
1

Analyzing the Cascading Effect of Traffic
Congestion Using LSTM Networks

Sanchita Basak, Abhishek Dubey, Bruno P. Leao

Abstract—This paper presents a data-driven approach for
predicting the propagation of traffic congestion at road seg-
ments as a function of the congestion in their neighboring
segments. In the past, this problem has mostly been addressed
by modelling the traffic congestion over some standard physical
phenomenon through which it is difficult to capture all the
modalities of such a dynamic and complex system. While other
recent works have focused on applying a generalized data-driven
technique on the whole network at once, they often ignore
intersection characteristics. On the contrary, we propose a city-
wide ensemble of intersection level connected LSTM models
and propose mechanisms for identifying congestion events using
the predictions from the networks. To reduce the search space
of likely congestion sinks we use the likelihood of congestion
propagation in neighboring road segments of a congestion source
that we learn from the past historical data. We validated our
congestion forecasting framework on the real world traffic data
of Nashville, USA and identified the onset of congestion in each
of the neighboring segments of any congestion source with an
average precision of 0.9269 and an average recall of 0.9118 tested
over ten congestion events.

Index Terms—Cascades, Long Short Term Memory, traffic
congestion, network graph, Forecasting,

I. INTRODUCTION

In a large-scale interconnected system such as a traffic
network, it is important to study the effect of cascading
failures, where failure in one part of the system eventually
triggers failure in other parts of the system. A primary road
congestion created at a source can trigger secondary and
tertiary road congestion due to physical connectivity. It can
cause severe operational problems including traffic delays and
waste of time and energy. To mitigate such effects and build
effective route guidance systems it is necessary to forecast
the propagation of congestion in advance to predict when the
neighboring road segments of a congestion source will be
affected in the near future.

In past, traffic congestion prediction has been carried out
in both model-driven and data-driven approaches. Model-
driven approaches are based upon mathematical modelling
to capture traffic congestion dynamics. For example, Fei et
al. [1] modeled the traffic congestion inspired by shockwave
theory, Arnott [2] represented the network dynamics as a
bathtub model. However, accurate modeling of the dynamic
behavior of a complex system such as traffic networks using
standard mathematical or statistical methods is a challenging

S. Basak and A. Dubey are with the Electrical Engineering and Com-
puter Science Department at Vanderbilt University, USA. e-mail: san-
chita.basak@vanderbilt.edu; abhishek.dubey@vanderbilt.edu

B.P. Leao is with Siemens Corporate Technology, Princeton, NJ, USA. e-
mail: bruno.leao@siemens.com;

Fig. 1: A sample road network and corresponding connected
LSTM networks.

task because the speed distributions in a large scale dynamic
system like traffic network cannot be always modeled by
predetermined distributions and all the modalities of such a
dynamic and complex system cannot be captured [3].

On the contrary, in case of data-driven approaches the
complex functional relationships among several influencing
factors can be learned by studying large amounts of data
without relying on any standard and fixed statistical relation.
Recent works on data driven approaches [4] [3] in traffic
prediction considered the traffic network as a homogeneous
system and were mostly focused on applying a generalized
single architecture for the entire network at once ignoring
road intersection-specific information. Thus it is difficult to
capture the dynamically changing influence of each neighbor
on a certain target road segment.

To address this gap, we developed a citywide congestion
forecasting framework that works at a much higher granular-
ity tailored towards capturing the specificity of each traffic
intersections of the network. To develop such an integrated
architecture we modeled the traffic network to a directed
connected graph encapsulating the spatial interconnections
where each neighbor of a road segment is a function of
spatial distance as well as traffic flow directions. Along with
modelling spatial dependencies, the temporal aspect of the
traffic flow has been captured by multiple recurrent neural
network architectures. Our approach has been validated with
the real world traffic data from Nashville, USA collected from
the HERE API [5].

