The case study demonstrates the fea-
sibility and utility of a service-oriented WSN programming
model. Furthermore, by providing access to Web services, we
can incorporate functionality into our WSN applications that
would otherwise be unavailable.

This paper is organized as follows. Section 2 describes our
programming model. In Section 3, we give a detailed expla-
nation of our method for performing constraint satisfaction in
the context of dynamic service configuration. Our middleware
implementation is discussed in Section 4. Section 5 presents
the details of our case study. In Section 6, we compare our
research to similar work that has recently appeared in the
literature. Section 7 concludes.

II. PROGRAMMING MODEL

This section presents our proposed programming model for
object-centric, service-oriented, ambient-aware sensor network
applications. The model defines the logical elements necessary
to support any type of WSN dataflow application.

A. Services in Sensor Networks

In an object-centric application, an object is a unique
logical entity corresponding to a physical phenomenon under
observation. The object is unique because it resides on only
one node at a time. This is enforced by means of an object-
owner election algorithm, similar to that of [2], when multiple
nodes detect the same object context. This does not imply the
object is confined to a single node over its entire lifetime;
it has the ability to migrate between nodes as it follows its
real-world counterpart. The network application is then driven
by the object; that is, its behavior reflects the object’s current
state.

The object-centric paradigm provides abstractions which
place the focus on the environmental phenomena being moni-
tored, thus bypassing the complex issues of network topology
and distributed computation inherent to sensor network appli-
cation programming. This effectively transfers ownership of
common tasks such as sensing, computation, and communica-
tion from the individual nodes to the object itself, providing a
greater amount of flexibility and efficiency both at design-time
and at run-time.

In our service-oriented architecture, the object contains
a service graph whose constituent services provide the ap-
plication with its functionality. Specifically, a service graph
contains a set of services, a set of bindings, and a set of
constraints, where a service is represented by a service ID
and a port ID, a binding is a connection between two services,
and a constraint is a restrictive attribute relating one or more
services. In this work, we assume that an object’s service graph
is known a priori.

Figure 1 depicts the service graph used in our tracking
application example. Our localization algorithm requires sen-
sor data from three nodes surrounding the source event, in
addition to the current wind velocity in the region. Therefore,

Fig. 1. Service Graph for Tracking Application

the service graph consists of the three Sensing services and one
Wind Velocity service whose outputs are wired to the inputs
of a Localization service. The Localization service is wired to
a Notification service, which informs us of the source event’s
current position.

Services are resources capable of performing tasks that
form a coherent functionality from the point of view of
provider entities and requester entities [3]. They have a well-
defined interface which allows them to be described, pub-
lished, discovered, and invoked over the network. Furthermore,
services are modular and function autonomously, providing
an excellent mechanism for application reconfiguration during
runtime. Each service can have zero or more input ports and
zero or more output ports. For example, the Localization
service in our tracking example has four input ports, three
for sensor readings and one for wind velocity, and one output
port, on which the position estimate is placed.

One necessary property of services is their ability to com-
municate asynchronously with each other. This is accounted
for in our programming model by means of the globally asyn-
chronous, locally synchronous (GALS) model of computation
[4]. GALS guarantees that communication between services
will occur asynchronously, while intra-service communication
such as method calls will exhibit synchronous behavior. As
such, GALS is an important and desirable feature of sensornet-
based service-oriented applications.

Application services can run on the resource-constrained
nodes of the sensor network or they may be executed on
more powerful sensor nodes in a high-bandwidth network.
In our work, these richer services are implemented as Web
services. We elect to use Web services due to their current
popularity, well-defined and documented standards, and the
existing functionality they provide. By taking advantage of
these high-bandwidth Web services, applications have access
to a wide range of functionality which would otherwise be too
resource-intensive for the sensor node platform.

