

ISIS Tech Report: ISIS-99-01 Page 1 of 1

__

Institute

 for
Software-Integrated Systems

Technical Report

__

TR #: ISIS-99-01

Title: Model-Integrated Tools for the Design of

Dynamically Reconfigurable Systems

Authors: Ted Bapty, Sandeep Neema, Jason Scott, Janos

Sztipanovits, Sameh Asaad

ISIS Tech Report: ISIS-99-01 Page 2 of 2

Abstract

Several classes of modern applications are demanding very high performance from
systems with minimal resources. These applications must also be flexible to operate in a
rapidly changing environment. High performance with limited resources needs
application-specific architectures, while flexibility requires adaptation capabilities.
Reconfigurable computing devices promise to meet both needs. While these devices are
currently available, the issue of how to design these systems is unresolved.

This paper describes an environment for design capture, analysis and synthesis of
dynamically adaptive computing applications. The representation methodology is
captured in a Domain-Specific, Model-Integrated Computing framework. Formal
analysis tools are integrated into the design flow to analyze the design space to produce a
constrained set of solutions. HW/SW Co-simulations verify the function of the system
prior to implementation. Finally, a set of hardware and software subsystems are
synthesized to implement the multi-modal, dynamically adaptive application. The
application executes under a runtime environment, which supports common execution
semantics across software and hardware. An application example is presented.

KEYWORDS

Reconfigurable Computing, FPGA, HW/SW Co-design, HW/SW Synthesis, FPGA,
HW/SW Co-simulation, Dynamic Reconfiguration, Design Environment, Model-
Integrated Computing.

ACKNOWLEDGEMENTS

This work has been supported by DARPA/ITO under project DABT63-97-C-0020

ISIS Tech Report: ISIS-99-01 Page 3 of 3

INTRODUCTION

Modern high-performance embedded systems, such as Automatic Target Recognition for
Missiles or Dynamic Protocols Mobile Communications devices, face many challenges.
Power and volume constraints limit hardware size. Accurate, high-performance
algorithms involve massive computations. Systems must respond to demanding real-time
specifications. In the past, custom application-specific architectures have been used to
satisfy these demands.

This implementation approach, while effective, is expensive and relatively inflexible. As
the world demands flexible, agile systems, the hardwired application-specific
architectures fail to meet requirements and become expensive to evolve and maintain. As
new algorithms are developed and new hardware components become available, a fixed,
application specific architecture will require significant redesign to assimilate the
technologies.

Flexible systems must function in rapidly changing environments, resulting in multiple
modes of operation. On the other hand, efficient hardware architectures must match
algorithms to maximize performance and minimize resources. Structurally adaptive,
reconfigurable architectures can meet both these needs, achieving high performance with
changing algorithms. Reconfigurable computing devices, such as Field Programmable
Gate Arrays allow the implementation of architectures that change in response to the
changing environment.

The field of Reconfigurable Computing is rapidly advancing for scientific and Digital
Signal Processing applications [1][2][3]. While today’s Field Programmable Gate Array
technology shows great promise for implementing reconfigurable computational systems,
their capabilities in certain areas (such as floating point arithmetic) cannot equal other
technologies. For this reason, efficient system architectures must encompass a
heterogeneous mix of the best technologies. The target systems are built on a
heterogeneous computing platform: including configurable hardware, ASIC and general-
purpose processors and DSPs.

The primary difficulty in this approach lies in system design. A designer must now
maintain a set of diverse system architectures, which exist at different times in the
system’s lifetime, and map these architectures onto the same group of resources. The
designers must manage the behavior of the system, determining the operational modes of
the system, the rules for transitioning between operational modes, and the functional
properties within each operational mode. In addition, the system must make efficient use
of the resources, enabling the designer to minimize the envelope of hardware required to
support the union of all operational modes. Current system design tools are insufficient to
manage this complexity.

ISIS Tech Report: ISIS-99-01 Page 4 of 4

High-level design tools are being developed to capture designs and to generate functional
systems as part of the DARPA Adaptive Computing Systems Program. This paper
describes a model-integrated approach to be used in the development of reconfigurable
systems. There are many significant issues in the development process. The approach
described here divides these issues into several categories: (1) Representation and
Capture of design information in terms of Models; (2) Analysis of the models for
design/requirements/resource trade-off studies; (3) Synthesis of architectures and
executable systems directly from the models; and (4) Runtime support environments to
support efficient execution of the synthesized reconfigurable systems.

The Model-Integrated Computing (MIC) approach has been successfully applied to a
diverse set of applications ([4][5][6][7][8][9]). The general MIC approach involves
creating a development environment that is customized for a specific application domain.
The resultant development environment is a multiple-aspect graphical editor that directly
supports the engineering concepts required in the development process. Where several
engineering disciplines are involved in system development (e.g. Software, Hardware,
DSP algorithms, Systems Requirement Specification, etc.), the multiple-aspect nature of
the approach allows different aspects to be customized for individual disciplines. The
graphical editor allows construction of system Models, which capture the specifications
and components required along with their relationships. The Models form a database of
design information that can then be used in system analysis, trade-off studies, and
performance estimation/simulation. These same Models are used to synthesize the
executing systems. The synthesis process assumes a runtime environment that hides the
low-level hardware/software details from the synthesis process..

This paper attempts a logical progression in describing the Model-Integrated Computing
approach for adaptive systems design. The first section will describe the rationale and
implementation of the design capture approach. The next section will give an overview
of the current and planned analysis capabilities for design-space exploration. The
following sections will describe the system synthesis process and the runtime
environment architecture and implementation. Finally, we will show the implementation
of a missile Automatic Target Recognition application incorporating adaptive system
behavior.

DESIGN REPRESENTATION

The customization of the Model-Integrated Computing design environment involves a
careful analysis of the needs of the design engineers, the methods and components used
in the designs, and the target systems. For an environment to successfully support the
creation of systems, the concepts used by designers must be faithfully reproduced by the
design environment. This section will describe the concepts developed in the creation of
the Adaptive Computing Systems MIC environment.

ISIS Tech Report: ISIS-99-01 Page 5 of 5

The Adaptive Computing Systems (ACS) environment divides the design process into
four major categories:
1. Behavioral Modeling: In this first category, the operational adaptive behavior is

defined. The designer can specify the operating modes of the system, the legal
transitions between modes (and the conditions for transition), and the
specifications for system operation while in each operating mode.