Figure 1 illustrates the representation of a sample road
network with directions of traffic flow and its corresponding

978-1-7281-0858-2/19/$31.00 © 2019 IEEE

2

Fig. 2: Each computing processor associated with each road
segment in the network collects the speed of the neighboring
segments according to the graphical model of the network,
process them to forecast the speed and send the results to
a central cloud server which can be used for taking traffic
routing decisions

framework of the connected fabric of neural architectures.
These neural modules associated with each and every edge of
the network takes into account the information from itself and
its outgoing neighbors for certain past sequences upto current
time to determine the future traffic state of the target edge.
Figure 2 shows a deployment diagram where each computing
processor associated with each road segment in the network
collects the traffic speed of the neighboring segments from
the associated sensors according to the graphical model of the
network, process them to forecast the speed of the target road
segment and send the results to a central cloud server, which
can be used for taking traffic routing decisions.

Prior research work has been based on training the network
with several congestion specific incidents and learning from
them [6] and applying the learnt models on similar traffic
incidents in future. Here, we do not train our model on specific
congestion incidents as being trained on specific incident data
may limit the model’s performance on similar situations only.
Rather, we trained our architecture on all possible traffic
conditions observed over the entire city for almost one and
a half month and tailored our algorithms to identify the
congestion propagation phenomenon from them.

Contributions Our contributions in this paper are:

• We developed a city-wide connected congestion fore-
casting framework by incorporating intersection-specific
information. We performed spatiotemporal modelling of
the transportation network by expressing the network as
a directed connected graph and used Long Short Term
Memory (LSTM) networks to learn the distribution of
the traffic speed of a target road in future as a function
of the past sequences of observed speed of the target road
and its immediate outgoing neighbors.

• We describe algorithms for identifying congestion events
at any part of the network based on spatial and temporal
correlations of the traffic speed at any road segment and
its associated neighborhood. We also reduce the search
space of the real time congestion forecasting algorithm by
making it focus on intersections with a higher likelihood
of congestion progression as learned from the historical
data.

• The congestion forecasting framework has been validated
by applying it on ten congestion events identified from the
real traffic data of Nashville. We effectively identified the
onset of congestion in each of the neighboring segments
of the congestion source with an average precision of
0.9269 and an average recall of 0.9118 tested over those
ten events.

The rest of the paper is organized as follows: Section II
walks through the problem formulation including graphical
modelling of the network. Section III discusses the related
research in traffic congestion forecasting. Section V dis-
cusses our proposed approach for the congestion forecasting
framework. Section VI discusses the results and section VII
concludes the paper with future directions.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We model the transportation network as a directed con-
nected graph defined as G = (V,E), where V is a set of
nodes representing intersections. E is the set of road segments
connecting the nodes. In the graph, let vi ∈ V denote a node
and eij = (vi, vj) ∈ E represent an edge. In the graph we
apply in and out operator such that the operator in : V → 2E

gives all the edges for which this node v is the destination
and the operator out : V → 2E gives all the edges whose
source is node v. The indegree of a node v is the number
of road segments incoming to the node and can be calculated
as |in(v)|, whereas, the outdegree of a node v is the number
of road segments outgoing from the node and is calculated
as |out(v)|. Similarly, the source and destination node of an
edge can be accessed. Each node is associated with some static
information. The attribute of a node v ∈ V contains longitude
and latitude. vloc : V → <×< provides location of node v as
a tuple of two reals (latitude, longitude). Each edge contains
the information of the geographical shape of the road segment
as a sequence of latitude longitude tuples.

Definition 1 (Traffic Message Channel (TMC)): We call an
edge a traffic message channel (TMC) if it has timestamped
traffic speed data associated with it. We denote the set of TMC
as TMC ⊆ E. Each sensor (s ∈ S)(s : TMC × T → <+)
represents the speed readings of each traffic message channel
at times T .

In addition to the traffic message channels, we define certain
operations to provide us access to neighbors of a TMC. These
operators are defined below.

Definition 2 (k-hop incoming neighbors): These are the k-
nearest hops of the incoming edges feeding traffic into an edge.
The set of k hop incoming neighbors Nk

in(e) can be defined
recursively as

⋃
x∈Nk−1

in (e)(in(src(x))) using the definition of
1 hop neighbors, N1

in(e) =
⋃

x∈in(src(e))(in(src(x)))
Definition 3 (k-hop outgoing neighbors): These are the k-

nearest hops of edges taking traffic away from an edge
via its out node. We define this function recursively as
well. N1

out(e) =
⋃

x∈out(dst(e))(out(dst(x))). Given the
set Nk−1

out , the set Nk
out can be defined as Nk

out(e) =⋃
x∈Nk−1

out (e)(out(dst(x))).
Figure 3 provides an illustrative example of k-hop incoming

and outgoing neighbors.

