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Abstract 

 
Several classes of modern applications are demanding very high performance from 
systems with minimal resources.  These applications must also be flexible to operate in a 
rapidly changing environment.  High performance with limited resources needs 
application-specific architectures, while flexibility requires adaptation capabilities. 
Reconfigurable computing devices promise to meet both needs.  While these devices are 
currently available, the issue of how to design these systems is unresolved. 
 
This paper describes an environment for design capture, analysis and synthesis of 
dynamically adaptive computing applications.  The representation methodology is 
captured in a Domain-Specific, Model-Integrated Computing framework.  Formal 
analysis tools are integrated into the design flow to analyze the design space to produce a 
constrained set of solutions.  HW/SW Co-simulations verify the function of the system 
prior to implementation.  Finally, a set of hardware and software subsystems are 
synthesized to implement the multi-modal, dynamically adaptive application.  The 
application executes under a runtime environment, which supports common execution 
semantics across software and hardware.  An application example is presented. 
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INTRODUCTION 

Modern high-performance embedded systems, such as Automatic Target Recognition for 
Missiles or Dynamic Protocols Mobile Communications devices, face many challenges.  
Power and volume constraints limit hardware size. Accurate, high-performance 
algorithms involve massive computations.  Systems must respond to demanding real-time 
specifications.  In the past, custom application-specific architectures have been used to 
satisfy these demands. 
 
This implementation approach, while effective, is expensive and relatively inflexible. As 
the world demands flexible, agile systems, the hardwired application-specific 
architectures fail to meet requirements and become expensive to evolve and maintain.  As 
new algorithms are developed and new hardware components become available, a fixed, 
application specific architecture will require significant redesign to assimilate the 
technologies.   
 
Flexible systems must function in rapidly changing environments, resulting in multiple 
modes of operation. On the other hand, efficient hardware architectures must match 
algorithms to maximize performance and minimize resources. Structurally adaptive, 
reconfigurable architectures can meet both these needs, achieving high performance with 
changing algorithms.  Reconfigurable computing devices, such as Field Programmable 
Gate Arrays allow the implementation of architectures that change in response to the 
changing environment.   
 
The field of Reconfigurable Computing is rapidly advancing for scientific and Digital 
Signal Processing applications [1][2][3].  While today’s Field Programmable Gate Array 
technology shows great promise for implementing reconfigurable computational systems, 
their capabilities in certain areas (such as floating point arithmetic) cannot equal other 
technologies.  For this reason, efficient system architectures must encompass a 
heterogeneous mix of the best technologies.  The target systems are built on a 
heterogeneous computing platform: including configurable hardware, ASIC and general-
purpose processors and DSPs.  
 
The primary difficulty in this approach lies in system design.  A designer must now 
maintain a set of diverse system architectures, which exist at different times in the 
system’s lifetime, and map these architectures onto the same group of resources.  The 
designers must manage the behavior of the system, determining the operational modes of 
the system, the rules for transitioning between operational modes, and the functional 
properties within each operational mode.   In addition, the system must make efficient use 
of the resources, enabling the designer to minimize the envelope of hardware required to 
support the union of all operational modes. Current system design tools are insufficient to 
manage this complexity. 
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High-level design tools are being developed to capture designs and to generate functional 
systems as part of the DARPA Adaptive Computing Systems Program. This paper 
describes a model-integrated approach to be used in the development of reconfigurable 
systems.  There are many significant issues in the development process.  The approach 
described here divides these issues into several categories: (1) Representation and 
Capture of design information in terms of Models; (2) Analysis of the models for 
design/requirements/resource trade-off studies; (3) Synthesis of architectures and 
executable systems directly from the models; and (4) Runtime support environments to 
support efficient execution of the synthesized reconfigurable systems. 
 
The Model-Integrated Computing (MIC) approach has been successfully applied to a 
diverse set of applications ([4][5][6][7][8][9]). The general MIC approach involves 
creating a development environment that is customized for a specific application domain.  
The resultant development environment is a multiple-aspect graphical editor that directly 
supports the engineering concepts required in the development process.  Where several 
engineering disciplines are involved in system development (e.g. Software, Hardware, 
DSP algorithms, Systems Requirement Specification, etc.), the multiple-aspect nature of 
the approach allows different aspects to be customized for individual disciplines. The 
graphical editor allows construction of system Models, which capture the specifications 
and components required along with their relationships.  The Models form a database of 
design information that can then be used in system analysis, trade-off studies, and 
performance estimation/simulation.  These same Models are used to synthesize the 
executing systems.  The synthesis process assumes a runtime environment that hides the 
low-level hardware/software details from the synthesis process.. 
 
This paper attempts a logical progression in  describing the Model-Integrated Computing 
approach for adaptive systems design.  The first section will describe the rationale and 
implementation of the design capture approach.  The next section will give an overview 
of the current and planned analysis capabilities for design-space exploration.  The 
following sections will describe the system synthesis process and the runtime 
environment architecture and implementation.  Finally, we will show the implementation 
of a missile Automatic Target Recognition application incorporating adaptive system 
behavior. 
 

DESIGN REPRESENTATION 

The customization of the Model-Integrated Computing design environment involves a 
careful analysis of the needs of the design engineers, the methods and components used 
in the designs, and the target systems.   For an environment to successfully support the 
creation of systems, the concepts used by designers must be faithfully reproduced by the 
design environment.  This section will describe the concepts developed in the creation of 
the Adaptive Computing Systems MIC environment. 
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The Adaptive Computing Systems (ACS) environment divides the design process into 
four major categories: 
1. Behavioral Modeling: In this first category, the operational adaptive behavior is 

defined.  The designer can specify the operating modes of the system, the legal 
transitions between modes (and the conditions for transition), and the 
specifications for system operation while in each operating mode. 

2. Algorithm/Structural Modeling: In this category, potential algorithms are 
described.  The algorithms define signal flow specifications to compute required 
system outputs. 