B. Service Constraints

It is often undesirable for multiple services in an application
to be running concurrently on the same node. Conversely, there
arise situations in which two services must be running on
the same node. Many localization algorithms require sensing
services to be situated in a precise spatial configuration. Other
sensor node properties such as power level and physical
position may also be important when deciding where to run a

service. The ability to specify these types of constraints is an
important aspect of service graph creation.

The constraints associated with a service graph can be
categorized as either property or resource-allocation con-
straints. Property constraints specify a relation between the
properties of services (or the nodes providing the services)
and some constant value. The ENCLOSE property constraint,
for example, specifies that nodes providing services a, b, and
c must surround the physical phenomenon of interest. The
ENCLOSE constraint is discussed in more detail in Section III.
Resource-allocation constraints define a relationship between
the nodes that provide the services. For example, a resource-
allocation constraint can specify that services a, b, and c must
run on different nodes (or must all run on the same node).

Constraints can further be categorized as being either atomic
or compositional based on their cardinality, or arity. Hence,
a constraint involving a single service is an atomic (unary)
constraint, while constraints involving two (binary) or more
(n-ary) services are compositional constraints.

These constraints are defined mathematically as follows, and
our methods for solving them are presented in Section III.
(1) Atomic property constraint:

service.p op K

where, p is a node property, op is a relational operator
(op ∈ {>,≥, <,≤,==, 6=}), and K is some constant value.
For example, the constraint that service a must be provided
by a node with power level greater than or equal to 85% is
written as,

a.provider.POWER ≥ 85

(2) Compositional property constraint:

F (p) op K over S

where p and op are defined above, and F is a composition
function on property p for all services in the set S. For
example, to specify that the average height of nodes providing
services a, b, and c must be one meter, the compositional
property constraint is written as,

average(provider.POSITION.Z) == 1000 over {a, b, c}

(3) Atomic resource-allocation constraint:

service.provider.type op TYPE SET

where, op ∈ {==, 6=,∈,∈/}. For example, suppose we want
to ensure that service a does not run on a set of nodes with
particular IDs. We can then say,

a.provider.ID ∈/{NODE1, NODE2, NODE3}

(4) Compositional resource-allocation constraint:

F (provider.type) over S

where, F ∈ {allSame,allDifferent}. For example, the
constraint that services a and b must run on the same node,
and c must run on a different node can be written as,

allSame(provider.ID) over {a,b} &&
allDifferent(provider.ID) over {a,c}

C. Service Discovery and Composition

Before an object can start executing a service graph, a
Service Discovery Protocol (SDP) is invoked to determine
which nodes in the network provide which services. Our model
employs a passive discovery protocol in which a provider
advertises a service only when a request for that service has
been received [5]. This optimization minimizes the overall
number of message transmissions, thus also minimizing power
consumption. The SDP maintains two service repositories, a
Local Service Repository (LSR), which catalogs the applica-
tion services running locally, and a Discovered Services Repos-
itory (DSR), which catalogs remote application services that
have been discovered in the past. Should an entry become stale
due to communication failure or node dropout, for example,
or a new service request arrives, the SDP locates a provider
for that service by performing the steps outlined in Algorithm
1. Note that the algorithm searches both service repositories
in order to obtain a complete list of known providers.

Algorithm 1 Service Discovery Protocol
1: Input: Service ID
2: search the Local Service Repository
3: if Service ID is found in LSR then
4: send local Service Info to Composer
5: end if
6: search Discovered Services Repository
7: if Service ID is NOT found in DSR then
8: compose Service Discovery Message
9: broadcast Service Discovery Message

10: receive Service Discovery Reply message
11: record service provider node ID in DSR
12: end if
13: send remote Service Info to Composer

The service discovery algorithm receives as input a service
ID, which if not present in either service repository, will
prompt the SDP to broadcast a service request to other nodes in
the network. The outgoing service discovery message contains
the ID of the requested service and the node ID of the
sender. Nodes providing the requested service will send a
service discovery reply message, which includes information
containing node vitals such as physical location and remaining
power. The SDP caches the provider node ID in the DSR, and
forwards the message to the Composer.