3

Fig. 3: An illustrative representation of k-hop incoming and
outgoing neighbors. In this figure, ’A’ is the target road,
’G’ and ’H’ are its 1st hop incoming neighbors, ’I’ and ’J’
are its 2nd hop incoming neighbors, ’B’ and ’C’ are its 1st
hop outgoing neighbors and ’D’,’E’ and ’F’ are its 2nd hop
outgoing neighbors.

Definition 4 (Jam Factor): The jam factor JF : TMC →
[0, 1] is an indicator of number of cars over capacity on the
road. Generally JF is from 0 to 10, but we normalized its
value within 0 to 1, where JF = 1 indicates non-moving
traffic and JF = 0 indicates free flowing traffic.

Definition 5 (Free flow speed): The free flow speed FF :
TMC → <+ as the average of all maximum speeds observed
when the jam factor observed on the TMC is 0.

A. Problem Statement

This paper solves the following problem: if a congestion
event is observed at a certain road segment at any point of time
in the transportation network, when does its effect propagate
to its k − hop incoming neighbors. We define the congestion
event and the congestion cascade below.

Definition 6 (Congestion Event (CE)): A Congestion
Event (CE) at an edge e is a tuple CE(e) = (t, s(e, t)) where
s(e, t) ≤ 0.6 ∗ FF (e).

Xiong et al. [7] used reduction of 50% speed compared
to free flow speed as an indicator of congestion. We use the
congestion criteria described as above.

Definition 7 (∆− Cascade Event): The Delta Cascade
Event is defined as a congestion event where more than 50%
of first hop neighbors (N1

in(e)) show 60% speed reduction
with ∆ time steps. We say e is the source of the cascade
event.

Given a city network and the data collected from TMC
segments our goal is to find the ∆− Cascade Events across the
city and show that without training specifically on the cascade
or congestion events we can identify the time of propagation of
congestion up to the k− hop incoming neighboring segments
where k varies from one to three.

B. Dataset

In this paper we study the congestion forecasting problem
on a real world traffic dataset. Particularly we use the traffic
data of Nashville (USA) collected by our research team from
HERE API [5]. In this dataset each road segment is expressed
as a Traffic Message Channel (TMC) having a TMC ID.

Each TMC ID has timestamped information consisting of
traffic speed, jam factor, free flow speed collected over several
months. We use the traffic data from January 1, 2018 to
February 12, 2018. Each TMC ID signifies a specific road
segment in the network and contains the sensor information
for that particular segment. In Nashville we have a total of
3724 TMCs.

III. RELATED WORK

Previous work on traffic congestion analysis have adopted
several model-driven approaches. Fei et al. [1] proposed a
time-variant model of congestion boundary founded on shock-
wave theory which is based on the analogy of traffic with the
fluid flow. The parameters used in the model are specific to
the design and features of a particular type of road segment
and thus is difficult to be generalized to new traffic scenarios.
Arnott [2] modeled the traffic congestion as a bathtub model
to analyze the traffic conditions in downtown areas during
rush hour. The model compares the traffic inflow and outflow
to the water flowing into and out of the tub with the height
of water being proportional to the traffic density. The author
proposed time-varying congestion pricing in situations where
the demand is higher than the capacity. JianCheng et al. [8]
proposed a congestion propagation framework inspired by the
cell transmission phenomenon to identify network congestion
bottleneck under various traffic demand scenarios.

Xiong et al. [7] predicted congestion propagation patterns
by constructing propagation graphs as a sequence of the traffic
conditions of the road segments to identify in which of the
roads the congestion will propagate from the source. Several
other Deep Learning approaches [9] are suitable to be applied
to congestion forecasting. Zhang et al. [10] carried out traffic
congestion prediction by taking the snapshots of the traffic
network as images and trained deep autoencoder architectures
to predict the congestion levels. Polson et al. [4] developed
a Deep Learning architecture to predict traffic flows where
the first layer identifies the spatiotemporal relations among
predictors and the second layer models the non-linearities.
They commented that the recent observations are stronger
predictors than the historical values in predicting future traffic
conditions.