3. Resource Modeling: The resource models describe the hardware available for 
construction of the system.  This consists of physical processors, devices, and the 
interconnection topology. 

4. Constraint Specification: These modeling categories are augmented and linked 
together with a Constraint framework.  The Constraints allow user-defined 
interactions to be specified, establishing linkages between properties in one 
category and objects in the same or another category. 

 

Behavioral Models 

Behavioral models capture the operational modes of the system and the potential 
interactions between these modes (Figure DR1).  Since the system will be operating in 
discrete modes, with specific transitions between these modes, a familiar, well 
understood representation was chosen.  The representation is a Discrete Finite State 
Machine.[10]  States define operational modes of the system.  Transitions define the 
potential conditions required for the system to change modes and the end-state of the 
mode-shift.  In order to manage system complexity, where the system may have many 
potential operational modes, a Hierarchical description was chosen. 
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Figure DR1: Behavioral Model 

 
The event expression that can trigger a mode change is defined by the transition rules. A 
transition rule is a Boolean equation composed of event variables. When this expression 
is satisfied the transition from one mode to another is enabled and system reconfiguration 
is to take place.  The event variables are computed in the Algorithmic/Structural 
modeling view described below.  These can be directly sampled external signals or 
complex computational results. 
 
The behavioral modeling aspect is linked to the Algorithmic/Structural aspect by the 
means of References.  A Reference is a modeling “trick” that allows the user to establish 
a pointer from the mode to a defined computational algorithm.  Each mode references a 
model in the Structural Aspect that defines the processing algorithm that is to be 
operational in that mode.  The references allow a single algorithm to be applied to any 
number of system states, or allow all states to have separate processing structures. 
 
The behavioral modeling aspect also allows the specification of real-time requirements 
and maximal runtime power usage.  Maximal permitted system delays can be specified 
for any pair of input and output ports on the structural model.  The power characteristics 
are specified using attributes of the models, in which the designer can enter a maximum 
allowable power limit.  In effect, the Behavioral Models capture the system performance 
requirements. 
 

Algorithm/Structural Models 
The structural modeling aspect is used to describe the processing algorithm structure.  
The basic algorithm is described in terms of computational components and data 
interactions.   To manage system complexity, the concept of hierarchy is used to structure 
algorithm definition.  This logical composition of systems using component subsystems 
has proven effective design structuring for very large, complex systems.  
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The algorithm is modeled as a dataflow structure with the following classes of objects: 
compounds, primitives, and templates. The relationship between these objects is shown in 
Figure DR2. A primitive is a basic element representing the lowest level of processing 
that is modeled. A primitive maps directly to a processing object that will be 
implemented as either a hardware function or a software function.  Primitive objects are 
annotated with attributes.  These attributes capture measured performance, resource 
(memory) requirements, and other user-defined properties. 

Compound

Compound

Software

Hardware

Compound

Primitive Template

Primitive

Primitive

Template

Compound Primitive

Primitive

Compound

Compound

Primitive

Primitive

PrimitiveCompound
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Figure DR2: Compound/Primitive/Template structure 

 
 A compound is an aggregation object that may contain primitives, other compounds, 
and/or templates. These components can be connected within the compound to define the 
information dataflow.  Compounds provide the hierarchy in the structural description that 
is necessary for managing the complexity of large designs.  
 
A design alternative object is used in the modeling process to allow the specification of 
multiple algorithm architecture alternatives for a given task. The Template/Alternative 
object is used to capture the design alternatives. This object represents a choice between 
multiple design architectures. These design alternatives can be either Compounds or 
Primitives, allowing hierarchies of design alternatives. 
 
When alternatives are used, the algorithm structural models describe a huge number of 
potential design implementations. The large design space gives environment the freedom 
to search for and select an implementation that meets the specified requirements and fits 
within available resources. 
 
In signal processing, many types of tasks can be accomplished in multiple ways, for 
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example in the spatial or the spectral domain. Both approaches will achieve the same 
basic results but with vastly different algorithm designs.  Other algorithm characteristics 
can vary as well, such as latency and/or accuracy. In the spatial domain a filtering 
function can be achieved by performing a standard mathematical convolution. In the 
frequency domain, the function is achieved by performing a FFT, followed by a 
multiplication with the spectral representation of the filter, followed by an inverse FFT.  
In this case, the spectral method is more efficient as the filter order increases, resulting in 
a faster, smaller system.  On the other hand, since the FFT is a block-based computation, 
the latency is at least a block-length. 
 
Algorithm alternatives allow the model of the system to capture design possibilities. Each 
of these alternative methods has different performance attributes and different hardware 
requirements. The selection of the best alternative depends not only on the hardware that 
is available, but also on whether the hardware is to be time-shared, and what hardware is 
already allocated to support the processing algorithms that are required for operations in 
different modes.  
 
For the high-level designer, algorithm alternatives allow a virtual separation of algorithm 
from implementation.  Typical algorithm design requires the engineer/physicist to 
consider the hardware details of the underlying architecture to achieve an efficient 
implementation. The ultimate effect is that the resulting algorithm reflects the hardware 
structure. This practice leads to highly non-portable, technology-specific designs.  
System upgrades to use more modern technology require a bottom-to-top redesign.  
Algorithm alternatives promise to separate the algorithm from the architecture, to 
postpone the implementation decisions to a much later step in the design process.  This 
approach should greatly simplify technology migration efforts. 
 
Another use of templates is to model multiple physical technology implementation 
alternatives, i.e. different ways a processing function may be implemented in the 
architecture. For example, a convolution can be computed in software running on a DSP, 
in software running on a network of multiple DSP’s, in a hardware function in a FPGA, 
or in a dedicated ASIC solution.  The selection of the desired implementation technology 
is determined in the synthesis process, driven by power consumption, throughput, 
latency, specific part availability, and other architectural interactions. 
 

