
Uniform Execution Environment for Dynamic Reconfiguration

T. Bapty, J. Scott, S. Neema, and J. Sztipanovits
Vanderbilt University / Institute for Software Integrated Systems

Department of Electrical and Computer Engineering,
Box 1826 Station B, Nashville, TN 37235

bapty@vuse.vanderbilt.edu

Abstract

Modern high-performance embedded systems face many
challenges. Systems must function in rapidly changing
environments. Power/size constraints limit hardware size,
while extreme performance requirements demand algorithm-
specific architectures. Hardware architectures must
structurally adapt to achieve high performance with
changing algorithms. Reconfigurable computing devices
offer the promise of architectures that change in response to
the changing environment. The primary difficulty in this
approach lies in system design. A model-integrated
approach is used in the design capture and synthesis of these
systems. The target systems are built on a heterogeneous
computing platform including configurable hardware, ASIC
and general-purpose processors and DSPs.

 This project is a DARPA Adaptive Computing Systems
funded effort, involving close cooperation with US
ARMY/AMICOM.

1. Introduction

This research is motivated by the requirements for design
and implementation of high-performance embedded
applications with highly constrained implementation
requirements. One such example is adaptive missile
automatic target recognition (ATR) systems. Current ATR
systems have extremely large computational requirements, on
the order of 10 GOP/second in some modes of operation.
Image sizes are currently small (128^2) with a moderate
frame rate (30 frames/sec). Future image sensors will expand
the available image data to 512^2 at 100’s of frames/sec.
Processing of this input data is vital to the guidance of the
aircraft and thus must meet hard real-time requirements.

ATR systems must be physically small, less than 1 cubic
foot. Weight is also a major consideration. These factors
require that component utilization be maximized as much as
possible for selected hardware. ATR systems also require
special attention to power consumption.

The system behavior is highly mode-dependent. Different
algorithms are required for different operating points. The
performance requirements also change during the systems
operational lifetime. During some processing modes, power
is severely limited, due to heat dissipation and/or battery
availability.

In order to achieve these requirements, the system

architecture must be tuned to the algorithm. When multiple
algorithms are required at different times, the designer has
two choices: Choose a compromise set of algorithms and a
single compromise architecture that is adequate to achieve
performance; or choose an optimal set of algorithms and
implement an adaptive architecture that can reconfigure to
achieve performance on each algorithm. Reconfigurable
computing offers the potential to achieve the second, more
optimal approach.

In the design process of many complex systems it is not
obvious which implementation choices will yield a good
balance between power usage, hardware size, and system
performance. Also, design cycles for these systems tend to be
long. By the time a design is completed the hardware
platform that the system was designed for may become
obsolete. An adaptive system is needed to support a hardware
platform that may be evolved to include current state-of-the-
art technology without complete redesign.

In a single mission, an ATR system traverses a large
number of operation modes (target acquisition, target
tracking, aim point selection, etc.). Each mode can have very
different processing requirements
(latency/throughput/accuracy), resources, and operational
constraints. Different modes may have a different
computational structure. Reconfigurable computing offers a
method for maximizing the utility of the computational
platform by adapting architectures to the changing needs of
the system. This provides reuse of components over time.

The research described in this paper implements a
methodology and associated set of tools for the design and
implementation of reconfigurable, high-performance,
resource-constrained embedded systems [1]. The target
architectures may be constructed of general-purpose CPU’s
with associated software and/or direct-implementation
hardware processing elements. The CPU’s include DSPs
(Digital Signal Processors), conventional RISC/CISC
processors, and optimized architectures that execute software
processes. The hardware processing elements include fixed-
function devices such as an ASIC FFT implementation and
programmable logic devices such as FPGA’s (Field
Programmable Gate Arrays).

FPGA’s have the ability to implement arbitrary hardware
functions. FPGA’s can also be reprogrammed quickly to
completely change the function(s) implemented. Currently
FPGA’s are evolving quickly to have faster configuration
times and larger capacity. These properties make FPGA’s a

good choice for high-performance processing applications
where flexibility is needed [2]. Multiple processing functions
may be allocated to FPGA’s and can change as the design
evolves or the processing functions may be completely
changed on-the-fly during system operation as processing
requirements change.