Ma et al. [3] used data driven techniques to analyze the
congestion evolution in transportation network. They used
conditional Restricted Boltzmann Machine (RBM) and Re-
current Neural Networks (RNN) to predict traffic congestion
applied to Global Positioning System (GPS) data collected
from taxi rides. The authors commented on the fact that
although their prediction model performed well, in future
they would like to explore the possibility incorporating spatial
interactions among adjacent road segments in order to improve
prediction accuracy. The use of recurrent neural networks
specially Long Short Term Memory (LSTM) Networks for
short term traffic volume prediction has also been evidenced in
Zhao et al. [11]. Due to the exceptional capability of learning
temporal sequence, LSTMs are used in various other domains
including language learning [12], prognostics [13] as well as
traffic prediction. Tian et al. [14] also compared the traffic

4

speed prediction performance by LSTM-RNN, with that of
Support Vector Machine, Random Walk and Feed-forward
neural networks and showed the supremacy of the LSTM-
RNN model.

Past research works in traffic congestion forecasting using
data driven approaches were contingent upon a single network
approach where the entire information of the network state
at any point of time is inputted and flattened as a vector.
As a result, we lose the specific neighborhood information
obtained from the network graph because the flattened vector
does not incorporate the spatial closeness information along
with the traffic data. Instead, in this work, we use multiple
recurrent architectures with specific attention to each of the
traffic channels in the network. Thus, our models are tailored
towards capturing the specific dynamic relationships of any
traffic channel and its neighbors which is not possible for
a single neural network architecture for the entire city to
provide the same level of resolution of encoding such inter-
relationships.

IV. CITYWIDE CONNECTED LSTM FABRIC

LSTM is a form of recurrent neural network with the
capability of processing sequences of data. It was proposed by
Hochreiter and Schmidhuber [15]. LSTM prevents the vanish-
ing and exploding gradient problem encountered in recurrent
neural networks so that they are capable of capturing long
temporal dependencies using backpropagation through time.
They are used in this work to model the temporal dependencies
of the traffic speed that will affect the speed in future. We
build a connected LSTM based architecture that is intersection
specific. To model the future speed of a particular TMC we use
the information from its relevant neighboring segments. Now,
in a transportation network traffic flows to a road from its
incoming neighbor but congestion flows in a reverse direction
of traffic flow, i.e., from an outgoing neighbor to a target road.
As the congestion moves in a sequence, the speed forecasting
detector for a target road is trained on the traffic data of the
target road segment and its immediate outgoing neighbor, since
congestion flows from an outgoing neighbor to a target road.
In our previous work [16], we used information from both the
incoming and outgoing neighbors to model real-time traffic
speed but as we are now concerned with predicting future
traffic speed under the influence of congestion we use the
information from the outgoing neighbors only.

The function of the traffic predictors for speed forecasting
∀e ∈ TMC can be expressed as:

s(e)ct+p = f(〈s(e)〉ctct−j , 〈N
1
out(e)〉

ct
ct−j) (1)

Where s(e) denotes the speed of any TMC e, ct denotes the
current timestep, p is the number of timesteps we are going to
predict ahead in future and j is the number of past timesteps to
look back. So, future traffic states of the TMC s(e), evaluated
at current timestep ct, has been modeled as a function (f) of
traffic states of its own and its immediate outgoing neighbors’
speed (N1

out(e)) from timestep (ct − j) to ct. The traffic
predictors take into account the normalized speed data of each

Fig. 4: Comparison of mean Squared error in traffic forecasting
with and without using neighborhood information to solely
evaluate the importance of using neighborhood information in
the traffic prediction architecture.

TMC, normalized w.r.t. the free flow speed. Each TMC in the
network has such LSTM based traffic predictor associated with
it. Figure 1 shows an example of a sample road network and
its corresponding connected fabric of LSTM.