Resource Models 

The resource aspect defines the hardware platform available for the target application. 
The target hardware platform is modeled in terms of hardware components and the 
physical connections among them.  The relationships among the resource model 
components are shown in figure DR3.  
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Figure DR3: Resource Model 

 
The top-level hardware system is a Network of components.  Network components are 
either processor elements (such as DSPs or standard RISC/CISC processors), 
programmable logic components (such as FPGAs), or dedicated hardware ASIC 
components for fixed functions (such as FFT computation).  Data Sources and Data Sinks 
capture the specifics of hardware I/O interfaces and data acquisition/effector interfaces. 
 
The components are constructed using cores and ports. Every processing element must 
contain one core. The core object captures the inherent performance attributes of the 
processing element such as clock speed, memory, and other resources. (The core 
represents the processing element).  A port represents a physical communication channel. 
Ports have associated protocols and specific pin assignments, representing physical 
connection points on a chip. Connections between processing elements are created by 
connections between ports. The connections capture the “as-built” topology of the 
physical implementation. 
 
Constraint Specification 
System constraint specifications have four categories of design constraints: (a) 
operational constraints, (b) composability constraints, (c) resource constraints, and (d) 
performance constraints to establishing linkages between properties in different modeling 
categories.  
 
Operational constraints express conditions relating design configurations to operational  
modes. These constraints are applied within the Behavioral models. Composability 
constraints are logic expressions that restrict the composition of alternative processing 
blocks (eg. FFT-HW can be used with IFFT-HW). Resource constraints are logic 
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expressions describing the selection of processing blocks based on resource limitations. 
Performance constraints are integer constraint expressions limiting the end-to-end 
latency, power and space. The performance constraints are implicit in the properties of 
Behavioral models. These constraints allow the designer to control the potential design 
space for the analysis/synthesis process. 
 

MODEL ANALYSIS 

The end-product of the design process described above is a design space consisting of 
modes & requirements, potential implementations, and resource sets.  The task of the 
designer is to select appropriate combinations of implementations and resource 
assignments for all of the desired operational modes.  Given the flexibility in defining 
design alternatives, this space can be extremely large (moderately sized design examples 
have defined a space of 1024th).  It is unreasonable to assume that a designer can handle 
such a large design space without sufficient tools.  The set of design solutions must be 
evaluated to find a set of designs (mode configurations) that best satisfy a number of 
design criteria. There are inherently a large number of conflicting design criteria in 
reconfigurable systems. Each mode has performance requirements that demand a certain 
level of performance from the hardware for a given algorithm.  The processing needs of 
each of the system modes must be satisfied with a single shared hardware platform. The 
analysis tools must allow efficient exploration, navigation, and pruning of this space to 
select feasible hardware/software architectures for user-definable cost functions such as 
weight, power, algorithmic accuracy and flexibility.  Given the size of the design space, 
and the complexity of the analysis, a powerful analytical method is required. 

Constraint Satisfaction using Symbolic Methods 
The approach we have taken is to use symbolic methods based on Ordered Binary 
Decision Diagrams to represent, navigate and prune the design space. In a symbolic 
representation, sets/spaces are represented as a boolean expression over the members of 
the set. The members of the set are encoded as binary variables under a binary encoding 
scheme. The principal benefit of the approach is that it does not require enumeration of 
the set/space to perform operations.  Ordered Binary Decision Diagrams [11][12] are a 
canonical representation of logic functions, representing boolean functions as directed 
acyclic graph in a memory-efficient format. The operations over the boolean functions 
are implemented as graph algorithms rendering “manipulation” of the space fast and 
efficient.   
 
With this symbolic formalism, the application of logical constraints is relatively 
straightforward. The user-defined logical constraints can be represented as a boolean 
expression over the components of the design space. .  Constraint application is then just 
conjunction of the constraint boolean expression with the boolean expression that 
represents the design space. The resultant boolean expression represents the 
“constrained” design space. Application of the integer arithmetic constraints such as 
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timing and power constraints is not so straightforward (see [15] for details). However the 
basic approach remains the same. 
 
The constraints “prune” the design space due to the requirements specified in the 
constraint. These constraints can be iteratively applied to the design space, with the goal 
of reducing the “1024th” to a more manageable 10-1000 design alternatives. We have 
implemented the approach described above in a design space management tool (Figure 
MA1) that allows solving these constraints in an iterative manner. The design engineers 
can apply the constraints and visualize the sensitivity of the design space to the 
constraint. If the constraint is extremely tight it can be released and other constraints can 
be applied instead. Finally when the design engineer is satisfied with the remaining 
design choices after constraining the design space he can move to the next step of 
simulation. 
 

 
FIGURE MA1: CONSTRAINT MANAGEMENT TOOL 

HW/SW Co-Simulation 
The constraints encode the behavior of the system with a relatively high level of 
granularity.  While this is necessary to work within the tremendously large design spaces, 
the accuracy of this approach will be poor.  The designer will be required to “give the 
benefit of the doubt” to designs that are near the fringes of the constraint envelope.  To 
establish a more accurate estimate of in-system performance, a simulator is required.  
Since the target of the tool is hardware and software, the simulator must support co-
simulation. 
 
While this research is still at its early phases, the current approach is to allow the system 
designer to perform co-simulation at three levels of abstraction for trade-off between 
execution speed and accuracy of results, namely the performance level, the algorithm 
level and the gate/instruction level. This will enable the designer to quickly “zoom-in” on 
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the more viable design alternatives and perform more accurate simulations only on this 
subset. 
 
An important aspect of the co-simulation environment is the seamless integration with the 
rest of the system. Information used to automatically construct the simulation testbench at 
various levels is directly extracted from the model database to ensure consistency among 
various levels of detail. Different levels of simulations will utilize different, possibly 
overlapping subsets of the model database. On the other hand, output from the simulation 
is interpreted and fed back in a high level form to the user in the same design 
environment. 
 
