
Portable Kernel for High-Level Synthesis of Complex

DSP-Systems �

Ted Bapty and Ben Abbott

Department of Electrical Engineering

Vanderbilt University

Nashville, TN 37235, USA

bapty@vuse.vanderbilt.edu

Abstract

Modern DSPs are low cost and have integ-
ral communications, encouraging their use in
large parallel systems. E�ective software meth-
ods are critical to the success of this trend.
A model-based program synthesis approach has
been proven e�ective for developing large par-
allel instrumentation systems. This paper de-
scribes an essential component of this ap-
proach, the low level kernel. The kernel has
been designed to support the facilities neces-
sary for the model-based synthesis approach.
The kernel supports parallel, real-time systems,
requires minimal resources, and is portable
across many embedded and general purpose
machines.

Introduction

As DSP's gain computational power and the
ability to communicate, many exciting and
challenging application areas open. These ap-
plications are typically embedded into com-

�This work was supported in part by the
AFOSR/AFMC, United States Air Force, contract
number F49620-94-C-0076.

plex systems, such as manufacturing plants,
aerospace systems, and testing facilities. The
jobs include monitoring, analysis, and system
control.
The computational requirements overrun the

capabilities of a single processor, mandating
the construction of large parallel DSP systems.
The designers are then faced with two chal-
lenges: 1) understanding the domain where the
system will be applied, and integrating into the
environment; and 2) understanding the com-
plexities of a parallel real-timeDSP system and
developing low-cost, reliable software systems.
While not completely solved, the �rst chal-

lenge has been addressed e�ectively using the
technique of Model-Based Systems (See �g-
ure 1). This technique involves:

1. Representing the environmental factors,
design goals, real-time constraints, and
available hardware platforms in a consist-
ent, domain-speci�c Model. The mod-
els are often graphically depicted, in a
paradigm familiar to the intended user.

2. Interpreting these models to Synthesize ex-
ecutable systems. The products of the

Model Builder
Domain-1

Model Builder
Domain-2

RT System Design 1

Module A Module B

Modular Kernel

Platform 1

C

Model Database

Model Interpreter

Interpreter

Analysis

Model Analyzer

Domain-Independent Intermediate Layer

Real-Time Platform-
Dependent Synthesizer

Real-Time Platform-
Dependent Synthesizer

RT System Design n

Modular Kernel
Module X Module Y C

Platform n

Figure 1: Model-Based Synthesis Architecture

synthesis process are hardware speci�ca-
tions (Processors and Connections) and
software speci�cations (Tasks and Data-
paths).

3. Wiring the synthesized hardware architec-
ture and Building the synthesized software
design upon the hardware.

4. Execution of the design in the embedded,
real-time application.

The models and interpretation methods are
kept domain-speci�c, to limit the complexity of
the software synthesis and to keep represent-
ation mechanisms familiar to the domain ex-
perts. The output of the interpretation pro-
cess is a graph-based formalism, representing
the computational structures and information

ow patterns describing the synthesized sys-
tem. From this description, a variety of sys-
tem implementations are possible, varying in
performance, implementation technology, DSP
choice, etc.

The Modular Kernel

The implementation of e�cient parallel real-
time, embedded, DSP-based systems is a chal-
lenging task. This paper describes a ker-
nel with the necessary facilities to support
automatic software synthesis of these systems.
The goal of this kernel is quite di�erent from
other real-time kernels: programmer conveni-
ence takes a back seat to run-time e�ciency
and system exibility. System con�guration
and programming that would be considered
too tedious for a programmer to manage are
automatically generated by the high-level tools.
The system user never interacts directly with
the kernel. We must support only the minimal
set of features required to make synthesis e�-
cient.
The design requirements for the kernel are as

follows:

1. Heterogeneous Multiprocessor: in-
terconnecting hundreds of di�erent pro-
cessors in a single system;

2. Hard and Soft Real-Time: support-
ing applications that interact with time-
critical sensors and actuators.

3. Size: kernel and application must �t on
embedded processors, in 32 K RAM;

4. E�ciency: minimal overhead in system
services to reduce hardware weight, size,
and cost.

5. Portability: supporting TMS320C3x and
C4x, transputers, PC's, Workstations;

6. Maintainability: The number of errors
within any code is proportional to the size
and complexity of the code. Decreasing
both factors enhances the possibility of a
low-cost maintenance arrangement.