Our approach is unique in the sense that it takes into account
the information from neighbors to forecast the traffic speed of
a target road. To solely analyze the importance and influence
of neighboring road segments in determining the future traffic
speed of a target road segment, we trained two simple feed-
forward networks with same architecture, optimizer and loss
functions. The first network is trained to forecast traffic speed
using the information from the neighboring road segments
and the second network is trained to forecast the traffic
speed without using any information from neighbors. Figure
4 shows the comparison of the mean squared errors (MSE) in
forecasting the traffic speed over five randomly chosen TMC
IDs. We observe that, given same architectural constraints the
forecasts using the neighbors’ information have far less MSE
than the forecasts without using the neighbor’s information
clearly indicating the need for using neighborhood information
in traffic forecasting.

A. Selecting number of past observations

Selecting the number of past observations is an important
hyperparameter to tune the LSTM models. We look back
two past sequences of the traffic speed i.e., we look back
into the past 20 minutes of the data for predicting the future
traffic speed. Choosing longer time sequence doesn’t improve
performance in this case, because the future speed can be
more closely approximated with speeds in recent history.
Figure 5 compares the mean squared errors (MSE) associated
with different number of past observations taken into account
while predicting the future traffic speed. It shows that MSE
is not decreasing as we take more number of past data
samples into account and is least when looking back for two
timesteps. Hence, we choose the hyper-parameter representing

5

the number of past observations as two.

Fig. 5: Comparison of the mean squared errors of taking
different number of past observations in predicting the future
speed

B. Selecting the time resolution for the LSTM fabric

The timestep i.e., the interval at which the traffic data is
discretely sampled is a critical hyperparameter. Figure 6 ‘a’,
‘b’ and ‘c’ show a total of 500 minutes of data collected at
an interval of 1 minute, 5 minutes and 10 minutes respec-
tively. When we predict multiple timesteps ahead, the error
in prediction increase gradually. If we choose data collected
at one-minute time interval, then we need to predict 10 times
to get a prediction after 10 minutes, which includes the error
accumulated at each level of prediction. Instead if we choose
data sampled at 10 minute time interval, then we just need to
predict once to get a 10-minute ahead prediction, given we do
not lose much information by sampling the data at 10 minute
interval.

When plot ‘a’ is regenerated from plot ‘c’ by making each
datapoint of plot ‘c’ represent same values for 10 correspond-
ing samples of plot ‘a’, the mean squared error between the
actual signal in plot‘a’ and the regenerated signal of plot ‘a’
from the downsampled version in plot ‘c’ is only 0.00138.
Generally, for a normal data distribution, 95% of the data
remain within two standard deviations from the mean. Also,
there are no two consecutive datapoints in plot ‘c’, where the
change in signal values is more than two standard deviations of
the data samples in plot ‘a’. Hence we chose the timestep as 10
minutes for this work. Our predicted results using LSTMs with
timestep = 10 are in multiples of 10 minute time intervals.
Later in this paper we show how we fine-tune our solution to
predict congestion times in multiple of 5 minute time intervals
using LSTMs with timestep = 5.

C. LSTM architecture

We used a two-layered deep LSTM network for each traffic
predictor with 100 units in each layer and a dense output layer.
We used the mean squared error (MSE) between the predicted
and actual speed as the loss function and the ‘Adam’ optimizer
for optimizing the loss function.

D. Predicting multiple timesteps ahead

Using the connected LSTM fabric we can predict multiple
timesteps ahead in future. As we want to predict ahead from
current time, we require the information upto k-hop neighbors

Fig. 6: Selecting hyper-parameter: time constant at which the
data should be sampled.

of a target road to predict the traffic speed for ‘k’ number of
timesteps in advance. For example, a one-step ahead prediction
requires the past and current traffic speed of the 1st hop
neighbors, whereas, a two-step ahead prediction requires the
one-step ahead predictions of the target road segment as well
as that of the 1st hop neighbors to be treated as input. Now,
the one-step ahead predictions of the 1st hop neighbors require
the traffic information from their neighbors, i.e., the 2nd
hop neighbors of the target road. So, for a two-step ahead
prediction we need information upto 2nd hop neighbors.

Figure 7 shows predictions upto three timesteps ahead in
the future incorporating information upto 3rd hop neighbors
following similar approach. The 0-th timestamp is the current
time and we predict one, two and three timesteps ahead
from the current time. This is how the connected fabric
of LSTM architectures inter-dependently can produce multi-
timestep ahead predictions. But the difference between actual
and predicted speed while predicting three timesteps ahead
is 1.3414 times more than that of two timesteps ahead and
2.6857 times more than that of one timestep ahead. So as we
move further away in the future, the difference between the
actual and predicted speed will increase as shown in Figure 7.