At the performance level, only the performance of the structural model is simulated. In 
other words, performance attributes, such as latency and throughput, associated with 
processing primitives are used to construct a network of delay models for the system. 
Data flow is abstracted out at this level and represented by tokens for faster simulation 
via packages such as PML[13][16].  No distinction of hardware versus software 
implementation is made at this level, except for the relatively longer delays associated 
with software realizations. The output of this step will be an overall performance 
assessment of the proposed algorithm as well as flagging the critical components or hot 
spots of the system. 
 
At the algorithm level, the functional computation itself is simulated but without low-
level timing details so that the user can quickly verify the correct functionality of the 
system. Hardware functions are described in VHDL and software functions are described 
in C and encapsulated in a VHDL-wrapper entity. A commercial VHDL simulator 
equipped with a foreign language interface will be the target for mapping. 
 
The lowest level of abstraction is the gate/instruction level co-simulation. At this level, a 
HW/SW co-simulation environment is constructed that models the system platform as 
described in the resource models of section 1. VHDL simulation models will be used to 
describe hardware components such as ASICs and FPGAs. Processor models can range 
from full functional models that mimic the internal architecture of the processor to simple 
bus functional models that only describe the interaction of the processors with external 
components but do not mimic the internal architecture [17]. The former is usually too 
expensive in terms of execution speed and also difficult to construct from scratch for 
complex processors. The latter approach is more suitable for debugging the hardware 
portion but not well suited for viewing software execution. An intermediate approach is 
to use an instruction set simulator (ISS) coupled with a bus functional model (BFM) to 
model the processor, such as described in [18]. The ISS will be used to simulate software 
execution while the BFM will mimic the interaction with the external circuitry. 
Synchronization techniques between the ISS and the BFM are needed to keep the 
simulation realistic. 
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SYSTEM SYNTHESIS 

The tools capture system requirements, design information and alternatives, and the 
resources available for system implementation in the form of Models.  The constraints 
developed during the Model Analysis phase, when applied to the design space, define a 
manageable set of implementation alternatives. Expected performance is estimated using 
the Co-Simulation tools, providing further assurance that the system will function to 
design specifications.  The selected design alternatives must now be transformed to 
software and hardware for system implementation.  We refer to this process as model 
interpretation. 
 
A model interpretation process generates hardware architecture specifications, software 
modules, process/schedule tables, communications maps, synthesizable hardware 
specifications, and a run-time Configuration Manger for dynamic adaptation to changing 
environments. The synthesis process attempts to optimize hardware/software 
architectures for user-definable cost functions such as weight, power, algorithmic 
accuracy and flexibility. 
 
The first phase in the optimization process is the successive application of incrementally 
tighter design constraints. The symbolic constraint satisfaction method described in the 
Design Analysis section is used to provide an initial pruning of the design space.  
 
The design search will continue to narrow down possibilities through multi-resolution 
simulation of the system. Components will have associated performance models that can 
be used to compute performance data of the system configuration being evaluated such as 
communication utilization, processor utilization, etc. Finally the searching process has 
narrowed the design space down to only a few candidate configurations per system 
operational mode. 

 

Configuration Manager Synthesis 
At this point, the synthesis procedure can generate the actual runtime artifacts.  From the 
behavioral models, a set of tables is produced for the Configuration Manager.  The state-
based behavior is defined in the Behavior Models.  These models are transformed into a 
compact state table.  The table contains next state equations for each operational mode.  
The interfaces to internal and external events are generated to provide the state transition 
variables to the state machine. These tables and variable interfaces are executed directly 
by the configuration manager. 
 

Hardware Synthesis 
For each configurable component (FPGA), a design specification is generated.  This 
design specification includes a hardware design file for each component for each mode.  



 
ISIS Tech Report: ISIS-99-01                            Page 14 of 14 

The design for a component*mode is specified in structural VHDL.  The VHDL design 
incorporates computational components from the design library, which can contain user-
defined VHDL behavioral descriptions and vendor-supplied Intellectual Property (IP) 
modules.  These modules are glued together using components from a standard interface 
runtime library, which is part of the Runtime Environment described later.  These 
interfaces connect computational components on the same chip with simple FIFO’s and 
asynchronous handshaking interfaces.  When the communication must occur across chip 
boundaries, or to software components, a set of more complex interface components are 
used.  These interface components manage the physical hardware resources (pins and 
wires), buffer data, and multiplex multiple logical communications across a single set of 
wires.  Where required, data format conversions are supplied. 
 
These VHDL files are then compiled using vendor-supplied/COTS VHDL compilers and 
part-specific Place-and-Route tools.  The result is a set of “bitfiles”. One bitfile is 
generated for each reconfigurable hardware device for each mode.  Given the current 
state of the FPGA market, demand has not yet forced the vendors to provide partially 
reconfigurable devices and support tools.  For this reason, we treat each FPGA as an 
atomic part, configurable only with a full device reset.  The approach proposed here will 
work for partial reconfigurable devices by treating a single device as multiple logical 
devices.  In order for this to work, the vendor tools must provide methods for floor 
planning to restrict logical design components (i.e. all components within a single mode) 
to non-overlapping, regions that coincide with legal chip reconfiguration boundaries. 
 

Software Synthesis 
For the general-purpose RISC/DSP components, a set of software specifications is 
generated.  These specifications provide the information needed by the Runtime 
Environment to enact the desired computational behavior.  The Runtime Environment 
requires several categories of design files: 
• Software Load Modules contain executable modules that are downloaded to the 

processors in the system.  The system can generate a common load module that 
contains the superset of all executable functions (if memory is sufficient) or it will 
generate a customized module for each of the processors in the system.  The 
customized module is clearly more memory-efficient. 

• Real-time schedules contain the list of processes and their priorities. A unique 
schedule is generated for each processor and for each mode of operation. 