It is the Composer’s job to produce a set of services and
service providers that satisfy the constraints specified in the
service graph. These services are then bound and eventually
invoked. The Composer’s behavior is outlined in Algorithm
2. The ID of each service in the service graph is passed
to the SDP (lines 3-5). Because several instances of the
same service could be residing on multiple nodes across the
network, the Composer can expect multiple replies. As replies
arrive, the Composer checks to see that any atomic service
graph constraints are satisfied, and if so, the node information
is stored (lines 6-9). Compositional constraint satisfaction
commences after all replies have been received. Finally, the
connections between the services in the service graph are

examined, and a service binding message is created for each
(line 12). The binding message simply contains the service
and node IDs of the connection source, as well as the service
and node IDs of the connection destination. The message is
sent to the connection source node (line 13) so that it may
properly direct the output of its service to the input of the
service specified by the connection destination.

Algorithm 2 Composer
1: Input: Service Graph G
2: parse G into sets of Services, Connections, and Constraints
3: for all S ∈ Services do
4: send S to Service Discovery Protocol
5: end for
6: receive Service Discovery Reply from SDP
7: if node satisfies Atomic Constraints then
8: cache node info
9: end if

10: do Compositional Constraint Satisfaction
11: for all C ∈ Connections do
12: create a Service Binding message
13: send Service Binding message to service provider node
14: end for

Once the object has finished initialization, the service graph
can be executed. This involves the invocation of the source
services in the service graph. Depending on the nature of
the object, the service graph may be executed periodically, in
which case the source services are invoked at a predetermined
rate. Because each application service invokes the next, the
service graph will execute to completion without the need for
any type of centralized control.

III. AMBIENT-AWARE PROGRAMMING

Before an object is instantiated, each node in the sensor
network periodically takes samples of the environment, which
are then compared against an object context. A positive
comparison implies the network has detected a target and an
object is then created. During execution of the application,
access to a new instance of a service may become necessary
if the node providing the current service drops off the network.
This necessitates the ability to locate a service provider both
efficiently and quickly. An application capable of adapting to
the environment in such a manner is said to be ambient-aware.

Our SOA is made ambient-aware by means of dynamic
service configuration. Before a service graph is executed, the
location of the services it contains is irrelevant as this informa-
tion can become outdated before it is ever required. Dynamic
service configuration composes and binds the service graph
on demand, which results in fewer message transmissions, and
often a better service configuration.

At all times after initialization, each node has a notion of the
location of the services it requires. If a communication failure
occurs during the process of invoking one of these services,
the application is able to recover by locating a new acceptable
instance of the service.

A. Constraint Satisfaction

Service graph instantiation can be modeled as a constraint
satisfaction problem, where services in the abstract service
graph are the constraint variables, and the nodes that provide
a particular service constitute the domain. The constraint
satisfaction problem (CSP) is formally defined in [6].

A finite CSP P = (X,D, C) is defined as a set of n variables
X = {x1, ..., xn}, a set of finite domains D = {D1, ..., Dn}
where Di is the set of possible values for variable i, and
a set of constraints between variables C = {C1, ..., Cm}. A
constraint Ci is defined on a set of variables (xi1 , ..., xij) by
a subset of the Cartesian product Di1× ...×Dij

. A solution is
an assignment of values to all variables which satisfy all the
constraints.

The design space for a constraint satisfaction problem is the
set of all possible tuples of constraint variables. Formally,

D = {(v1, v2, ..., vn)|v1 ∈ D1, v2 ∈ D2, ..., vn ∈ Dn}

Constraint satisfaction prunes the design space as much as
possible for all different types of constraints, followed by
backtracking until a feasible solution is found. The specific
pruning method depends on the constraint under consideration,
specifically the constraint property, constraint operator, and
composition function.
1) Atomic Constraint Satisfaction: Atomic constraints are
straightforward to satisfy. Because each atomic constraint is
defined on a single variable, pruning the domain of that
variable will leave the domain consistent, and hence satisfy
the constraint. In Algorithm 3, the resulting pruned domain
D̃i for constraint variable xi is consistent.