2. Algorithm/Structural Modeling: In this category, potential algorithms are
described. The algorithms define signal flow specifications to compute required
system outputs.

3. Resource Modeling: The resource models describe the hardware available for
construction of the system. This consists of physical processors, devices, and the
interconnection topology.

4. Constraint Specification: These modeling categories are augmented and linked
together with a Constraint framework. The Constraints allow user-defined
interactions to be specified, establishing linkages between properties in one
category and objects in the same or another category.

Behavioral Models

Behavioral models capture the operational modes of the system and the potential
interactions between these modes (Figure DR1). Since the system will be operating in
discrete modes, with specific transitions between these modes, a familiar, well
understood representation was chosen. The representation is a Discrete Finite State
Machine.[10] States define operational modes of the system. Transitions define the
potential conditions required for the system to change modes and the end-state of the
mode-shift. In order to manage system complexity, where the system may have many
potential operational modes, a Hierarchical description was chosen.

ISIS Tech Report: ISIS-99-01 Page 6 of 6

Mode A Mode B

Mode C

Transition
Rules

Transition
Rules

Transition
Rules

Figure DR1: Behavioral Model

The event expression that can trigger a mode change is defined by the transition rules. A
transition rule is a Boolean equation composed of event variables. When this expression
is satisfied the transition from one mode to another is enabled and system reconfiguration
is to take place. The event variables are computed in the Algorithmic/Structural
modeling view described below. These can be directly sampled external signals or
complex computational results.

The behavioral modeling aspect is linked to the Algorithmic/Structural aspect by the
means of References. A Reference is a modeling “trick” that allows the user to establish
a pointer from the mode to a defined computational algorithm. Each mode references a
model in the Structural Aspect that defines the processing algorithm that is to be
operational in that mode. The references allow a single algorithm to be applied to any
number of system states, or allow all states to have separate processing structures.

The behavioral modeling aspect also allows the specification of real-time requirements
and maximal runtime power usage. Maximal permitted system delays can be specified
for any pair of input and output ports on the structural model. The power characteristics
are specified using attributes of the models, in which the designer can enter a maximum
allowable power limit. In effect, the Behavioral Models capture the system performance
requirements.

Algorithm/Structural Models
The structural modeling aspect is used to describe the processing algorithm structure.
The basic algorithm is described in terms of computational components and data
interactions. To manage system complexity, the concept of hierarchy is used to structure
algorithm definition. This logical composition of systems using component subsystems
has proven effective design structuring for very large, complex systems.

ISIS Tech Report: ISIS-99-01 Page 7 of 7

The algorithm is modeled as a dataflow structure with the following classes of objects:
compounds, primitives, and templates. The relationship between these objects is shown in
Figure DR2. A primitive is a basic element representing the lowest level of processing
that is modeled. A primitive maps directly to a processing object that will be
implemented as either a hardware function or a software function. Primitive objects are
annotated with attributes. These attributes capture measured performance, resource
(memory) requirements, and other user-defined properties.

Compound

Compound

Software

Hardware

Compound

Primitive Template

Primitive

Primitive

Template

Compound Primitive

Primitive

Compound

Compound

Primitive

Primitive

PrimitiveCompound

Object Hierarchy Example Model

Figure DR2: Compound/Primitive/Template structure

 A compound is an aggregation object that may contain primitives, other compounds,
and/or templates. These components can be connected within the compound to define the
information dataflow. Compounds provide the hierarchy in the structural description that
is necessary for managing the complexity of large designs.

A design alternative object is used in the modeling process to allow the specification of
multiple algorithm architecture alternatives for a given task. The Template/Alternative
object is used to capture the design alternatives. This object represents a choice between
multiple design architectures. These design alternatives can be either Compounds or
Primitives, allowing hierarchies of design alternatives.

When alternatives are used, the algorithm structural models describe a huge number of
potential design implementations. The large design space gives environment the freedom
to search for and select an implementation that meets the specified requirements and fits
within available resources.

In signal processing, many types of tasks can be accomplished in multiple ways, for

ISIS Tech Report: ISIS-99-01 Page 8 of 8

example in the spatial or the spectral domain. Both approaches will achieve the same
basic results but with vastly different algorithm designs. Other algorithm characteristics
can vary as well, such as latency and/or accuracy. In the spatial domain a filtering
function can be achieved by performing a standard mathematical convolution. In the
frequency domain, the function is achieved by performing a FFT, followed by a
multiplication with the spectral representation of the filter, followed by an inverse FFT.
In this case, the spectral method is more efficient as the filter order increases, resulting in
a faster, smaller system. On the other hand, since the FFT is a block-based computation,
the latency is at least a block-length.

Algorithm alternatives allow the model of the system to capture design possibilities. Each
of these alternative methods has different performance attributes and different hardware
requirements. The selection of the best alternative depends not only on the hardware that
is available, but also on whether the hardware is to be time-shared, and what hardware is
already allocated to support the processing algorithms that are required for operations in
different modes.

For the high-level designer, algorithm alternatives allow a virtual separation of algorithm
from implementation. Typical algorithm design requires the engineer/physicist to
consider the hardware details of the underlying architecture to achieve an efficient
implementation. The ultimate effect is that the resulting algorithm reflects the hardware
structure. This practice leads to highly non-portable, technology-specific designs.
System upgrades to use more modern technology require a bottom-to-top redesign.
Algorithm alternatives promise to separate the algorithm from the architecture, to
postpone the implementation decisions to a much later step in the design process. This
approach should greatly simplify technology migration efforts.

Another use of templates is to model multiple physical technology implementation
alternatives, i.e. different ways a processing function may be implemented in the
architecture. For example, a convolution can be computed in software running on a DSP,
in software running on a network of multiple DSP’s, in a hardware function in a FPGA,
or in a dedicated ASIC solution. The selection of the desired implementation technology
is determined in the synthesis process, driven by power consumption, throughput,
latency, specific part availability, and other architectural interactions.

Resource Models

The resource aspect defines the hardware platform available for the target application.
The target hardware platform is modeled in terms of hardware components and the
physical connections among them. The relationships among the resource model
components are shown in figure DR3.