• Communication maps describe the information flow between processes.  These 
“streams” can perform communication between two modules on the same processor, 
or they can transport data across the network, through intermediate processors, and to 
a remote process anywhere in the system. 

 
Interfaces between software modules and hardware modules/data sources/sinks are 
automatically inserted during the synthesis process. These interfaces perform the “care-
and-feeding” of hardware interfaces, converting complex communication protocols into 
simpler hardware compatible protocols.  The interfaces also multiplex multiple logical 
streams over a single physical port and perform data conversion functions. 



 
ISIS Tech Report: ISIS-99-01                            Page 15 of 15 

 
These design files are processed into a set of object modules and tables for inclusion in 
the configuration manager and for direct download into the parallel array of processors.  
 
The result of the synthesis and post processing is a complete executable system, ready for 
deployment.  The deployment is performed in concert with the Runtime Environment. 
 

RUNTIME ENVIRONMENT 

The runtime environment must support implementation platforms with the following 
attributes: 
• Heterogeneity:  Optimizing the architecture for performance, size, and power requires 

that the most appropriate implementation techniques be used.  Implementations will 
require software (implemented on RISC and DSP processors), configurable hardware 
on FPGAs, and a mix of ASIC components. 

• Low Overhead/High Performance: the runtime environment must minimize overhead, 
since overhead results in extra hardware requirements. 

• Hard Real-Time: The target systems have significant real-time constraints. 
• Reconfiguration: The execution environment must allow hardware and software 

resources to be reallocated dynamically.  During reconfiguration, the application data 
must remain consistent and real-time constraints must be satisfied. 

 
These issues must be addressed at multiple levels.  At the lowest level, the hardware must 
be capable of reconfiguration.  Software-programmable components, such as DSP’s and 
RISC processors, have excellent inherent hardware support for reconfiguration, since 
software has the ability to change system function by changing memory contents.  
Internal CPU hardware structures are designed to restrict dangerous conditions that could 
damage hardware.  FPGA’s are an unrestricted collection of gates, switches, and 
connectors.  The safeguards built into CPU’s do not exist and must be enforced manually.  
This protection must be provided by a cooperation of the design process and the runtime 
infrastructure. 
 
At a slightly higher level, the internal state of software must be managed under changing 
tasking.  Modern operating systems have evolved to support the flexible implementation 
of multiple tasks, with dynamic addition and removal of tasks on a single processor in the 
form of time-sharing and/or multitasking, and Real-time kernels allow time critical tasks 
to be dynamically scheduled on a single processor.  These kernels typically do not 
address the consistency of dynamic reconfiguration for distributed networks of tasks. 
Finally the issues of application-specific requirements must be addressed, to allow the 
peculiar requirements of specific numerical performance and timing to be achieved in an 
implementation.  Potential solutions to these issues with consistency are addressed in the 
next section. 
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Hardware/System Consistency 

The runtime system must avoid operational defects during a reconfiguration event.  
Hardware consistency can have many negative effects, from temporary loss of 
performance in an operational mode to hardware damage and total, permanent system 
malfunction. Typically, these deal with specific issues involving interfaces between 
hardware processes and/or devices.  Some of these defects are illustrated in figure RE1. 

Hardware Consistency After Reconfig

Token Loss/DuplicationPort Contention

Device State Maintenance

Device Controller

 
Figure RE1: Hardware Reconfiguration Problems: Maintaining Consistency 

 
Port contention occurs when bi-directional ports are improperly initialized, a 
reconfiguration event is not properly sequenced/synchronized, or if an 
improper/inconsistent design is implemented.  In this case, two connected drivers are 
enabled.  If resistance is sufficiently low, permanent physical damage can occur to the 
circuits. 
 
Token loss or duplication results from incorrect initialization or a loss of communication 
integrity.  Tokens represent the status of empty or full slots in a communication interface.  
An extra token on the sender side can cause too much data to be sent, resulting in a FIFO 
overrun.  A lost token can effectively block a communication port, resulting in a system 
deadlock. 
 
Device state maintenance refers to the control of a complex external hardware device, 
such as an attached processor or storage device.  In controlling an external device, the 
controlling computational component must maintain an accurate representation of the 
device’s state.  If a reconfiguration occurs during a state transition within the device, or if 
the reconfiguration modifies the computational component’s representation of the device, 
there can be a state mismatch.  This can result in improper commands being sent to the 
device, or in a deadlock where both components are waiting on each other for triggering 
events. 
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These three examples show some of the potential hazards that can occur when the 
hardware device is improperly reconfigured.   Runtime reconfiguration support must not 
permit any of these conditions to occur. 
 

Software/OS Consistency 

Software issues can present a larger challenge to dynamic system reconfiguration.  While 
the hardware built into standard microprocessor devices protects against low-level 
hardware conflicts, there are many more details that must be managed.  Figure RE2 
below summarizes some of the potential problems from an improper reconfiguration. 

Software/OS Consistency on Reconfig
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Figure RE2: Software/OS Reconfiguration Problems: Maintaining Consistency 
The example shows an initial configuration of 3 processes (A, B, and C) in the normal 
operational state.  A reconfiguration occurs, changing to a new configuration.  The new 
configuration replaces these process A with A’, C with C’ and removes Process B 
altogether. The bottom half of the figure shows the new configuration, along with the 
potential errors. 
 
Memory leaks will adversely affect long-term reliability. Task structure mismanagement 
results in extra tasks executed by the kernel, with a loss in performance.  Messages in 
transit can be delivered when the receiving process no longer exists, resulting in mis-
matched messages and channel errors.   

Application-Level Consistency 

At a higher level, the application’s requirements and implementation details impose 
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restrictions in the reconfiguration process.  Typically, these attributes are highly 
application-specific.  Two examples of consistency requirements are displayed in Figure 
RE3 below. 
1.   An external system may require signal output continuity and/or continuous first 

derivative properties.  In the example, which swaps filters online, the new filter is 
operating out of sync with the original filter.  A rapid switchover will create a 
discontinuity in both the signal and its first derivative. 