Algorithm 3 Atomic Constraint Satisfaction

1: D̃i = Di

2: for all vi ∈ D̃i do
3: if !satisfy(Ci, vi) then
4: D̃i = D̃i − vi

5: end if
6: end for

2) Compositional Constraint Satisfaction: Algorithm 4 out-
lines the process of compositional constraint satisfaction.
a) Compositional Property Constraints: The compositional
property constraints are described in Section II, where F is
the composition function. Our programming model includes
definitions for several common aggregate functions such as
SUM, AVERAGE, and MEDIAN.

Many tracking applications employ localization algorithms
which require measurement data to come from multiple sen-
sors surrounding the physical phenomenon of interest. The
quality of the localization estimate often depends on how well
the spatial configuration of these sensors is described. We have
therefore defined an additional composition function called
ENCLOSE which is useful for specifying the spatial configura-
tion of sensor nodes. For example, in our tracking application
we use ENCLOSE to specify that we would like to have at
least three different sensor nodes enclosing the tracked phe-
nomenon at all times. The constraint ENCLOSE(L) over S =

Algorithm 4 Compositional Constraint Satisfaction
1: for all Ci ∈ C do
2: D̃ = prune design space(Ci,D)
3: end for
4: okay = FALSE
5: while !okay do
6: sol = {(vindex1 , vindex1 , ..., vindex1)|∀i vindexi

∈ D̃i}
7: okay = TRUE
8: for all Cj ∈ C do
9: if !satisfy(Cj , sol) then

10: okay = FALSE
11: backtrack()
12: end if
13: end for
14: end while

{s1, s2, s3}, specifies that the location L must be enclosed by
the sensor nodes which provide services s1, s2 and s3. The
enclosure location, L can be specified as a fixed location or
as a node ID. For example, ENCLOSE(s4.location) over S =
{s1, s2, s3} specifies that the location of the node providing
service s4 must be enclosed by sensor nodes that provide
services s1, s2, and s3.

In general, higher-level, complex constraints are more
difficult and demanding to satisfy. However, such constraints
can be transformed into lower-level, simple constraints that
provide the desired result, while minimizing the power
and resources expended in satisfying it [7]. We model
the ENCLOSE constraint based on the AM I SURROUNDED
query described in [7]. The two-dimensional definition of
ENCLOSE is as follows: L is surrounded by {s1, s2, s3} if
there is no line in the plane that can separate L from all
of {s1, s2, s3}. For this definition, the constraint can be
reduced to the following: ENCLOSE(L) over {s1, s2, s3} ⇒
CCW(L, s1, s2) & CCW(L, s2, s3) & CCW(L, s3, s1), where
CCW(a, b, c) specifies that locations a, b, and c form a counter-
clockwise-oriented triangle in 2-D. The geometric constraint
CCW(L, s3, s1) is easy to satisfy by simple computation.

The definition of ENCLOSE varies for different sensor do-
mains. For example, one domain can define an enclosed region
to be the overlap of member sensing ranges. Consider another
example of camera sensors with orientation and limited field-
of-view. The enclosed region in this case is the intersection
of fields of view recorded by all member cameras. Figure 2
illustrates various enclosed region definitions.

Fig. 2. Enclose Constraint

b) Compositional Resource-Allocation Constraints: There
are two types of composition functions for compositional
resource-allocation constraints, allSame and allDifferent. Sat-

isfying the allSame constraint is relatively straightforward;
the design space is the intersection of domains of all the
participating constraint variables. To satisfy the allDifferent
compositional constraint, a solution is picked from the domain
for each constraint variable. If the current set of solutions satis-
fies the constraint, a valid solution has been found. Otherwise,
a backtracking algorithm is required to replace the solution for
one constraint variable and re-evaluate the constraint. At the
end of the backtracking step, either a solution has been found
or the entire design space has been searched without finding
any valid solution.