ISIS Tech Report: ISIS-99-01 Page 9 of 9

Processor

Network

Ports

ASIC

Core PortsCore

FPGA

Ports

Object
Hierarchy

Example
Model

Network

Processor

Processor

Processor

FPGA FPGA

ASIC

Figure DR3: Resource Model

The top-level hardware system is a Network of components. Network components are
either processor elements (such as DSPs or standard RISC/CISC processors),
programmable logic components (such as FPGAs), or dedicated hardware ASIC
components for fixed functions (such as FFT computation). Data Sources and Data Sinks
capture the specifics of hardware I/O interfaces and data acquisition/effector interfaces.

The components are constructed using cores and ports. Every processing element must
contain one core. The core object captures the inherent performance attributes of the
processing element such as clock speed, memory, and other resources. (The core
represents the processing element). A port represents a physical communication channel.
Ports have associated protocols and specific pin assignments, representing physical
connection points on a chip. Connections between processing elements are created by
connections between ports. The connections capture the “as-built” topology of the
physical implementation.

Constraint Specification
System constraint specifications have four categories of design constraints: (a)
operational constraints, (b) composability constraints, (c) resource constraints, and (d)
performance constraints to establishing linkages between properties in different modeling
categories.

Operational constraints express conditions relating design configurations to operational
modes. These constraints are applied within the Behavioral models. Composability
constraints are logic expressions that restrict the composition of alternative processing
blocks (eg. FFT-HW can be used with IFFT-HW). Resource constraints are logic

ISIS Tech Report: ISIS-99-01 Page 10 of 10

expressions describing the selection of processing blocks based on resource limitations.
Performance constraints are integer constraint expressions limiting the end-to-end
latency, power and space. The performance constraints are implicit in the properties of
Behavioral models. These constraints allow the designer to control the potential design
space for the analysis/synthesis process.

MODEL ANALYSIS

The end-product of the design process described above is a design space consisting of
modes & requirements, potential implementations, and resource sets. The task of the
designer is to select appropriate combinations of implementations and resource
assignments for all of the desired operational modes. Given the flexibility in defining
design alternatives, this space can be extremely large (moderately sized design examples
have defined a space of 1024th). It is unreasonable to assume that a designer can handle
such a large design space without sufficient tools. The set of design solutions must be
evaluated to find a set of designs (mode configurations) that best satisfy a number of
design criteria. There are inherently a large number of conflicting design criteria in
reconfigurable systems. Each mode has performance requirements that demand a certain
level of performance from the hardware for a given algorithm. The processing needs of
each of the system modes must be satisfied with a single shared hardware platform. The
analysis tools must allow efficient exploration, navigation, and pruning of this space to
select feasible hardware/software architectures for user-definable cost functions such as
weight, power, algorithmic accuracy and flexibility. Given the size of the design space,
and the complexity of the analysis, a powerful analytical method is required.

Constraint Satisfaction using Symbolic Methods
The approach we have taken is to use symbolic methods based on Ordered Binary
Decision Diagrams to represent, navigate and prune the design space. In a symbolic
representation, sets/spaces are represented as a boolean expression over the members of
the set. The members of the set are encoded as binary variables under a binary encoding
scheme. The principal benefit of the approach is that it does not require enumeration of
the set/space to perform operations. Ordered Binary Decision Diagrams [11][12] are a
canonical representation of logic functions, representing boolean functions as directed
acyclic graph in a memory-efficient format. The operations over the boolean functions
are implemented as graph algorithms rendering “manipulation” of the space fast and
efficient.

With this symbolic formalism, the application of logical constraints is relatively
straightforward. The user-defined logical constraints can be represented as a boolean
expression over the components of the design space. . Constraint application is then just
conjunction of the constraint boolean expression with the boolean expression that
represents the design space. The resultant boolean expression represents the
“constrained” design space. Application of the integer arithmetic constraints such as

ISIS Tech Report: ISIS-99-01 Page 11 of 11

timing and power constraints is not so straightforward (see [15] for details). However the
basic approach remains the same.

The constraints “prune” the design space due to the requirements specified in the
constraint. These constraints can be iteratively applied to the design space, with the goal
of reducing the “1024th” to a more manageable 10-1000 design alternatives. We have
implemented the approach described above in a design space management tool (Figure
MA1) that allows solving these constraints in an iterative manner. The design engineers
can apply the constraints and visualize the sensitivity of the design space to the
constraint. If the constraint is extremely tight it can be released and other constraints can
be applied instead. Finally when the design engineer is satisfied with the remaining
design choices after constraining the design space he can move to the next step of
simulation.

FIGURE MA1: CONSTRAINT MANAGEMENT TOOL

HW/SW Co-Simulation
The constraints encode the behavior of the system with a relatively high level of
granularity. While this is necessary to work within the tremendously large design spaces,
the accuracy of this approach will be poor. The designer will be required to “give the
benefit of the doubt” to designs that are near the fringes of the constraint envelope. To
establish a more accurate estimate of in-system performance, a simulator is required.
Since the target of the tool is hardware and software, the simulator must support co-
simulation.

While this research is still at its early phases, the current approach is to allow the system
designer to perform co-simulation at three levels of abstraction for trade-off between
execution speed and accuracy of results, namely the performance level, the algorithm
level and the gate/instruction level. This will enable the designer to quickly “zoom-in” on

ISIS Tech Report: ISIS-99-01 Page 12 of 12

the more viable design alternatives and perform more accurate simulations only on this
subset.

An important aspect of the co-simulation environment is the seamless integration with the
rest of the system. Information used to automatically construct the simulation testbench at
various levels is directly extracted from the model database to ensure consistency among
various levels of detail. Different levels of simulations will utilize different, possibly
overlapping subsets of the model database. On the other hand, output from the simulation
is interpreted and fed back in a high level form to the user in the same design
environment.

At the performance level, only the performance of the structural model is simulated. In
other words, performance attributes, such as latency and throughput, associated with
processing primitives are used to construct a network of delay models for the system.
Data flow is abstracted out at this level and represented by tokens for faster simulation
via packages such as PML[13][16]. No distinction of hardware versus software
implementation is made at this level, except for the relatively longer delays associated
with software realizations. The output of this step will be an overall performance
assessment of the proposed algorithm as well as flagging the critical components or hot
spots of the system.

At the algorithm level, the functional computation itself is simulated but without low-
level timing details so that the user can quickly verify the correct functionality of the
system. Hardware functions are described in VHDL and software functions are described
in C and encapsulated in a VHDL-wrapper entity. A commercial VHDL simulator
equipped with a foreign language interface will be the target for mapping.