V. CONGESTION PROGNOSTICS

In this section we describe our approach of building a
congestion forecasting framework with an overall connected
fabric of LSTM architectures.

6

0 1 2 3
0

0.2

0.4

0.6

0.8

1

Number of timesteps

N
or

m
al

iz
ed

sp
ee

d

Actual Speed
Predicted Speed

Fig. 7: Predicting normalized traffic speed of TMC ‘4424-
0.12847’ upto three timesteps, i.e., 30 minutes ahead from
current time using the citywide connected LSTM fabric.

A. Training Phase

We choose the data from 01.01.2018 to 01.27.2018 to train
the traffic predictors for each TMC. We employ the LSTM
fabric discussed in Section IV to train the network. The trained
model for each TMC is saved which is used again in the
congestion forecasting phase. Figure 8 shows an example of
the traffic speed forecasting performance on a road segment
having five neighbors. It shows that the forecasted speed after
ten minutes and the actual speed after ten minutes overlap
each other with a mean squared error of 0.0046.

Fig. 8: Comparing the forecasted speed after 10 minutes and
the actual observed speed after 10 minutes on a TMC ID
having five neighbors.

In this work, we also compare the mean squared error
(MSE) in predicting one vs. multiple timesteps ahead in future
for multiple TMCs. Figure 9 compares the mean squared errors
in forecasting one, two, three and four timesteps ahead for 45
TMCs out of 3724 TMCs in Nashville and shows that the
error increases vastly as we predict for times much ahead in
the future.

B. Congestion Forecasting Algorithm

Algorithm 1 illustrates the overall congestion forecasting
architecture. Once congestion is identified at a target road seg-
ment the algorithm starts with gathering the 1st hop incoming
neighbors N1

in(e), For each of those 1st hop neighbors, it finds
the 2nd hop incoming neighbors denoted as N2

in(e). It repeats
the process for 3rd hop incoming neighbors to find a set of

Fig. 9: Comparison of the mean squared errors among fore-
casting one, two, three and four timesteps ahead respectively
for 45 TMC out of 3724 TMC in Nashville. The plot shows
first 45 TMC only for brevity.

Algorithm 1: Algorithm to forecast congestion from a
source up to its 3rd hop incoming neighbors

1: Input: Congestion event CE at TMC e at timestep n
2: Ñ = []
3: Ñ .append(N1

in(e))
4: for each i in N1

in(e) do
5: Ñ .append(N2

in(e))
6: for each j in N2

in(e) do
7: Ñ .append(N3

in(e))
8: end for
9: end for

10: for timestep n : n+ 10 do
11: flag = zeros(length(Ñ))
12: for each i in Ñ do
13: if predict next(i, n− 1)− predict next(i, n) ≥

δ ∗ predict next(i, n− 1) and
predict next(i, n) ≤ 0.6 ∗ FF (e) then

14: flag[i] = 1
15: Output Ñ will have onset of congestion at

timestep (n+ 1)
16: end if
17: end for
18: for each j in flag do
19: if flag[j] = 1 then
20: Ñ .delete(Ñ [i])
21: end if
22: end for
23: end for

it denoted as N3
in(e). These subsets of 1st, 2nd and 3rd hop

neighbors constitutes the set of total neighbors denoted as Ñ .
The function predict next(e, timestep) calls the pre-

trained LSTM forecasting module to predict the speed for a
certain TMC edge e (e ∈ TMC) based on the values of its
neighboring segments as discussed in equation 1. It predicts
the speed of edge e one time-step ahead in the future which is
10 minutes in this case. When the decrease in speed between
two consecutive forecasts for a given tmc e is more than a
detection threshold (δ) indicating a sudden and sharp drop
in forecasted speed for the specified tmc, and the forecasted
speed is less than or equal to 60% of the free-flow speed,
the algorithm turns on the corresponding flag for the tmc e
and forecasts a congestion to start at that tmc from the next
timestep. So, the accuracy of this algorithm depends on the

7

Fig. 10: An illustration of the overall congestion forecasting
framework

detection threshold δ indicating how much percentage of dip
in forecasted speed from that of the previous timestep would
trigger the initiation of congestion. Empirically we found that
the algorithm works best with a detection threshold between
0.1 to 0.15.