The design of reconfigurable computing systems
represents a significant challenge to the engineering process.
System complexity skyrockets, since we are no longer
designing a single system on a fixed architecture. We must
now consider the design to be an integration of subsystems,
each subsystem representing a phase of the system, with
different subsystems existing over time. Additional
complexities arise from the need for all subsystems to share
the same physical implementation.

The Institute for Software Integrated Systems is
developing an approach for managing the complexity in
designing reconfigurable systems. Experience with Model-
Integrated Computing (MIC) has shown itself to be successful
in comparable situations [3]. The MIC approach involves the
following steps:
• Use Multi-aspect, Domain-specific Modeling

Environments to capture requirements, design methods,
and resources in a format that is customized to the
problem and its formalisms.

• Develop System Synthesis tools for converting the
models into executable artifacts.

• Develop a Runtime Execution Environment for
supporting the execution of the generated system.

2. Modeling Concepts

A multi-aspect, domain-specific modeling paradigm was
developed to capture all information necessary to model and
synthesize a system. This information includes system
computation requirements, computation algorithm(s), and
available system resources. The modeling paradigm has three
aspects: a structural aspect, a behavioral aspect, and a
resource aspect. Each of these aspects is defined in a
graphical language customized for the domain of adaptive
computing systems.

2.1 Structural Aspect

The structural modeling aspect is used to describe the
processing algorithm structure. To manage system
complexity, the concept of hierarchy is used to structure
algorithm definition. This logical composition of systems
using component subsystems has proven effective design
structuring for large, complex systems.

Another significant technique allows the specification of
multiple algorithm architecture alternatives for a given task.
When alternatives are used, the algorithm structural models
describe a huge number of potential design implementations.
The large design space gives environment the freedom to
search for and select an implementation that meets the

specified requirements and fits within available resources.
The algorithm is modeled as a dataflow structure with the

following objects: compounds, primitives, and templates. A
primitive is a basic element representing the lowest level of
processing that is modeled. A primitive maps to a processing
object that is to be implemented as either a hardware function
or a software function.

A compound is an aggregation object that may contain
primitives, other compounds, and/or templates. These
components can be connected within the compound to define
the information dataflow. Compounds provide the hierarchy
in the structural description that is necessary for managing
the complexity of large designs.

A template object is used to capture the representation of a
choice between multiple design architectures. These
alternatives can be either compounds or primitives, allowing
subhierarchies of designs. In a model, a template can be used
to capture different algorithm alternatives or different
implementation alternatives.

In signal processing, many types of tasks can be
accomplished in multiple ways, for example in the spatial or
the spectral domain. Both approaches will achieve the same
basic results but with vastly different algorithm designs.
Other algorithm characteristics can vary as well, such as
latency and/or accuracy. In the spatial domain a filtering
function can be achieved by performing a standard
mathematical convolution. In the frequency domain, the
function is achieved by performing a FFT, followed by a
multiplication with the spectral representation of the filter,
followed by an inverse FFT. In this case, the spectral method
is more efficient as the filter order increases, resulting in a
faster, smaller system. On the other hand, since the FFT is a
block-based computation, the latency is at least a block-
length.

Another use of templates is to model multiple
implementation alternatives, i.e. different ways a processing
function may be implemented. For example, a convolution
can be computed in software running on a DSP, in software
running on a network of multiple DSP’s, in a hardware
function in a FPGA, or in a dedicated hardware ASIC
solution.

Algorithm alternatives allow the model of the system to
capture design possibilities. Each of these alternative
methods has different performance attributes and different
hardware requirements. The selection of the best alternative
depends not only on the hardware that is available, but also
on whether the hardware is to be time-shared, and what
hardware is already allocated to support the processing
algorithms that are required for operations in different modes.

For the high-level designer, algorithm alternatives allow a
virtual separation of algorithm from implementation. Typical
algorithm design requires the engineer/physicist to consider
the hardware details of the underlying architecture to achieve
an efficient implementation. The ultimate effect is that the
resulting algorithm reflects the hardware structure. This
leads to the creation of highly non-portable, technology-
specific designs. System upgrades to use more modern

technology require a bottom-to-top redesign. Algorithm
alternatives promise to separate the algorithm from the
architecture, to postpone the implementation decisions to a
much later step in the design process. This approach should
greatly simplify technology migration efforts.