2. The system can fail to maintain real-time constraints during reconfiguration.  If the 
reconfiguration cannot be completed in sufficient time, deadlines will be sacrificed. 
In addition, the timebase can be shifted, resulting in a skew in system output period. 

Orig
Filter

New
Filter

Init
Reconfig

Reconfig
Event

Orig
Proc

New
Proc

T1 T2 T3 T4 T2’

Reconfiguration

T3’

Missed Deadlines Period Skew  
Figure RE3: Maintaining Application Consistency Through Reconfiguration 

Runtime Reconfiguration Strategies 
 It is clear that reconfiguration support must be built into the design approach, from the 
lowest levels of the execution environment, to the high-level design/requirements capture 
tools.  The extent of support is defined by the requirements of the target systems.  The 
driving factors include how fast the system must reconfigure, whether intermediate states 
must be preserved (Application Signal Continuity), and if timing must be preserved.  We 
now examine the potential reconfiguration strategies and their impact on system 
capabilities. 

Reboot Strategy 
The simplest reconfiguration strategy is termed the “Reboot” approach.  It involves the 
orderly shutdown of tasks, bringing the system to a known, clean state.  From this state, a 
new processing structure is constructed (Figure RE4).  The implementation for this 
approach is simple, requiring the minimum amount of non-standard support from the 
execution environment and there is no need for additional processing capability for 
overlapping modes. 
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Figure RE4: Reconfiguration Strategies – “Reboot” Approach 

 

The drawbacks of this approach are severe.  The system is offline during the 
reconfiguration time.  No events can be handled, so a system under control is open-loop 
during that time.  There is no provision for preservation of state.  This can lead to long 
recovery times when the new configuration is started.  Both of these factors lead to 
system application transients, both timing and signal continuity.  This approach is not 
suited for the majority of embedded, closed-loop systems. 

State Transition Approach 
The second approach allows the insertion of transitory states between the major system 
operating modes (Figure RE5).  These states allow the system to take smaller steps 
between operational modes to approximate a continuous-time transition, resulting in 
smaller transients.  The intermediate configurations inherit state from their predecessors.  
The intermediate algorithms must be designed to gradually shift system behavior.  While 
not continuous, the steps can be made arbitrarily small. 
 

Config
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Config
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Config
BConfig

B

S(A)     S(A’) || S(B’)     S(B)  
Figure RE5: Reconfiguration Strategies – State Transition Approach 

This approach has several positive aspects.  The state preservation allows transients to be 
minimized.  The magnitude of the steps can be chosen by the designer to minimize key 
application behaviors.  Few spare resources are needed, since the system is operating in 
only one mode at a time.  The flexibility is limited only by the designers and by the time 
available for the transition. 
There are several difficulties in this approach: The execution infrastructure must support 
the rapid transition of processes and transition of the states of the changing processes.  
The states must be mapped to the structures required by the next step, and installed with 
the new processing structure. The computation of the mapping may be complex.  
The design of intermediate states can be complex, depending on the application.  These 
transitory states depend both on the initial state and the final state, the algorithm 
characteristics, and the timing requirements.  For smooth application transitions, many 
intermediate states may be required, leading to long transition times. (It should be noted 
that the application system is still under control during transition, but probably not the 



 
ISIS Tech Report: ISIS-99-01                            Page 20 of 20 

optimal algorithm.) 

Parallel State Transition Approach 
An extension of the State Transition approach allows the system to execute several 
modes in parallel.  This has the same benefits as the state transition approach with the 
added benefit of being able to execute algorithms prior to use, in an offline mode.  The 
state of the offline process can be allowed to stabilize prior to impacting upon system 
performance.  When transients have disappeared, the system can be transitioned to the 
new state (Figure RE6). 
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Figure RE6: Reconfiguration Strategies – “Parallel Execution” Approach 
This approach has several benefits.  The application-level transients can be minimized by 
proper design.  The downtime is minimal, as is the operation of the system in a less-than-
optimal configuration.  Multiple states can be preserved, not forcing all information to be 
encoded in one format.  This minimizes the impact of the design of one mode on another, 
thus simplifying design. 
There are also several drawbacks.  The underlying runtime environment must support 
mechanisms for rapid stepping between processes, the ability to execute multiple threads 
simultaneously, and the combination of attributes from the parallel executing processes. 
System design is complicated by the need to design parallel structures.  (In some cases, 
the parallel approach allows design separability, simplifying matters.)  The necessary 
computational resources are increased, due to the need to execute multiple parallel 
processes. 
Given the difficulties of implementation, the capabilities of this approach are required to 
service many reconfigurable application domains. 

Execution Environment Design 
The previous sections assembled a set of requirements for the execution environment.  
They also point out some of the design complexities.  Working alone, the execution 
environment cannot solve these problems.  The overall system design approach must 
span from the top-level algorithm designers/system requirement & resource 
specifications down to the hardware/software implementations. The top-level design 
issues have been discussed in terms of a domain-specific modeling environment, where 
the environment is tuned to reconfigurable system design.  The Execution Environment 
forms the infrastructure onto which these designs are projected. 
 
The Execution Environment must be designed with an interface suitable for synthesis 
from a MIC-Generator approach.  The concepts, properties and interfaces of the runtime 
environment must be compatible with the design representation and synthesis approach.  
Capabilities and interfaces should be tuned to simplify the generator.  This requirement 
demands a simple, uniform interface with a well-defined, consistent set of semantics that 
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apply throughout the system.  Since the system includes software, hardware, and 
interactions between parallel modules, a common structure must map to a wide range of 
components. 
 