IV. MIDDLEWARE

We have developed a suite of middleware services on
which our programming model can be implemented. The
middleware provides a layer of network abstraction, shielding
the application programmer from the low-level complexities
of sensor node operation such as resource management and
communication. It gracefully handles the decomposition of
desired application behavior to produce node-level executable
code for an object-centric, service-oriented WSN application.

A. Services

The middleware services, which include a Node Manager,
Service Discovery Protocol, and Composer, provide support
to the object and application services. Figure 3 illustrates the
relationship between our middleware and the sensor network,
while Figure 4 illustrates the relationship between the the
different types of middleware and application services at the
sensor node level.

Fig. 3. Middleware

Fig. 4. Middleware node architecture

The Node Manager is responsible for message routing
between services, both local and remote. The first eight bytes
of any message handled by the Node Manager consist of a
control structure which contains source and destination node

IDs (2 bytes each), source and destination service IDs (1
byte each), and message type (1 byte). The Node Manager
examines the control structure and determines the appropriate
destination for the message. For efficiency, it has short circuit
functionality that allows it to catch outgoing messages bound
for local services and reroute them directly.

Three key types of messages are handled by the Node
Manager. Service discovery messages come from neighboring
nodes inquiring if a specific service is available. The Node
Manager passes these messages to the local Service Discovery
Protocol. An incoming service binding message indicates that
a local service has been registered for use by an object, and
includes information on where to send its output data when
complete. A service access message is a request to run a local
service, and may also contain input data. The Node Manager
invokes the specified service and passes in the data.

The Service Discovery Protocol and Composer are wired
into the Node Manager and function as described in Section
II. Because these two services often operate on the same data,
they share a dedicated channel, allowing them to bypass the
Node Manager when communicating with each other. Dy-
namic service configuration is a relatively energy-intensive op-
eration, due to the number of message transmissions involved
in service discovery and composition. A node performing these
operations will transmit 2S messages, where S is the number
of services in the service graph. Nodes responding to service
discovery requests transmit at most S replies, one for each
service they provide. However, these transmissions only occur
during configuration, and not during service graph execution,
thus power consumption is kept to a minimum.

B. WWW Gateway

In order to take advantage of high-bandwidth Web services,
the sensor network must have access to at least one World
Wide Web Gateway. The Gateway resides on a base station
and provides access to Web services by translating node-based
byte sequence messages to the comparatively bulky XML-
based messages used in most Web service standards.

As such, it is also the job of the Gateway to speak the
language of Web services. When a service discovery message
arrives, the Gateway must locate this service on the Internet.
This is accomplished by using the Universal Description,
Discovery and Integration (UDDI) protocol [8], a Web service
standard used for locating and accessing services. Given the
proper keys, a UDDI inquiry returns the access point for a
specific service as an URL string. Service access is achieved
by means of XML-based SOAP [9] messages. If the service
returns a value, it is also enclosed in a SOAP message. It is
up to the Gateway to compose and parse these various XML
messages and marshal the data appropriately when translating
between the sensor network and the World Wide Web.

To return to our tracking example, suppose we could
improve our localization estimate if we knew the present
wind velocity. However, our sensor nodes are not equipped
to take wind measurements, so instead we rely on an Internet-
based WindVelocity service. The service interface definition
is provided in a Web Service Definition Language (WSDL)
[10] file available on the host. This provides us with the

Service Program memory
(bytes)

Required RAM
(bytes)

Node Manager 4100 330
Service Discovery Protocol 3846 183
Composer 3114 416
GALSC queues & ports 406 582
All 27962 2079

TABLE I
IMPLEMENTATION CODE STATISTICS

information necessary to access the Web service, including
input and output parameters and their data types.