2.2 Behavioral Aspect

The behavioral aspect defines the modes in which the
system will operate and specifies the conditions under which
mode changes occur. The modes and state transitions are
specified in the behavioral aspect by a state transition graph.

 The event expression that can trigger a mode change is
defined by the transition rules. A transition rule is a Boolean
equation composed of event variables. When this expression
is satisfied the transition from one mode to another is enabled
and system reconfiguration is to take place.

The behavioral modeling aspect is linked to the structural
aspect by the means of References. Each mode references a
model in the Structural Aspect that defines the processing
algorithm that is to be operational in that mode. The
references allow a single algorithm to be applied to any
number of system states, or allow all states to have separate
processing structures.

The behavioral modeling aspect also allows the
specification of minimal timing requirements and maximal
power usage. The power characteristics are specified using
attributes of the models, in which the designer can enter a
maximum power limit. Maximal system delays can be
specified for any pair of input and output ports on the
structural model.

2.3 Resource Aspect

The resource aspect defines the hardware platform
available for the target. The top-level hardware system is a
Network of components. Network components are either
processor elements (DSPs, standard RISC/CISC processors),
programmable logic components (FPGAs), or dedicated
hardware ASIC components for fixed functions (such as FFT
computation).

The components are constructed using cores and ports.
Every processing element must contain one core. The core
object captures the necessary performance attributes of the
processing element such as clock speed, memory, and other
resources. A core represents the processing element. A port
represents a physical communication channel. Ports have
associated protocols and specific pin assignments.
Connections between processing elements are created by
connections between ports.

3. Runtime Execution Environment
The runtime environment must support implementation

platforms with the following attributes:
• Heterogeneity: Optimizing the architecture for

performance, size, and power requires that the most
appropriate implementation techniques be used.
Implementations will require software (implemented on
RISC and DSP processors), configurable hardware on
FPGAs, and a mix of ASIC components.

• Low Overhead/High Performance: the runtime
environment must minimize overhead, since overhead
results in extra hardware requirements.

• Hard Real-Time: The target systems have significant
real-time constraints.

• Reconfiguration: The execution environment must allow
hardware and software resources to be reallocated
dynamically. During reconfiguration, the application
data must remain consistent and real-time constraints
must be satisfied.

These issues must be addressed at multiple levels. At the
lowest level, the hardware must be capable of reconfiguration.
Software-programmable components have excellent inherent
hardware support, since the main point with software is the
ability to change system function based on memory contents.
Internal hardware structures are designed to restrict
dangerous conditions that could damage hardware. In
FPGA’s these safeguards do not exist and must be enforced
manually or by the design/runtime infrastructure.

At a slightly higher level, the internal state of the software
must be managed under changing tasking. Modern operating
systems have evolved to support the flexible implementation
of multiple tasks on a single processor in the form of time-
sharing and/or multitasking. Typically, however, these
configurations are not suitable for low-level efficiency and
hard real-time conditions.

Moving to the next level, we must consider the operation
of multiple functional units operating in a cooperative
network. Finally the issues of application-specific
requirements must be addressed, to allow the peculiar
requirements of specific numerical performance and timing to
be achieved in an implementation. The issues with
consistency are addressed in the next section.

3.1 Hardware Consistency

The runtime system must avoid operational defects during
a reconfiguration event. Hardware consistency can have
many negative effects, from temporary loss of performance in
an operational mode to hardware damage and total,
permanent system malfunction. Typically, these deal with
specific issues involving interfaces between hardware
processes and/or devices. Some of these defects are
illustrated in Figure 1 below.

Figure 1: Hardware Consistency after Reconfiguration

Port contention occurs when bi-directional ports are
improperly initialized or if an improper/inconsistent design is
implemented. In this case, two connected drivers are
enabled. If resistance is sufficiently low, permanent physical
damage can occur to the circuits.

Token loss or duplication results from incorrect
initialization or a loss of communication integrity. Tokens
represent the status of empty or full slots in a communication
interface. An extra token on the sender side can cause too
much data to be sent, resulting in a FIFO overrun. A lost
token can cause communication starvation, resulting in a
system deadlock.