The execution environment concepts have been driven by results from using tools 
developed over the past several years.  These tools are currently used to construct large-
scale, parallel, real-time signal processing systems.  The runtime environment enabled 
development of CADDMAS systems, which are used by the USAF for turbine engine 
testing and NASA for SSME monitoring and analysis [4][14]. 
 
The semantics of the execution environment implement a large-grain-dataflow 
architecture.  The Worker Function captures the tasks that are performed by the system.  
Communication nodes capture the transfer of data between workers.  Computations can 
be described as a bipartite graph, where workers connect to Comm nodes, and Comm 
nodes connect to workers.  At this level, there are no implied semantics of the workers.  
The execution properties of workers (Data tokens produced/consumed per execution, 
timing of execution, etc) are maintained at a higher level.  The semantics of the Comm 
units are asynchronous queues. 
When the generic large-grain dataflow graphs are implemented, they must be mapped 
down to a physical implementation.  The implementation takes the form of either 
software or hardware.  Software workers execute on a DSP or CPU, which we term 
Processes.  Hardware workers are either implemented in reconfigurable hardware 
(FPGA’s), ASIC implementations, or combinations of both.  Processes and Processors 
are logically equivalent, representing functions on data.  Processes/Processors are 
connected via logical Comm that must buffer, communicate, and match data formats.  In 
software implementations, the Comm object is implemented by the OS/Kernel as a 
Stream, a software queue in memory.  In hardware, the Comm object is implemented 
with registers and/or FIFO, or simply wires (Figure RE7). 
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Figure RE7: Runtime Execution Environment: Common Execution Semantics 
 
The execution environment spans software and reconfigurable hardware.  The software 
environment consists of a simple, portable real-time kernel with a run-time-configurable 
process schedules, communication schedule, and memory management [14].  
Communications interfaces are supported within the kernel, making cross-processor 
connections invisible.  Memory management is integrated with the scheduler and 
communication subsystems, enabling (but not solving) the problems associated with 
dynamic reconfiguration.  The kernel allows dynamic editing of the process table, and of 
the communications maps.  The proper sequencing of these operations, including task 
execution phases, is necessary for the avoidance of reconfiguration problems.  The 
current approach supports the “Reboot” approach directly, and will support the more 
advanced reconfiguration approaches with cooperation of the application tasks. 
The hardware execution environment supports the same operational semantics.  The 
implementation, however, is much different.  The Virtual Hardware Kernel exists as a 
concept used in the system synthesis.  The MIC Generator synthesizes a set of VHDL 
structural codes, one for each configurable device multiplied by the number of 
operational modes.  Processors are directly synthesized using predefined components.  
Communications elements are selected from a library of interface types, based on the 
requirements of the workers on either end, the required performance, and the available 
resources.  The communication infrastructure works in cooperation with the software 
communications, performing the signal buffering, and the necessary off-chip interfaces 
and data converters. The interface components are drawn from a library of modules.  The 
modules implement a limited set of standardized communications protocols to transfer 
data between modules, and present data in the format required by the destination 
processor.  As the system is used for more applications, the set of interface types will 
grow in capability. 
 
Inherent in these interface components must be the capability to reconfigure.  This 
involves strict synchronization mechanisms, methods for saving and restoring states, and 
facilities to allow function and structure modification.  Global system synchronization is 
greatly aided by having a common system clock, and facilities for very low-latency 
signaling within the system.  Our current concepts for reconfiguration require a single 
interrupt signal to be present at each component participating in a reconfiguration. 
 
In addition, the runtime environment must be designed with an interface suitable for 
synthesis from a MIC-Generator approach.  The properties of the runtime environment 
must be tuned to simplify the generator. This demands a simple, uniform interface with a 
well-defined, consistent set of semantics that apply throughout the system. 

Reconfiguration Manager 
The reconfigurable hardware interfaces, and the flexible microkernel provide the 
facilities to implement system reconfiguration, however the problem of control and 
synchronization is critical.  A global view of the system is necessary.  Reconfiguration 
cannot be performed by the kernel alone.   
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This synchronization and control of a system during reconfiguration is the responsibility 
of the Configuration Manager.  The CM contains tables capturing the behavioral state 
machine defined by the designers Behavioral Models.  Tied to these state-based 
descriptions is the information necessary to configure the hardware and software 
components of the system. 
 
Given this information, the Configuration Manager serves as a system observer.  The CM 
monitors relevant signals, as defined in the transitions leading out of the current state.  
When the logical conditions for a state transition are satisfied, the Configuration Manager 
begins the structural transition process. 
 
The first stage of the reconfiguration involves bring the system into a known, safe state.  
All communication interfaces must terminate.  Since many of the data ports are bi-
directional, the bus token must be returned to the ‘safe’ state.  Computations must be 
completed and transitioned into the ‘safe’ state.  The safe state may involve using local 
algorithms to perform the basic required functions to keep the system stable. 
 
After all necessary components are in the safe state, the global interrupt is toggled to 
initiate the reconfiguration event.  At this point, all communications must stop for the 
short period required for reloading the FPGA’s bitfiles and the Software schedules and 
communication mappings.  Since the state of the system was in a known safe state prior 
to reconfiguration enactment, there it little overhead atop the basic information 
download.  The CM will reload the necessary FPGA’s using the standard download 
methods.  A sequence of commands is sent to each of the processors to enact the new 
processing graph and interface components. Once the new programming information is 
installed, the system interrupt signal is toggled to ensure a globally synchronized start up 
operation. 

APPLICATION EXAMPLE 

The design environment has been used for several applications.  Here, we will describe 
an Automatic Target Recognition application for missiles. 
 