The lowest level of abstraction is the gate/instruction level co-simulation. At this level, a
HW/SW co-simulation environment is constructed that models the system platform as
described in the resource models of section 1. VHDL simulation models will be used to
describe hardware components such as ASICs and FPGAs. Processor models can range
from full functional models that mimic the internal architecture of the processor to simple
bus functional models that only describe the interaction of the processors with external
components but do not mimic the internal architecture [17]. The former is usually too
expensive in terms of execution speed and also difficult to construct from scratch for
complex processors. The latter approach is more suitable for debugging the hardware
portion but not well suited for viewing software execution. An intermediate approach is
to use an instruction set simulator (ISS) coupled with a bus functional model (BFM) to
model the processor, such as described in [18]. The ISS will be used to simulate software
execution while the BFM will mimic the interaction with the external circuitry.
Synchronization techniques between the ISS and the BFM are needed to keep the
simulation realistic.

ISIS Tech Report: ISIS-99-01 Page 13 of 13

SYSTEM SYNTHESIS

The tools capture system requirements, design information and alternatives, and the
resources available for system implementation in the form of Models. The constraints
developed during the Model Analysis phase, when applied to the design space, define a
manageable set of implementation alternatives. Expected performance is estimated using
the Co-Simulation tools, providing further assurance that the system will function to
design specifications. The selected design alternatives must now be transformed to
software and hardware for system implementation. We refer to this process as model
interpretation.

A model interpretation process generates hardware architecture specifications, software
modules, process/schedule tables, communications maps, synthesizable hardware
specifications, and a run-time Configuration Manger for dynamic adaptation to changing
environments. The synthesis process attempts to optimize hardware/software
architectures for user-definable cost functions such as weight, power, algorithmic
accuracy and flexibility.

The first phase in the optimization process is the successive application of incrementally
tighter design constraints. The symbolic constraint satisfaction method described in the
Design Analysis section is used to provide an initial pruning of the design space.

The design search will continue to narrow down possibilities through multi-resolution
simulation of the system. Components will have associated performance models that can
be used to compute performance data of the system configuration being evaluated such as
communication utilization, processor utilization, etc. Finally the searching process has
narrowed the design space down to only a few candidate configurations per system
operational mode.

Configuration Manager Synthesis
At this point, the synthesis procedure can generate the actual runtime artifacts. From the
behavioral models, a set of tables is produced for the Configuration Manager. The state-
based behavior is defined in the Behavior Models. These models are transformed into a
compact state table. The table contains next state equations for each operational mode.
The interfaces to internal and external events are generated to provide the state transition
variables to the state machine. These tables and variable interfaces are executed directly
by the configuration manager.

Hardware Synthesis
For each configurable component (FPGA), a design specification is generated. This
design specification includes a hardware design file for each component for each mode.

ISIS Tech Report: ISIS-99-01 Page 14 of 14

The design for a component*mode is specified in structural VHDL. The VHDL design
incorporates computational components from the design library, which can contain user-
defined VHDL behavioral descriptions and vendor-supplied Intellectual Property (IP)
modules. These modules are glued together using components from a standard interface
runtime library, which is part of the Runtime Environment described later. These
interfaces connect computational components on the same chip with simple FIFO’s and
asynchronous handshaking interfaces. When the communication must occur across chip
boundaries, or to software components, a set of more complex interface components are
used. These interface components manage the physical hardware resources (pins and
wires), buffer data, and multiplex multiple logical communications across a single set of
wires. Where required, data format conversions are supplied.

These VHDL files are then compiled using vendor-supplied/COTS VHDL compilers and
part-specific Place-and-Route tools. The result is a set of “bitfiles”. One bitfile is
generated for each reconfigurable hardware device for each mode. Given the current
state of the FPGA market, demand has not yet forced the vendors to provide partially
reconfigurable devices and support tools. For this reason, we treat each FPGA as an
atomic part, configurable only with a full device reset. The approach proposed here will
work for partial reconfigurable devices by treating a single device as multiple logical
devices. In order for this to work, the vendor tools must provide methods for floor
planning to restrict logical design components (i.e. all components within a single mode)
to non-overlapping, regions that coincide with legal chip reconfiguration boundaries.

Software Synthesis
For the general-purpose RISC/DSP components, a set of software specifications is
generated. These specifications provide the information needed by the Runtime
Environment to enact the desired computational behavior. The Runtime Environment
requires several categories of design files:
• Software Load Modules contain executable modules that are downloaded to the

processors in the system. The system can generate a common load module that
contains the superset of all executable functions (if memory is sufficient) or it will
generate a customized module for each of the processors in the system. The
customized module is clearly more memory-efficient.

• Real-time schedules contain the list of processes and their priorities. A unique
schedule is generated for each processor and for each mode of operation.

• Communication maps describe the information flow between processes. These
“streams” can perform communication between two modules on the same processor,
or they can transport data across the network, through intermediate processors, and to
a remote process anywhere in the system.

Interfaces between software modules and hardware modules/data sources/sinks are
automatically inserted during the synthesis process. These interfaces perform the “care-
and-feeding” of hardware interfaces, converting complex communication protocols into
simpler hardware compatible protocols. The interfaces also multiplex multiple logical
streams over a single physical port and perform data conversion functions.

ISIS Tech Report: ISIS-99-01 Page 15 of 15

These design files are processed into a set of object modules and tables for inclusion in
the configuration manager and for direct download into the parallel array of processors.

The result of the synthesis and post processing is a complete executable system, ready for
deployment. The deployment is performed in concert with the Runtime Environment.

RUNTIME ENVIRONMENT

The runtime environment must support implementation platforms with the following
attributes:
• Heterogeneity: Optimizing the architecture for performance, size, and power requires

that the most appropriate implementation techniques be used. Implementations will
require software (implemented on RISC and DSP processors), configurable hardware
on FPGAs, and a mix of ASIC components.

• Low Overhead/High Performance: the runtime environment must minimize overhead,
since overhead results in extra hardware requirements.

• Hard Real-Time: The target systems have significant real-time constraints.
• Reconfiguration: The execution environment must allow hardware and software

resources to be reallocated dynamically. During reconfiguration, the application data
must remain consistent and real-time constraints must be satisfied.

These issues must be addressed at multiple levels. At the lowest level, the hardware must
be capable of reconfiguration. Software-programmable components, such as DSP’s and
RISC processors, have excellent inherent hardware support for reconfiguration, since
software has the ability to change system function by changing memory contents.
Internal CPU hardware structures are designed to restrict dangerous conditions that could
damage hardware. FPGA’s are an unrestricted collection of gates, switches, and
connectors. The safeguards built into CPU’s do not exist and must be enforced manually.
This protection must be provided by a cooperation of the design process and the runtime
infrastructure.