Device state maintenance refers to the control of a
complex external hardware device, such as an attached
processor or storage device. In controlling an external
device, the controlling computational component must
maintain an accurate representation of the device’s state. If a
reconfiguration occurs during a state transition within the
device, or if the reconfiguration modifies the computational
component’s representation of the device, there can be a state
mismatch. This can result in improper commands being sent
to the device, or in a deadlock where both components are
waiting on each other for triggering events.

These three examples show some of the potential hazards
that can occur when the hardware device is improperly
reconfigured. Runtime reconfiguration support must not
permit any of these conditions to occur.

3.2 Software/OS Consistency

Software issues can present a larger challenge to dynamic
system reconfiguration. While the hardware built into
standard microprocessor devices protects against low-level
hardware conflicts, there are many more details that must be
managed. Figure 2 below summarizes some of the potential
problems from an improper reconfiguration.

The example shows an initial configuration of 3 processes
(A, B, and C) in the normal operational state. A
reconfiguration occurs, changing to a new configuration. The
new configuration replaces these process A with A’, C with

C’ and removes process B altogether. The bottom half of the
figure shows the new configuration, along with the potential
errors.
1. The memory associated with process A was not needed in

the subsequent configuration, but was not returned to the
free pool. The result is a memory leak. Long-term
reliability will be adversely affected.

2. Process B’s task structure was not recovered, resulting in
an orphan task within the real-time schedule. The result
of this error can be extra tasks executed by the kernel,
with a loss in performance.

3. During the reconfiguration event, a message was in
transit between processors. By the time the message
reaches its destination, the receiving process no longer
exists, and possibly, the OS/kernel drivers have been

reconfigured. The communication channel is rendered
inoperative.

Figure 2: Software/OS Reconfiguration: Maintaining Consistency

3.3 Application-Level Consistency

At a higher level, the application’s requirements and
implementation details impose restrictions in the
reconfiguration process. Typically, these attributes are highly
application-specific. Two examples of consistency
requirements are displayed in Figure 3 below.

Software/OS Consistency on Reconfig

Proc
B

mem

Proc
A

mem

Proc
C

mem

Msg

Reconfig

Proc
B

mem

Proc
A’

mem

Proc
C’

mem
Msg

Lost

Orphan

Leak

mem

Orig
Filter

New
Filter

Init
Reconfig

Reconfig
Event

Orig
Proc

New
Proc

T1 T2 T3 T4 T2’

Reconfiguration

T3’

Missed Deadlines Period Skew

Token Loss/DuplicationPort Contention

Device State Maintenance

Device Controller

Figure 3: Maintaining Application Consistency Through
Reconfiguration

When a signal processing or controls application produces
outputs, certain signal qualities must be preserved. Often an
external system will require signal output continuity and/or
continuous first derivative properties. In the example, which
swaps filters online, the new filter is operating out of sync
with the original filter. A rapid switchover will create a
discontinuity in both the signal and its first derivative.

Another problem occurs in the attempt to maintain real-
time constraints during reconfiguration. If the
reconfiguration cannot be completed in sufficient time,
deadlines will be sacrificed. In addition, the timebase can be
shifted, resulting in a skew in system output period.

4. Reconfiguration Strategies

From the previous description of potential problems, it is
clear that reconfiguration support must be built into the
design approach, from the lowest levels of the execution
environment, to the high-level design/requirements capture
tools. The extent of support is defined by the requirements of
the target systems. The driving factors include how fast the
system must reconfigure, whether intermediate states must be
preserved (Application Signal Continuity), and if timing must
be preserved. In this section, we examine the potential
reconfiguration strategies and their impact on system
capabilities.

4.1 Reboot Strategy

The first reconfiguration strategy is termed the “Reboot”
approach. This is the simplest approach. It involves the
orderly shutdown of tasks, bringing the system to a known,
clean state. From this state, a new processing structure is
constructed. The implementation for this approach is simple,
requiring the minimum amount of non-standard support from
the execution environment. Since there is no overlap in
execution of processes in adjacent states, there is no need for
additional processing capability.