While the tracking application is running on the sensor
network, the Gateway receives a service discovery message
for the WindVelocity service. It receives this message because
one of the nodes in the sensor network is attempting to bind a
service graph requiring this service. If the Gateway does not
already have the WindVelocity service in its cache of recently
accessed services, it makes a UDDI inquiry to a registry at
a known location which returns the WindVelocity accesspoint
URL, if available. The Gateway stores this information, then
responds to the Service Discovery Protocol of the requesting
node that the WindVelocity service is available.

The Gateway may then receive a service binding message,
indicating that the WindVelocity service may be accessed in
the near future. The message contains the IDs of the node
and service to send the wind velocity data. This information
is cached for rapid access in the future.

When the Gateway receives a service access message from
the sensor network, it packages the input data into a SOAP
message and invokes the WindVelocity service. The reply is
parsed using an XML parser and forwarded to the next service
specified in the service binding repository.

C. Implementation

Our middleware was implemented on the Mica2 mote
hardware platform [11] running TinyOS [12]. The code was
developed using galsC [13], a GALS-enabled extension of
nesC [14]. The Gateway application was developed in Java.
Our Web service implementation was realized using a suite of
Apache services [15], including the Tomcat 5.5 web server,
Axis 1.4 SOAP implementation, and jUDDI 0.9rc4, a Java-
based UDDI implementation. In addition, MySQL 5.0 was
used for the UDDI repository.

Table I lists each middleware service, with its code size
and memory requirements. These memory sizes are suitable
for executing applications on the motes, which have approxi-
mately 128 KB of programming memory and 4 KB of RAM.
It should be noted that these components can be optimized
to further reduce memory size, however there is a tradeoff
between an application’s compactness and its robustness.

V. CASE STUDY

Our programming model and middleware allow users who
may not be WSN experts to develop robust sensor network
applications. This permits emergency response teams, for
example, to deploy a chemical cloud or fire tracking appli-
cation on a sensor web. We demonstrate the features of our
programming model and middleware by developing such an
application.

Our setup consists of a simplified indoor sensor network
application for tracking a heat source, as shown in Figure
5. The application takes periodic temperature readings from
thermistor-equipped sensor nodes. Simultaneously, a Web ser-
vice is accessed and the current wind velocity obtained. For
purposes of this experiment, the wind velocity service returns
predetermined values based on the location of the object.
At each iteration, these data are processed by a Localization
service which estimates the position of the heat source. This
estimate is then sent to a Notification service, which reports
the location estimate to the user. The service graph contains
six services, as depicted in Figure 1. We have three instances
of the Temperature-sensor service, and specify that each must
reside on a different node and in a specific spatial configura-
tion. Our Wind-velocity service is a Web service, which we
specify via an atomic onWeb constraint.

The Localization service in this application was imple-
mented using an extended kalman filter (EKF) [16]. The
system state is a vector of heat source coordinates, x = [x y]T .
The measurement vector is the collection of measurements
from three temperature-sensor services. The system model that
we use is represented by the equation,[

xk

yk

]
=

[
xk−1

yk−1

]
+

[
ux

uy

]
+

[
wx

wy

]
(1)

where [xk−1 yk−1]
T is the previous system state, [ux uy]T is

the wind velocity, and [wx wy]T is the process noise with zero
mean and covariance Q. The observation model is given by,

zi
k =

T

||xk − ξi||
+ vi (2)

where, zi
k is the kth measurement at the ith sensor node, ξi

and vi are the location and measurement noise at ith sensor,
and T is a constant. The sensor node measurement noise is
normally distributed with covariance R.

The EKF is initialized with process and measurement noise
covariances Q and R, observation model constant T , and
initial system state estimate x0 and its covariance P0. At
each time-step, the service accepts temperature measurements,
sensor locations, and wind velocity data as input and produces
the estimated source location as output.