7. Simpli�ed Application Development

and Debugging: Errors in the applica-
tion are bound to show up in side e�ects
within the kernel, since the embedded sys-
tem has little in the way of memory pro-
tection. Simpli�ed data structures make
detection and localization of these errors
more manageable.

To satisfy these requirements, the Modular
Multigraph Kernel (MMGK) has been imple-
mented. An overview of the kernel structure is
shown in �gure 2. The primary components of
the kernel are:

1. Real-Time Scheduler: The scheduler
modules are data-driven dataow, syn-
chronous static scheduling, or a dy-
namic algorithm, such as rate-monotonic
scheduling.

2. Communications: an asynchronous
communication system providing streams
between adjacent processors. Communic-
ation is guaranteed real-time for the stat-
ically scheduled case.

3. Memory Management: a structured
bu�er pool.

Key design decisions have been to integ-
rate the memory management, communica-
tions, and scheduling in a coherent manner.
Several bene�ts are achieved through this in-
tegration. Asynchronous communications can
occur with no extra memory copying. Commu-
nications are schedulable as well, with options
of �fo and priority ordering. The schedules

Communication
Manager

Real-Time
Scheduler

Memory
Manager

Buffer 1
Buffer 2
 . . .
Buffer k

Task 1
Task 2
 . . .
Task n

Stream 1
Stream 2
 . . .
Stream m

Figure 2: Basic Kernel Architecture

and communication streams can be reassigned
dynamically, allowing for structurally adaptive
systems.

Kernel Internals

The tasks operating under the kernel see a very
simple external interface. Only a handful of
functions are needed. These functions are (see
�gure 3):

� long *get input bu�er(index) returns a
pointer to the head of the input queue on
the indexed input port. The data remains
in the queue until explicitly removed.

� void dequeue input(index) is used to ex-
plicitly remove the bu�er from the input
stream queue. The process is responsible
for returning this bu�er to the memory
management system.

� void enqueue output(int index, int size,
long *ptr) adds the bu�er *ptr to the end
of the output stream queue. The bu�er
will be transmitted and automatically re-
turned to the memory management sys-
tem. A bu�er can only be propagated or
returned once. Multicasting must expli-
citly allocate and copy bu�ers.

Process

Process

Streams

Local

Process

Outputs

Inputs

Arbitrary
Mapping

Outputs

Streams

Processor Boundary

A

B

C

Figure 3: Kernel Task Interface

� int output slot available(int index) de-
termines if there is space in the stream
output queue. int bu�ers in queue(int in-
dex) returns the number of bu�ers within
an output queue.

� long *get bu�er(int size) returns a pointer
to a bu�er of length = size * sizeof(long).

� void return bu�er(long *bu�er) returns a
bu�er to the structured bu�er pool.

Application of the Kernel

The kernel has been used in the implementation
of several large-scale, real-time instrumenta-
tion system that are currently in use for the
processing of engine test data at Arnold AFB
and elsewhere. The largest system integrates
over 60 TMS320C31 and C40 processors with
transputers and PC's in an interactive pro-
cessing systemwith a graphical front-end. This
high-speed computer architecture continuously
processes from 48 to 192 high-bandwidth sig-
nals, achieving a sustained performance of over
800 MFLOPS (from a theoretical peak of ap-
proximately 2 GFLOPS).