The drawbacks of this approach are severe. The system is
offline during the reconfiguration time. No events can be
handled, so a system under control is open-loop during that
time. There is no provision for preservation of state. This
can lead to long recovery times when the new configuration is
started. Both of these factors lead to system application
transients, both timing and signal continuity. This approach
is not suited for the majority of embedded, closed-loop
systems.

4.2 State Transition Approach

The second approach allows the insertion of transitory
states between the major system operating modes. These
states allow the system to take smaller steps between

operational modes, resulting in smaller transients. The
intermediate configurations inherit state from their
predecessors. The intermediate algorithms must be designed
to gradually turn the system around. While not continuous,
the steps can be made arbitrarily small.

This approach has several positive aspects. The state
preservation allows transients to be minimized. The
magnitude of the steps can be chosen by the designer to
minimize key application behaviors. Few spare resources are
needed, since the system is operating in only one mode at a
time. The flexibility is limited only by the designers and by
the time available for the transition.

There are several difficulties in this approach. The
execution infrastructure must support the rapid transition of
processes. The environment must avoid all of the potential
hazards discussed previously. The state of the processes must
be retained from the prior step, mapped to the structures
required by the next step, and installed with the new
processing structure. For software, this involves copying of
memory, with possible reformatting of structures. For
hardware, registers must be initialized. The computation of
the mapping may be complex.

The design of intermediate states can be complex,
depending on the application. These transitory states depend
both on the initial state and the final state, the algorithm
characteristics, and the timing requirements. For smooth
application transitions, many intermediate states may be
required, leading to long transition times. (It should be noted
that the application system is still under control during
transition, but probably not the optimal algorithm).

4.3 Parallel State Transition Approach

An extension of the State Transition approach allows the
system to execute several modes in parallel. This has the
same benefits as the state transition approach with the added
benefit of being able to execute algorithms prior to use, in an
offline mode. The state of the offline process can be allowed
to stabilize prior to impacting upon system performance.
When transients have disappeared, the system can be
transitioned to the new state.

This approach has several benefits. The application-level
transients can be minimized by proper design. The downtime
is minimal, as is the operation of the system in a less-than-
optimal configuration. Multiple states can be preserved, not
forcing all information to be encoded in one format. This
minimizes the impact of the design of one mode on another,
thus simplifying design.

There are also several drawbacks. The underlying
runtime environment must support mechanisms for rapid
stepping between processes, the ability to execute multiple
threads simultaneously, and the combination of attributes
from the parallel executing processes.

System design is complicated by the need to design
parallel structures. (In some cases, the parallel approach
allows design separability, simplifying matters.) The

necessary computational resources are increased, due to the
need to execute multiple parallel processes.

Given the difficulties of implementation, the capabilities
of this approach are required to service many reconfigurable
application domains.

5. Execution Environment Design

The previous sections lay out a set of requirements for the
capabilities of the execution environment. They also point
out some of the design complexities. In a vacuum, the
execution environment cannot solve these problems. The
overall system design approach must span from the top-level
algorithm designers/system requirement & resource
specifications down to the hardware/software
implementations. The top-level design issues have been
discussed in terms of a domain-specific modeling
environment, where the environment is tuned to
reconfigurable system design. The Execution Environment
forms the infrastructure onto which these designs are
projected.

The Execution Environment must be designed with an
interface suitable for synthesis from a MIC-Generator
approach. The concepts, properties and interfaces of the
runtime environment must be compatible with the design
representation and synthesis approach. Capabilities and
interfaces should be tuned to simplify the generator. This
requirement demands a simple, uniform interface with a well-
defined, consistent set of semantics that apply throughout the
system. Since the system includes software, hardware, and
interactions between parallel modules, a common structure
must map to a wide range of components.

The execution environment concepts have been driven by
results from using tools developed over the past several years.
These tools are currently used to construct large-scale,
parallel, real-time signal processing systems. The runtime
environment enabled development of CADDMAS systems,
which are used by the USAF for turbine engine testing and
NASA for SSME monitoring and analysis [4].

The semantics of the execution environment implement a
large-grain dataflow architecture. The Worker Function
captures the tasks that are performed by the system.
Communication nodes capture the transfer of data between
workers. Computations can be described as a bipartite graph,
where workers connect to Comm nodes, and Comm nodes
connect to workers. At this level, there are no implied
semantics of the workers. The execution properties of
workers (Data tokens produced/consumed per execution,
timing of execution, etc) are maintained at a higher level.
The semantics of the Comm units are asynchronous queues.