Fig. 5. Experimental setup

Operation Response Time
(ms)

Standard Devi-
ation (ms)

Service discovery 4092 113
Service discovery w/o Web ser-
vice

1.4 0.01

Constraint satisfaction 15 0
Service graph execution w/o
Web service

81 13

Web service access 502 65
Localization service access 11 0

TABLE II
OPERATION RESPONSE TIMES

Application performance was evaluated by comparing the
actual heat source trajectory with the tracked trajectory. The
tracking accuracies for cases with and without wind velocity
data (ux = uy = 0) was also measured. Figure 6 (a) and
(b) shows the tracking results for tests with and without wind
velocity data. Figure 6 (c) and (d) shows the tracking results
with varied system and measurement noise parameters.

Message transmissions were kept to a minimum due to
the passive service discovery protocol as well as the service-
oriented architecture itself. Because service messages for this
application are small, only one transmission per message was
required. Service discovery and binding required a total of 14
transmissions, while a complete execution of the service graph
required only six transmissions.

Response times for various operations were also obtained,
and are displayed in Table II. The service discovery response
time is provided with and without the Web service. Addi-
tionally, Web service access is not included in the service
graph execution time, but is provided separately. This is to
illustrate the overhead imposed on the system by adding
Web service capability. It should be noted that our Web
service implementation is not optimized for speed, however the
current service discovery and constraint satisfaction latency is
quite acceptable for performing dynamic service configuration.
Similarly, the current access latency is acceptable for tracking
slower-moving, wide-area phenomena such as chemical clouds
and fire. Applications that require service graph execution at
higher frequencies should not include Web service access in
each iteration.

VI. RELATED WORK

SONGS [1] is a service-oriented programming model, sim-
ilar to ours in many respects. However, unlike our object-
centric approach to driving application behavior, SONGS
dynamically composes a service graph in response to user-
generated queries. While this technique works well as an
information retrieval system, SONGS lacks the ability to alter
its behavior based on a change in environmental conditions.

The object-centric paradigm has been successfully used
in the EnviroSuite [2] programming framework. Envirosuite
provides a high level of network abstraction, however its
modularity can be enhanced by following a service-oriented
approach for adding software components.

Ambient-aware computing [17] is an emergent technology
in which applications are given the ability to interact with their
environment such that all devices and services within a fixed
geographical range are known at all times. However, for sensor

Fig. 6. Tracking results

networks consisting of resource-constrained nodes, commu-
nication with neighboring devices is often costly. Hence a
tradeoff exists between the rate at which a node can update its
understanding of the surrounding environment and the amount
of time the node can run before depleting its power supply.

Bridging a sensornet-based SOA with the Internet has been
realized in the CodeBlue project [18] in which sensors used
for healthcare monitoring are able to relay data to a Web
service. This provides a convenient mechanism for transferring
a patient’s vital signs, obtained through an embedded sensor
device, to a medical records system or monitoring alert center.
CodeBlue’s gateway application is similar to our own, with the
exception that it translates sensor data into the HL7v3 format,
a standard used for communicating medical information.

Dynamic software reconfiguration in sensor networks has
been achieved in [19] by expressing system requirements as
constraints on design space quality-of-service parameters. A
run-time search of the design space is made possible by
situating the reconfiguration controller on a powerful base
station, a strategy which cannot be realized in resource-
constrained sensor nodes such as the motes.

VII. CONCLUSION

We have developed an object-centric, service-oriented pro-
gramming model and middleware for ambient-aware sensor
network applications. Our service-oriented model permits the
composition of any type of dataflow application. Upon de-
tection of an external event, the sensor network instantiates
a unique logical object which then drives the application.
Application functionality is bundled in modular, autonomous
services distributed across the network, and overall behavior
is specified by a service graph. Dynamic service configuration
is employed at run-time to locate and bind these services. This
process involves an efficient search of the design space to en-
sure all constraints have been satisfied. In addition, a Gateway
application, deployed on a base station, permits the sensor
network to discover and access Web services. This capability
provides a substantial benefit to WSN applications, as they are
able to perform computations and access information using
methods unavailable to resource-constrained sensor nodes.