At a slightly higher level, the internal state of software must be managed under changing
tasking. Modern operating systems have evolved to support the flexible implementation
of multiple tasks, with dynamic addition and removal of tasks on a single processor in the
form of time-sharing and/or multitasking, and Real-time kernels allow time critical tasks
to be dynamically scheduled on a single processor. These kernels typically do not
address the consistency of dynamic reconfiguration for distributed networks of tasks.
Finally the issues of application-specific requirements must be addressed, to allow the
peculiar requirements of specific numerical performance and timing to be achieved in an
implementation. Potential solutions to these issues with consistency are addressed in the
next section.

ISIS Tech Report: ISIS-99-01 Page 16 of 16

Hardware/System Consistency

The runtime system must avoid operational defects during a reconfiguration event.
Hardware consistency can have many negative effects, from temporary loss of
performance in an operational mode to hardware damage and total, permanent system
malfunction. Typically, these deal with specific issues involving interfaces between
hardware processes and/or devices. Some of these defects are illustrated in figure RE1.

Hardware Consistency After Reconfig

Token Loss/DuplicationPort Contention

Device State Maintenance

Device Controller

Figure RE1: Hardware Reconfiguration Problems: Maintaining Consistency

Port contention occurs when bi-directional ports are improperly initialized, a
reconfiguration event is not properly sequenced/synchronized, or if an
improper/inconsistent design is implemented. In this case, two connected drivers are
enabled. If resistance is sufficiently low, permanent physical damage can occur to the
circuits.

Token loss or duplication results from incorrect initialization or a loss of communication
integrity. Tokens represent the status of empty or full slots in a communication interface.
An extra token on the sender side can cause too much data to be sent, resulting in a FIFO
overrun. A lost token can effectively block a communication port, resulting in a system
deadlock.

Device state maintenance refers to the control of a complex external hardware device,
such as an attached processor or storage device. In controlling an external device, the
controlling computational component must maintain an accurate representation of the
device’s state. If a reconfiguration occurs during a state transition within the device, or if
the reconfiguration modifies the computational component’s representation of the device,
there can be a state mismatch. This can result in improper commands being sent to the
device, or in a deadlock where both components are waiting on each other for triggering
events.

ISIS Tech Report: ISIS-99-01 Page 17 of 17

These three examples show some of the potential hazards that can occur when the
hardware device is improperly reconfigured. Runtime reconfiguration support must not
permit any of these conditions to occur.

Software/OS Consistency

Software issues can present a larger challenge to dynamic system reconfiguration. While
the hardware built into standard microprocessor devices protects against low-level
hardware conflicts, there are many more details that must be managed. Figure RE2
below summarizes some of the potential problems from an improper reconfiguration.

Software/OS Consistency on Reconfig

Proc
B

mem

Proc
A

mem

Proc
C

mem

Msg

Reconfig

Proc
B

mem

Proc
A’

mem

Proc
C’

mem
Msg

Lost

Orphan

Leak

mem

Figure RE2: Software/OS Reconfiguration Problems: Maintaining Consistency
The example shows an initial configuration of 3 processes (A, B, and C) in the normal
operational state. A reconfiguration occurs, changing to a new configuration. The new
configuration replaces these process A with A’, C with C’ and removes Process B
altogether. The bottom half of the figure shows the new configuration, along with the
potential errors.

Memory leaks will adversely affect long-term reliability. Task structure mismanagement
results in extra tasks executed by the kernel, with a loss in performance. Messages in
transit can be delivered when the receiving process no longer exists, resulting in mis-
matched messages and channel errors.

Application-Level Consistency

At a higher level, the application’s requirements and implementation details impose

ISIS Tech Report: ISIS-99-01 Page 18 of 18

restrictions in the reconfiguration process. Typically, these attributes are highly
application-specific. Two examples of consistency requirements are displayed in Figure
RE3 below.
1. An external system may require signal output continuity and/or continuous first

derivative properties. In the example, which swaps filters online, the new filter is
operating out of sync with the original filter. A rapid switchover will create a
discontinuity in both the signal and its first derivative.

2. The system can fail to maintain real-time constraints during reconfiguration. If the
reconfiguration cannot be completed in sufficient time, deadlines will be sacrificed.
In addition, the timebase can be shifted, resulting in a skew in system output period.

Orig
Filter

New
Filter

Init
Reconfig

Reconfig
Event

Orig
Proc

New
Proc

T1 T2 T3 T4 T2’

Reconfiguration

T3’

Missed Deadlines Period Skew
Figure RE3: Maintaining Application Consistency Through Reconfiguration

Runtime Reconfiguration Strategies
 It is clear that reconfiguration support must be built into the design approach, from the
lowest levels of the execution environment, to the high-level design/requirements capture
tools. The extent of support is defined by the requirements of the target systems. The
driving factors include how fast the system must reconfigure, whether intermediate states
must be preserved (Application Signal Continuity), and if timing must be preserved. We
now examine the potential reconfiguration strategies and their impact on system
capabilities.

Reboot Strategy
The simplest reconfiguration strategy is termed the “Reboot” approach. It involves the
orderly shutdown of tasks, bringing the system to a known, clean state. From this state, a
new processing structure is constructed (Figure RE4). The implementation for this
approach is simple, requiring the minimum amount of non-standard support from the
execution environment and there is no need for additional processing capability for
overlapping modes.

ISIS Tech Report: ISIS-99-01 Page 19 of 19

Config
A

Empty
Config

Config
B

S(A) S(NULL) S(B)
Figure RE4: Reconfiguration Strategies – “Reboot” Approach

The drawbacks of this approach are severe. The system is offline during the
reconfiguration time. No events can be handled, so a system under control is open-loop
during that time. There is no provision for preservation of state. This can lead to long
recovery times when the new configuration is started. Both of these factors lead to
system application transients, both timing and signal continuity. This approach is not
suited for the majority of embedded, closed-loop systems.

State Transition Approach
The second approach allows the insertion of transitory states between the major system
operating modes (Figure RE5). These states allow the system to take smaller steps
between operational modes to approximate a continuous-time transition, resulting in
smaller transients. The intermediate configurations inherit state from their predecessors.
The intermediate algorithms must be designed to gradually shift system behavior. While
not continuous, the steps can be made arbitrarily small.