When the generic large-grain dataflow graphs are
implemented, they must be mapped down to a physical
implementation. The implementation takes the form of either
software or hardware. Software workers execute on a DSP or
CPU, which we term Processes. Hardware workers are either
implemented in reconfigurable hardware (FPGA’s), ASIC

implementations, or combinations of both. Processes and
Processors are logically equivalent, representing functions on
data. Processes/Processors are connected via logical Comm
that must buffer, communicate, and match data formats. In
software implementations, the Comm object is implemented
by the OS/Kernel as a Stream, a software queue in memory.
In hardware, the Comm object is implemented with registers
and/or FIFO, or simply wires (Figure 4).

The execution environment spans software and
reconfigurable hardware. The software environment consists
of a simple, portable real-time kernel with a run-time-
configurable process schedules, communication schedule, and
memory management [5]. Communications interfaces are
supported within the kernel, making cross-processor
connections invisible. Memory management is integrated
with the scheduler and communication subsystems, enabling
(but not solving) the problems associated with dynamic
reconfiguration. The kernel allows dynamic editing of the
process table, and of the communications maps. The proper
sequencing of these operations, including task execution
phases, is necessary for the avoidance of reconfiguration
problems. The current approach supports the “Reboot”
approach directly, and will support the more advanced

reconfiguration approaches with cooperation of the
application tasks.

Figure 4: Common Execution Semantics

The hardware execution environment is semantically
similar. The implementation, however, is much different.
The Virtual Hardware Kernel exists as a concept used in the
system synthesis. The MIC Generator synthesizes a set of
VHDL structural codes, one for each configurable device
multiplied by the number of operational modes. Processors
are directly synthesized using predefined components.
Communications elements are selected from a library of
interface types, based on the requirements of the workers on
either end, the required performance, and the available
resources. The communication infrastructure works in
cooperation with the software communications, performing
the signal buffering, and the necessary off-chip interfaces and
data converters.

Stream SW Process Stream HW Process FIFO

Worker
function

Comm

Software Hardware

FIFO

Comm

Asynchronous
Communication
Buffer

Queue in
kernel

Hardware
FIFO

6. System Synthesis

The multi-aspect model of the system describes a possibly
enormous number of design solutions. The set design
solutions must be evaluated to find a set of designs (mode
configurations) that best satisfy a number of design criteria.
This is a very difficult task because there are inherently a
large number of conflicting design criteria in reconfigurable
systems. Each mode has performance requirements that
demand a certain level of performance from the hardware for
a given algorithm. Some hardware components are more
suitable for certain tasks than others. DSPs provide a
general-purpose solution and reasonable performance for
many complex algorithms while ASICs can provide a high-
performance solution at the cost of adding a dedicated fixed-
function IC. The processing needs of the multiple modes of
the system must be met for a single shared hardware
platform. The synthesis process will select feasible
hardware/software architectures for user-definable cost
functions such as weight, power, algorithmic accuracy and
flexibility.

The structural aspect that captures the hierarchical data-
flow with alternatives can represent an exponentially large
design space in a compact form. An algorithm structure may
have an extremely large number of possible implementations.
Searching the design space for a set of configurations to
satisfy the design criteria is accomplished in multiple stages,
each with increased resolution. A symbolic constraint
satisfaction method is introduced to provide an initial pruning
of the design space. This method operates on the binary
design and performance constraints specified for the systems.
This method of pruning is implemented using a symbolic
method known as ordered binary decision diagrams (OBDD).
Information represented in the form of a Boolean function
can be represented efficiently in the form of an OBDD [6].
A symbolic representation is built along with a constraint set.
System design alternatives that do not satisfy this constraint
set may be quickly eliminated. Through the use of the OBDD
representation these design possibilities do not have to be
examined individually allowing for an extremely large design
space to be quickly narrowed.

The design search will continue to narrow down
possibilities through high-level simulation of the system.
Components will have associated performance models that
can be used to compute performance data of the system
configuration being evaluated such as communication
utilization, processor utilization, etc. Finally when the
searching process has narrowed the design space down to
only a few candidate configurations it may be necessary to
fully synthesize these configurations for the target platform
and evaluate their performance through actual run-time
measurements.