The system is named the Computer As-
sisted Dynamic Data Analysis and Monitor-
ing System (CADDMAS). Other heterogen-
eous CADDMAS architectures use INMOS
transputers for communication and general
purpose processing, Zoran and Motorola Di-
gital Signal Processors for signal processing op-
erations, and Texas Instruments Graphics Pro-
cessors for on-line graphical display of calcu-
lated data. In all, more than ten of the systems
have been constructed.

Testing turbine engines involves running an
instrumented version of the engine through
various operational maneuvers (e.g. Acceler-
ation or Throttle Snap). These tests are typ-
ically conducted while the engine is in a test
cell (wind tunnel) capable of simulating alti-
tude, atmospheric, and air speed conditions.
In order to analyze dynamic vibrations, strain
gauges (and other stress sensors) are attached
to the turbine fan blades. A typical aeromech-
anic stress test instruments the engine with sev-
eral hundred stress sensors along with a variety
of temperature, pressure, ow, and revolution
per second sensors. Stress sensors can gener-
ate signals with bandwidths in the tens of Kilo-
hertz.

Historically, analysis of turbine engine stress
data has been an o� line process. On-line
capabilities were limited to oscilloscopes show-
ing unprocessed amplitude vs. time inform-
ation and a small number of signal analyzers
for simple spectral analysis on single channels.
The bulk of the raw information was recor-
ded onto analog tapes. Later, the analog tapes
were digitized into conventional computers for
analysis. The processing of this data was ex-
tremely compute intensive, and consequently,
only a selected portion of the data was reduced.
The analysis imposed a delay of several weeks
on the availability of �nal results. Thus, vital

information was not available for on-line test
planning and evaluation.
The CADDMAS system was developed to

provide these capabilities on-line. The system
processes all sensor readings and presents the
results both graphically and in hard copy form,
during the test. The immediate availability of
results opens the possibility for interactive test
planning.
A graphical user interface allows the user to

con�gure various visualization screens interact-
ively. The user can select the number of visible
windows on a screen, the contents of each plot
window, and the parameters of each plot, such
as titles, labels, axis ranges, and plot type, and
display window update rate. Stored con�gura-
tions automate the operation of the user inter-
face. The user can also print any window or
all windows on a screen.

Conclusions

The model-based approach has proven to be
a very useful tool to help manage the com-
plexity of this large, parallel system. A small
team of two engineers has constructed every
CADDMAS system to date. A large, 24 chan-
nel system can be built in a matter of hours.
The kernel is an integral part of the model-
based strategy. The small size allows the use
of inexpensive processor modules. The simple
structure of the kernel allows easy porting to
new architectures and inexpensivemaintenance
of the code. As soon as the the kernel is sup-
ported on an architecture, the full power of
the high-level model-based synthesis tools are
available.
Future plans for the tools and techniques in-

clude: better methods to map the signal ow
graph to the hardware; advanced synthesis
techniques; support for more real-time sched-
ulers; support for more hardware architectures.

Future plans for CADDMAS applications in-
clude several 300 channel 50 KHz systems us-
ing Texas Instruments TI 320C4x processors
in conjunction with transputer technology. An
e�ort is underway to commercialize the tech-
nology.

REFERENCES

[1] Abbott, B, Bapty T. Biegl, C. Karsai,
G., Sztipanovits, J. \Model-Based Soft-
ware Synthesis", IEEE Software, pp. 42-
53, May, 1993

[2] Karsai, G., Sztipanovits, J. \A Visual
Programming Environment for Domain-
Speci�cModel-based Progrmming.", IEEE
Computer, March 1995.

[3] Ledeczi, A., Abbott B.A., \Parallel Sys-
tems with Flexible Topology", Proc. of
the Scalable High Perfomace Computing
Converence, pp271-276, Knoxville, TN
1994.

[4] Abbott,B. A., Bapty T.A., \Experiences
Using Model-Based Techinques for the
Development of a Large Parallel Instru-
mentation System", Proc. Conf. Signal
Processing Applications and Technology,
Cambridge, Mass, pp573-582, 1992