The design process involves iteratively constructing the previously described categories 
of models that capture system design information.  The ATR application design begins 
with a specification of requirements in the form of Behavioral Models.  Figure AE1, AE2 
show the top-level models for the missile behavior.  From a start-up and system 
initialization phase (Figure AE1), the system waits in the Ready state for signals from the 
operator. The Seek Target signal will start the active system operation in a Lock-on 
Before Launch(LOBL) or Launch signal will cause the system to transition to a Lock-on 
After Launch(LOAL) mode.  The system enters the Acquire Long-Range mode, in figure 
AE2, where a many-target acquisition is performed, and a target is selected.  The system 
enters into the long range tracking, until either the track is lost, or proximity sensors 
signal the system transitions into a medium range mode.  This process repeats itself for 
Mid-Range and Short-Range modes. 
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FIGURE AE1: TOP-LEVEL BEHAVIORAL MODEL 

 

 
Figure AE2:  ATR Behavioral Model, Tracking Drill-Down 
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Concurrently with the definition of the behavioral requirements, signal-processing 
engineers can define algorithm structures using a library of components.  Hierarchy 
allows multiple designers to work at different levels in the design space.  Figure AE3 
shows the top-level signal flow for the long-range target acquisition modes.  Figure AE4 
shows the drill-down into a simple tracking algorithm for low-latency target tracking 
used in long range target tracking behavioral state. 
 

 
Figure AE3: Top-level Algorithm Structural Models 

 
Figure AE4: Drill-Down into Tracking Algorithm Structural Models 

 
These algorithms are described in a model hierarchy, using Compounds, 
Templates/Alternatives, and Primitives.  Where possible, libraries of preexisting 
components are used.  When new components are required, signal processing engineers 
and hardware VHDL designers develop or acquire modules and capture implementation 
attributes, such as benchmark results, into the models component libraries. In the tracking 
algorithm, several components were developed for hardware in VHDL and software (C 
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for the TMS320C40).  The models show the IIR Bandpass filters, signal thresholding and 
differenceing, and low-pass filters. 
 
Concurrently with the design of Behavioral and Algorithm Models, hardware engineers 
are capturing the hardware architecture details in the Resource Models.  If the system is 
to be constructed with flexible hardware modules, the specifics of these modules are 
captured and the final assembly can be left for future specification.  Where the boards are 
hardwired, the complete topology is captured directly.  Figure AE5 shows the top level of 
the Resource models.  This figure shows the 2 FPGA’s, 2 DSP processors, 1 RISC 
processor and the A/D available for target tracking. 
 

 
Figure AE5: ATR Hardware Resource Models 

 
The component models are assembled by assigning Algorithm models to Behavioral 
Models, and assigning Resources to Behavioral Modes and Algorithms.  Constraint 
specifications are developed to express complex relationships.  See Figure AE6. 
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Figure AE6: ATR Constraint Specifications 

 
The models are analyzed with the symbolic constraint manager to explore the design 
space.  The initial design space in the ATR algorithm is 1024.  The constraints are 
iteratively applied to reduce the system to approximately 10 potential configurations.   
 
From the remaining configurations, the designer selects one for implementation.  The 
synthesis produces hardware architecture. The VHDL designs are compiled using 
Synopsis for Xilinx.  The software structures are processed via the Texas Instruments C 
compiler. 
 
Finally, the system is executed using the configuration manager’s system loading tools.  
Figure AE7 shows a testbench configuration with internal signals displayed on a 
Windows-based user interface.  Intermediate designs can be instrumented with graphical 
displays to view algorithm internal data structures. 
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Figure AE7: ATR testbench display 

This discussion shows one path through the design process.  Typically, the process 
involves iterations, to optimize the algorithm performance, resource utilization, and 
system functional behavior. 
 

CONCLUSIONS 

The system described within this paper represents an ambitious set of goals for a design 
tool.   The tool represents a comprehensive approach to the design of heterogeneous, real-
time, resource-limited, dynamically adaptive systems.  The Model-Integrated approach 
has been designed to support the many aspects and disciplines of embedded systems 
design.  The flexible representation, analysis and synthesis of systems has the potential to 
reduce design effort and increase system flexibility.  The underlying Runtime 
Environment, through the abstraction of hardware and software details, presents a 
uniform architecture for system implementation. 
 
The prototype tool set has been applied to several small-to-medium-sized design projects 
with significant success.  The tools are still research-quality and several key components 
are still in the process of design and implementation. 
 
The design approach leads to flexible solutions.  The implementation architecture is 
decoupled from the algorithm.  Also, hardware is modeled as a set of generalized 
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resources.  These two factors combine to support device technology evolution.   
 
The high-level approach should produce greater design efficiencies.  Given a rich set of 
component libraries, complex systems can assembled rapidly.  The component libraries 
can be specialized to very high-level functions by the construction of hierarchical models.  
The availability of design alternatives within these functions will allow the efficiency of 
these components to be maintained near the level of a hand-coded system. 
 
There are still many major research challenges to achieve a fully functional, robust design 
tool.  These issues are: 
1. Optimization:  The current approach involves defining a very large design space 
and using constraint methods to extract a set of potential design solutions.  The same type 
of evaluation concept is used in the simulation/evaluation approach.  While these 
approaches can significantly reduce the design space (in the case of OBDD’s) and can 
give several estimations of performance. For any one application, the process relies on 
the engineer to manipulate a complex, interrelated constraint networks. This process 
should be assisted further in the design environment. Simple tools are planned that show 
a sensitivity analysis of a user-defined performance function vs each of the user 
constraints.  This will help to guide the designer to the appropriate constraints that impact 
system performance.  Taking this a step further, optimization procedures can be 
implemented to automate the manipulation of system parameters and constraints.  In such 
a non-linear, discretized space, no guarantee of optimization convergence is possible. 
2. Methods for assessing the transient upsets that will occur during a structural 
reconfiguration are needed.  These transients are needed for both numerical results and 
for the timing behavior. 
3. Libraries and procedures for rapidly incorporating vendor IP must be available to 
ensure up-to-date components are available for the design.  This also contributes to the 
ease of updating the technologies in the target platform. 
4. Significant effort is required to transition the tools from a research prototype to a 
supportable, accepted design methodology and design environment. 
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