At this point, the synthesis procedure can generate the
actual runtime artifacts. From the behavioral models, a set of
tables is produced for the Configuration Manager. This
defines the behavior of the system, in terms of a state

machine. These tables are executed directly by the
configuration manager.

For each configurable component, a set of design files is
generated. One file is built for each component for each
mode. The design is specified in structural VHDL, using
computational components from the design library and
interface components from the runtime system library. These
VHDL files are then compiled using vendor-supplied/COTS
VHDL compilers and part-specific Place-and-Route tools.
The result is a “bitfile”, ready for direct device programming.

For the general-purpose/DSP components, a set of real-
time schedule specifications and communication maps are
generated. These are then processed into a set of object
modules and tables for direct download into the parallel array
of processors. One set of tables is built for each processor for
each mode, and one common executable module is generated
for each processor.

The result of the synthesis and post processing is a
complete executable system, ready for deployment. Current
synthesis capabilities do little optimization (optimization is
an ongoing research topic).

7. Conclusions

Certain high-performance, highly-constrained
applications need to be adaptable to their requirements and
environment. Needed is a method for rapid, automated
system synthesis that can provide maximal use of available
hardware over time through system reconfiguration. FPGAs
are the enabling technology for a computing platform that is
able to adapt to changes in the processing algorithm. FPGAs
may be used as general purpose computing devices whose
flexibility and speed fall somewhere between that of a custom
ASIC and that of a standard CPU.

The use of a domain-specific, multi-aspect modeling
paradigm is key to capturing all relevant information about
the system in an integrated environment. With this
information design choices can be automated to select from
the possible configurations a system configuration that meets
specified design requirements and is also optimized for other
specified metrics such as power use, weight, and algorithmic
accuracy. Extremely large design spaces can result from the
freedom given in defining the algorithm structure
alternatives. Methods are being investigated to manage these
large state spaces symbolically using Ordered Binary
Decision Diagrams (OBDDs). Symbolic manipulation can
provide a way to prune the design space without examining
each design alternative individually.

The current modeling environment is being evaluated.
Applications are being modeled to ensure all relevant
information is captured in the models. A set of intrinsic
components is being constructed for the hardware
communication interfaces. Currently, systems are being
synthesized for direct hardware implementation from the
models. Dynamic reconfiguration approaches are being
tested and refined.

 Many issues need to be explored with respect to dynamic
reconfiguration at the application level. Suppose processing
algorithm A is operating and reconfiguration occurs to switch
over to algorithm B, what does an output common to both of
these algorithms? Is there a discontinuity at the point of
reconfiguration observed? If these outputs are used to provide
information to a control system this may be unacceptable.

References

[1] J. Sztipanovits, G. Karsai, T. Bapty, “Self-Adaptive Software
for Signal Processing,” CACM, Vol. 41, No. 5, pp. 66-73, May,
1998.

[2] J. Scott, T. Bapty, S. Neema, J. Sztipanovits, “Model-
Integrated Environment for Adaptive Computing,” MAPLD '98,
Proceedings of the 1998 Military and Aerospace Applications
of Programmable Devices and Technologies Conference, Sept
15-16, 1998, Greenbelt, MD.

[3] J. Sztipanovits, et al., “MULTIGRAPH: An Architecture for
Model-Integrated Computing” Proceedings of the IEEE
ICECCS’95, Ft. Lauderdale, Florida, Nov. 6-10, 1995.

[4] B. Abbott, T. Bapty, C. Biegl, G. Karsai, J. Sztipanovits,
"Model-Based Software Synthesis," IEEE Software, pp. 42-53,
May, 1993.

[5] Bapty, T., Abbott, B., "Portable Kernel for High-Level
Synthesis of Complex DSP-Systems," Proceedings of ICSPAT
'95, Boston, MA, Oct 24-26, 1995

[6] R. Bryant, “Symbolic Boolean Manipulation with Ordered
Binary Decision Diagrams,” Technical Report: CMU-CS-92-
160, School of Computer Science, Carnegie Mellon University,
1992.