Config
A

Config
A

Config
BConfig

B

S(A) S(A’) || S(B’) S(B)
Figure RE5: Reconfiguration Strategies – State Transition Approach

This approach has several positive aspects. The state preservation allows transients to be
minimized. The magnitude of the steps can be chosen by the designer to minimize key
application behaviors. Few spare resources are needed, since the system is operating in
only one mode at a time. The flexibility is limited only by the designers and by the time
available for the transition.
There are several difficulties in this approach: The execution infrastructure must support
the rapid transition of processes and transition of the states of the changing processes.
The states must be mapped to the structures required by the next step, and installed with
the new processing structure. The computation of the mapping may be complex.
The design of intermediate states can be complex, depending on the application. These
transitory states depend both on the initial state and the final state, the algorithm
characteristics, and the timing requirements. For smooth application transitions, many
intermediate states may be required, leading to long transition times. (It should be noted
that the application system is still under control during transition, but probably not the

ISIS Tech Report: ISIS-99-01 Page 20 of 20

optimal algorithm.)

Parallel State Transition Approach
An extension of the State Transition approach allows the system to execute several
modes in parallel. This has the same benefits as the state transition approach with the
added benefit of being able to execute algorithms prior to use, in an offline mode. The
state of the offline process can be allowed to stabilize prior to impacting upon system
performance. When transients have disappeared, the system can be transitioned to the
new state (Figure RE6).

Config
A

Config
A’

Config
B’

Config
B

S(A) S(A’) S(B’) S(B)
Figure RE6: Reconfiguration Strategies – “Parallel Execution” Approach
This approach has several benefits. The application-level transients can be minimized by
proper design. The downtime is minimal, as is the operation of the system in a less-than-
optimal configuration. Multiple states can be preserved, not forcing all information to be
encoded in one format. This minimizes the impact of the design of one mode on another,
thus simplifying design.
There are also several drawbacks. The underlying runtime environment must support
mechanisms for rapid stepping between processes, the ability to execute multiple threads
simultaneously, and the combination of attributes from the parallel executing processes.
System design is complicated by the need to design parallel structures. (In some cases,
the parallel approach allows design separability, simplifying matters.) The necessary
computational resources are increased, due to the need to execute multiple parallel
processes.
Given the difficulties of implementation, the capabilities of this approach are required to
service many reconfigurable application domains.

Execution Environment Design
The previous sections assembled a set of requirements for the execution environment.
They also point out some of the design complexities. Working alone, the execution
environment cannot solve these problems. The overall system design approach must
span from the top-level algorithm designers/system requirement & resource
specifications down to the hardware/software implementations. The top-level design
issues have been discussed in terms of a domain-specific modeling environment, where
the environment is tuned to reconfigurable system design. The Execution Environment
forms the infrastructure onto which these designs are projected.

The Execution Environment must be designed with an interface suitable for synthesis
from a MIC-Generator approach. The concepts, properties and interfaces of the runtime
environment must be compatible with the design representation and synthesis approach.
Capabilities and interfaces should be tuned to simplify the generator. This requirement
demands a simple, uniform interface with a well-defined, consistent set of semantics that

ISIS Tech Report: ISIS-99-01 Page 21 of 21

apply throughout the system. Since the system includes software, hardware, and
interactions between parallel modules, a common structure must map to a wide range of
components.

The execution environment concepts have been driven by results from using tools
developed over the past several years. These tools are currently used to construct large-
scale, parallel, real-time signal processing systems. The runtime environment enabled
development of CADDMAS systems, which are used by the USAF for turbine engine
testing and NASA for SSME monitoring and analysis [4][14].

The semantics of the execution environment implement a large-grain-dataflow
architecture. The Worker Function captures the tasks that are performed by the system.
Communication nodes capture the transfer of data between workers. Computations can
be described as a bipartite graph, where workers connect to Comm nodes, and Comm
nodes connect to workers. At this level, there are no implied semantics of the workers.
The execution properties of workers (Data tokens produced/consumed per execution,
timing of execution, etc) are maintained at a higher level. The semantics of the Comm
units are asynchronous queues.
When the generic large-grain dataflow graphs are implemented, they must be mapped
down to a physical implementation. The implementation takes the form of either
software or hardware. Software workers execute on a DSP or CPU, which we term
Processes. Hardware workers are either implemented in reconfigurable hardware
(FPGA’s), ASIC implementations, or combinations of both. Processes and Processors
are logically equivalent, representing functions on data. Processes/Processors are
connected via logical Comm that must buffer, communicate, and match data formats. In
software implementations, the Comm object is implemented by the OS/Kernel as a
Stream, a software queue in memory. In hardware, the Comm object is implemented
with registers and/or FIFO, or simply wires (Figure RE7).

Common Execution Semantics

SW Process StreamStream HW Process FIFO

Worker
function

Comm

Software Hardware
FIFO

Comm

Asynchronous
Communication
Buffer

Queue in
kernel

Hardware
FIFO

Virtual Hardware KernelKernel

Memory
Manager Scheduler Comm

Library Schedule & Comm Mapping FPGA Config RAM

Hardware Device Drivers

ISIS Tech Report: ISIS-99-01 Page 22 of 22

Figure RE7: Runtime Execution Environment: Common Execution Semantics

The execution environment spans software and reconfigurable hardware. The software
environment consists of a simple, portable real-time kernel with a run-time-configurable
process schedules, communication schedule, and memory management [14].
Communications interfaces are supported within the kernel, making cross-processor
connections invisible. Memory management is integrated with the scheduler and
communication subsystems, enabling (but not solving) the problems associated with
dynamic reconfiguration. The kernel allows dynamic editing of the process table, and of
the communications maps. The proper sequencing of these operations, including task
execution phases, is necessary for the avoidance of reconfiguration problems. The
current approach supports the “Reboot” approach directly, and will support the more
advanced reconfiguration approaches with cooperation of the application tasks.
The hardware execution environment supports the same operational semantics. The
implementation, however, is much different. The Virtual Hardware Kernel exists as a
concept used in the system synthesis. The MIC Generator synthesizes a set of VHDL
structural codes, one for each configurable device multiplied by the number of
operational modes. Processors are directly synthesized using predefined components.
Communications elements are selected from a library of interface types, based on the
requirements of the workers on either end, the required performance, and the available
resources. The communication infrastructure works in cooperation with the software
communications, performing the signal buffering, and the necessary off-chip interfaces
and data converters. The interface components are drawn from a library of modules. The
modules implement a limited set of standardized communications protocols to transfer
data between modules, and present data in the format required by the destination
processor. As the system is used for more applications, the set of interface types will
grow in capability.