The utility of our programming model was demonstrated
with a simple indoor heat-source tracking application. A
service graph was composed consisting of sensing, Web, and
computational services, and the application deployed. Our
results indicate not only the feasibility of our approach, but the
benefits of using a sensornet-based SOA and dynamic service
configuration as well.

The object-centric behavior of our programming model
can be further developed to respond to the different states
of an object. This can be achieved by implementing the
object as a finite state machine, each mode containing its
own service graph. When the object transitions modes, the
system undergoes dynamic service configuration based on the
specification of the new service graph. Currently, dynamic
service configuration only takes into account services provided
by an object’s one-hop neighbors. Clearly, there is a benefit
to expanding the range to n-hops. However, the actual number
of hops must be chosen carefully in order to minimize power
consumption resulting from increased transmissions.

REFERENCES

[1] J. Liu and F. Zhao, “Towards semantic services for sensor-rich informa-
tion systems,” in Basenets, 2005.

[2] L. Luo, T. Abdelzaher, T. He, and J. Stankovic, “Envirosuite: An
environmentally immersive programming system for sensor networks,”
in TECS, 2006.

[3] Web Services Architecture. [Online]. Available:
http://www.w3.org/TR/ws-arch/

[4] E. Cheong, J. Liebman, J. Liu, and F. Zhao, “Tinygals: a programming
model for event-driven embedded systems,” in SAC, 2003.

[5] P. Engelstad and Y. Zheng, “Evaluation of service discovery architectures
for mobile ad hoc networks,” in WONS, 2005.

[6] J.-C. Regin, “A filtering algorithm for constraints of difference in CSPs,”
in AAAI, 1994.

[7] L. J. Guibas, “Sensing, tracking, and reasoning with relations,” in IEEE
Signal Processing Magazine, March 2002.

[8] Universal Description, Discovery, and Integration. [Online]. Available:
http://www.uddi.org

[9] SOAP. [Online]. Available: http://www.w3.org/TR/soap/
[10] Web Service Description Language. [Online]. Available:

http://www.w3.org/TR/wsdl/
[11] U.C. Berkeley. [Online]. Available:

http://www.tinyos.net/scoop/special/hardware#mica2
[12] P. Levis, S. Madden, D. Gay, J. Polastre, R. Szewczyk, A. Woo,

E. Brewer, and D. Culler, “The emergence of networking abstractions
and techniques in tinyos,” in NSDI, 2004.

[13] E. Cheong and J. Liu, “galsc: A language for event-driven embedded
systems,” in DATE, 2005.

[14] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler,
“The nesc language: A holistic approach to networked embedded
systems,” in PLDI, 2003.

[15] Apache Web Services. [Online]. Available: http://ws.apache.org/
[16] G. Welch and G. Bishop, “An introduction to the kalman filter,” Depart-

ment of Computer Science, University of North Carolina at Chapel Hill,
Tech. Rep. TR 95-041, 2004.

[17] J. Dedecker, T. V. Cutsem, S. Mostinckx, T. D’Hondt, and W. D. Meuter,
“Ambient-oriented programming,” in OOPSLA, 2005.

[18] S. Baird, S. Dawson-Haggerty, D. Myung, M. Gaynor, M. Welsh, and
S. Moulton, “Communicating data from wireless sensor networks using
the hl7v3 standard,” in BSN, 2006.

[19] S. Kogekar, S. Neema, B. Eames, X. Koutsoukos, A. Ledeczi, and
M. Maroti, “Constraint-guided dynamic reconfiguration in sensor net-
works,” in IPSN, 2004.