Inherent in these interface components must be the capability to reconfigure. This
involves strict synchronization mechanisms, methods for saving and restoring states, and
facilities to allow function and structure modification. Global system synchronization is
greatly aided by having a common system clock, and facilities for very low-latency
signaling within the system. Our current concepts for reconfiguration require a single
interrupt signal to be present at each component participating in a reconfiguration.

In addition, the runtime environment must be designed with an interface suitable for
synthesis from a MIC-Generator approach. The properties of the runtime environment
must be tuned to simplify the generator. This demands a simple, uniform interface with a
well-defined, consistent set of semantics that apply throughout the system.

Reconfiguration Manager
The reconfigurable hardware interfaces, and the flexible microkernel provide the
facilities to implement system reconfiguration, however the problem of control and
synchronization is critical. A global view of the system is necessary. Reconfiguration
cannot be performed by the kernel alone.

ISIS Tech Report: ISIS-99-01 Page 23 of 23

This synchronization and control of a system during reconfiguration is the responsibility
of the Configuration Manager. The CM contains tables capturing the behavioral state
machine defined by the designers Behavioral Models. Tied to these state-based
descriptions is the information necessary to configure the hardware and software
components of the system.

Given this information, the Configuration Manager serves as a system observer. The CM
monitors relevant signals, as defined in the transitions leading out of the current state.
When the logical conditions for a state transition are satisfied, the Configuration Manager
begins the structural transition process.

The first stage of the reconfiguration involves bring the system into a known, safe state.
All communication interfaces must terminate. Since many of the data ports are bi-
directional, the bus token must be returned to the ‘safe’ state. Computations must be
completed and transitioned into the ‘safe’ state. The safe state may involve using local
algorithms to perform the basic required functions to keep the system stable.

After all necessary components are in the safe state, the global interrupt is toggled to
initiate the reconfiguration event. At this point, all communications must stop for the
short period required for reloading the FPGA’s bitfiles and the Software schedules and
communication mappings. Since the state of the system was in a known safe state prior
to reconfiguration enactment, there it little overhead atop the basic information
download. The CM will reload the necessary FPGA’s using the standard download
methods. A sequence of commands is sent to each of the processors to enact the new
processing graph and interface components. Once the new programming information is
installed, the system interrupt signal is toggled to ensure a globally synchronized start up
operation.

APPLICATION EXAMPLE

The design environment has been used for several applications. Here, we will describe
an Automatic Target Recognition application for missiles.

The design process involves iteratively constructing the previously described categories
of models that capture system design information. The ATR application design begins
with a specification of requirements in the form of Behavioral Models. Figure AE1, AE2
show the top-level models for the missile behavior. From a start-up and system
initialization phase (Figure AE1), the system waits in the Ready state for signals from the
operator. The Seek Target signal will start the active system operation in a Lock-on
Before Launch(LOBL) or Launch signal will cause the system to transition to a Lock-on
After Launch(LOAL) mode. The system enters the Acquire Long-Range mode, in figure
AE2, where a many-target acquisition is performed, and a target is selected. The system
enters into the long range tracking, until either the track is lost, or proximity sensors
signal the system transitions into a medium range mode. This process repeats itself for
Mid-Range and Short-Range modes.

ISIS Tech Report: ISIS-99-01 Page 24 of 24

FIGURE AE1: TOP-LEVEL BEHAVIORAL MODEL

Figure AE2: ATR Behavioral Model, Tracking Drill-Down

ISIS Tech Report: ISIS-99-01 Page 25 of 25

Concurrently with the definition of the behavioral requirements, signal-processing
engineers can define algorithm structures using a library of components. Hierarchy
allows multiple designers to work at different levels in the design space. Figure AE3
shows the top-level signal flow for the long-range target acquisition modes. Figure AE4
shows the drill-down into a simple tracking algorithm for low-latency target tracking
used in long range target tracking behavioral state.

Figure AE3: Top-level Algorithm Structural Models

Figure AE4: Drill-Down into Tracking Algorithm Structural Models

These algorithms are described in a model hierarchy, using Compounds,
Templates/Alternatives, and Primitives. Where possible, libraries of preexisting
components are used. When new components are required, signal processing engineers
and hardware VHDL designers develop or acquire modules and capture implementation
attributes, such as benchmark results, into the models component libraries. In the tracking
algorithm, several components were developed for hardware in VHDL and software (C

ISIS Tech Report: ISIS-99-01 Page 26 of 26

for the TMS320C40). The models show the IIR Bandpass filters, signal thresholding and
differenceing, and low-pass filters.

Concurrently with the design of Behavioral and Algorithm Models, hardware engineers
are capturing the hardware architecture details in the Resource Models. If the system is
to be constructed with flexible hardware modules, the specifics of these modules are
captured and the final assembly can be left for future specification. Where the boards are
hardwired, the complete topology is captured directly. Figure AE5 shows the top level of
the Resource models. This figure shows the 2 FPGA’s, 2 DSP processors, 1 RISC
processor and the A/D available for target tracking.

Figure AE5: ATR Hardware Resource Models

The component models are assembled by assigning Algorithm models to Behavioral
Models, and assigning Resources to Behavioral Modes and Algorithms. Constraint
specifications are developed to express complex relationships. See Figure AE6.

ISIS Tech Report: ISIS-99-01 Page 27 of 27

Figure AE6: ATR Constraint Specifications

The models are analyzed with the symbolic constraint manager to explore the design
space. The initial design space in the ATR algorithm is 1024. The constraints are
iteratively applied to reduce the system to approximately 10 potential configurations.

From the remaining configurations, the designer selects one for implementation. The
synthesis produces hardware architecture. The VHDL designs are compiled using
Synopsis for Xilinx. The software structures are processed via the Texas Instruments C
compiler.

Finally, the system is executed using the configuration manager’s system loading tools.
Figure AE7 shows a testbench configuration with internal signals displayed on a
Windows-based user interface. Intermediate designs can be instrumented with graphical
displays to view algorithm internal data structures.

ISIS Tech Report: ISIS-99-01 Page 28 of 28

Figure AE7: ATR testbench display

This discussion shows one path through the design process. Typically, the process
involves iterations, to optimize the algorithm performance, resource utilization, and
system functional behavior.

CONCLUSIONS

The system described within this paper represents an ambitious set of goals for a design
tool. The tool represents a comprehensive approach to the design of heterogeneous, real-
time, resource-limited, dynamically adaptive systems. The Model-Integrated approach
has been designed to support the many aspects and disciplines of embedded systems
design. The flexible representation, analysis and synthesis of systems has the potential to
reduce design effort and increase system flexibility. The underlying Runtime
Environment, through the abstraction of hardware and software details, presents a
uniform architecture for system implementation.

The prototype tool set has been applied to several small-to-medium-sized design projects
with significant success. The tools are still research-quality and several key components
are still in the process of design and implementation.

The design approach leads to flexible solutions. The implementation architecture is
decoupled from the algorithm. Also, hardware is modeled as a set of generalized

ISIS Tech Report: ISIS-99-01 Page 29 of 29

resources. These two factors combine to support device technology evolution.

The high-level approach should produce greater design efficiencies. Given a rich set of
component libraries, complex systems can assembled rapidly. The component libraries
can be specialized to very high-level functions by the construction of hierarchical models.
The availability of design alternatives within these functions will allow the efficiency of
these components to be maintained near the level of a hand-coded system.

There are still many major research challenges to achieve a fully functional, robust design
tool. These issues are:
1. Optimization: The current approach involves defining a very large design space
and using constraint methods to extract a set of potential design solutions. The same type
of evaluation concept is used in the simulation/evaluation approach. While these
approaches can significantly reduce the design space (in the case of OBDD’s) and can
give several estimations of performance. For any one application, the process relies on
the engineer to manipulate a complex, interrelated constraint networks. This process
should be assisted further in the design environment. Simple tools are planned that show
a sensitivity analysis of a user-defined performance function vs each of the user
constraints. This will help to guide the designer to the appropriate constraints that impact
system performance. Taking this a step further, optimization procedures can be
implemented to automate the manipulation of system parameters and constraints. In such
a non-linear, discretized space, no guarantee of optimization convergence is possible.
2. Methods for assessing the transient upsets that will occur during a structural
reconfiguration are needed. These transients are needed for both numerical results and
for the timing behavior.
3. Libraries and procedures for rapidly incorporating vendor IP must be available to
ensure up-to-date components are available for the design. This also contributes to the
ease of updating the technologies in the target platform.
4. Significant effort is required to transition the tools from a research prototype to a
supportable, accepted design methodology and design environment.

ISIS Tech Report: ISIS-99-01 Page 30 of 30

REFERENCES

[1] Villasenor, J., Mangione—Smith, W., “Configurable Computing”, Scientific
American, June, 1997.
[2] Arnold, J., Buell, D., Davis, E., “Splash 2”, Proceedings of the 4th Annual ACM
Symposium on Parallel Algorithms and Architectures, June 1992
[3] David R. Martinez, “Real-time Embedded Signal Processing”, IEEE Signal
Processing Magazine, September 1998.
[4] Bapty, T., Ledeczi, A., Davis, J., Abbott, B., Hayes, T., Tibbals, T.: "Turbine Engine
Diagnostics Using a Parallel Signal Processor", Joint Technology Showcase on Integrated
Monitoring, Diagnostics, and Failure Prevention, Mobile, AL, 1996.
[5] Karsai G., Sztipanovits J., Padalkar S., DeCaria F.: "Model-embedded On-line
Problem Solving Environment for Chemical Engineering", Proceedings of the
International Conference on Engineering of Complex Computer Systems, Ft. Lauderdale,
Florida, Nov. 6-10, 1995
[6] Long E., Misra A., Sztipanovits J.: "Saturn Site Production Flow (SSPF):
Accomplishments and Challenges", Proceedings of the Engineering of Computer Based
Systems, Maale Hachamisha, Israel, AL, March, 1998.
[7] Davis, J., Scott, J., Sztipanovits, J., Karsai, G., Martinez, M.: "Integrated Analysis
Environment for High Impact Systems," Proceedings of the Engineering of Computer
Based Systems, Jerusalem, Israel, April, 1998.
[8] Bapty T., Sztipanovits J.: "Model-Based Engineering of Large-Scale Real-Time
Systems", Proceedings of the the Engineering of Computer Based Systems (ECBS)
Conference, Montery, CA, March, 1997
[9] Carnes J. R., Misra A.: "Model-Integrated Toolset for Fault Detection, Isolation and
Recovery (FDIR)", Proceedings of the International Conference and Workshop on
Engineering of Computer Based Systems, Friedrichshafen, Germany, AL, March 11-15,
1996
[10] Harel, D., “StateCharts: A visual Formalism for Complex Systems”, Science of
Computer Programming 8, pp 231-278, 1987
[11] Bryant, R.E., “Symbolic Boolean Manipulation with Ordered Binary Decision
Diagrams”, Technical Report CMU-CS-92-160, School of Computer Science, Carnegie
Mellon University, June 1992
[12] Bryant, R.E., “Graph-based Algorithms for Boolean Function Manipulation”, IEEE
Transactions on Computers, C35(8), 1986
[13] Kumar, S., F. Rose, "Integrated Simulation of Performance Models and Behavioral
Models," Proceedings of the Fall 1996 VIUF, pp 185-194, Durham, NC, October, 1996
[14] Bapty T., Abbott B.: "Portable Kernel for High-Level Synthesis of Complex DSP-
Systems", Proceedings of the the International Conference on Signal Processing
Applications and Technology, Boston, MA, May, 1995
[15] Sandeep Neema: “Constraint based System Synthesis”, Technical Report,
Department of Electrical and Computer Engineering, Vanderbilt University, 1999.

ISIS Tech Report: ISIS-99-01 Page 31 of 31

[16] Hein, C. and D. Nasoff, “VHDL-based Performance Modeling and Virtual
Prototyping”, Proceedings of the 2nd Annual RASSP Conference, Arlington, VA, July
1995.
[17] James Rowson, “Hardware/Software cosimulation”, Proceedings of the 31st Design
Automation Conference, pages 439-440, San Diego, CA, June 1994.
[18] Russel Klein, “Miami: A Hardware-Software cosimulation Environment”,
Proceedings of the 7th IEEE International Workshop on Rapid Systems Prototyping, June
1996.