At each timestep the algorithm checks for the TMCs whose
flags have been turned on and eliminates those from the list
of Ñ . In essence the algorithm starts with checking if a
congestion is forecasted to start within the next 10 minutes for
all the relevant 1st, 2nd and 3rd hop neighbors and then goes
on eliminating the neighbors where congestion gets started. As
in the 1st hop neighbors the congestion start earlier, they get
eliminated from the list first, so that in the next timestep, the
computation is carried out only for their corresponding 2nd
and 3rd hop neighbors to output the corresponding time for
onset of congestion for them.

This algorithm uses two sets of LSTMs we have. The LSTM
with timestep = 10 uses the data collected at 10 minute
intervals and predict time of onset of congestion at multiples
of 10 minutes. Once congestion is forecasted within next ten
minutes, the solution can be fine tuned by predicting whether
the congestion will start within next 0 to 5 minutes or within
next 5 to 10 minutes by using LSTMs with timestep = 5.
This kind of prediction applies the same algorithm using the
data sampled at 5 minute intervals.

Figure 10 shows a diagram explaining the overall congestion
forecasting framework.

C. Identifying likelihood of congestion propagation

Algorithm 2 aims to find out the likelihood of congestion
propagation from a source road to a destination road. It
identifies which of the incoming neighbors of a target road
segment have higher likelihood of congestion propagation. By
doing so, we can reduce the execution time of algorithm 1 by
testing for onset of congestion for only those neighbors at each
hop where the likelihood of congestion propagation are higher
given historical records, instead of testing for congestion for
all the incoming neighbors at each hop.

The algorithm keeps track of two kinds of events. Event
ev1 corresponds to the phenomenon where a significant speed
decrease is observed at any target road. Event ev2 corresponds
to the phenomenon where a significant speed decrease is
observed at any of its incoming neighbors within the time
range of start time of congestion in target road, upto ∆

Algorithm 2: Algorithm to identify which of the incoming
neighbors of a congestion source have higher likelihood of
congestion propagation. This algorithm is shown for the
first hop neighbors but can also be applied to the second
and third hop neighbors.

1: ˆcn1(e) = []
2: for i in N1

in(e) do
3: ev1 = 0
4: ev2 = 0
5: if s[e][n] < 0.6 ∗ FF then
6: ev1 = ev1 + 1
7: temp = 0
8: speed array = s[i][n : n+ 4]
9: if any item in speed array < 0.6 ∗ FF then

10: temp = 1
11: end if
12: if temp = 1 then
13: ev2 = ev2 + 1
14: end if
15: end if
16: likelihood[i] = ev2/ev1
17: if likelihood[i] > 0.5 then
18: ˆcn1(e).append(i)
19: end if
20: end for

timesteps from that time. ∆ is a heuristic and is chosen
as 4 in this case with the assumption that a congestion if
progresses from source to neighbor, should take place within
4 timesteps. The choice of ∆ will vary according to the
problem. For each neighbor the algorithm checks the number
of times the event ev1 and ev2 occurred and saves the ratio
of ev2/ev1 as likelihood which signifies the proportion of
times the congestion created at the source propagated to the
corresponding neighbors.

From the historical observations this likelihood of conges-
tion propagation for each source destination pair can be found
out and can be updated in real time, as more and more such
cases are encountered. If the likelihood is more than 50%,
i.e., more than half of the times the congestion from source
propagated to a particular neighbor given historical records,
then this particular neighbor is appended to the set of most
likely neighbors to be affected by congestion at source road e
and this set is denoted as ĉn(e) of a road segment ‘e’. The k
hop ĉn(e) is denoted as ĉnk(e), which indicates the subset of
the neighbors of ‘e’ at k− th hop that have higher likelihood
of getting affected by the congestion at ‘e’, where k=1,2,3.

So, ĉn1(e) ⊂ N1
in(e), such that when we run our overall

congestion forecasting algorithm described in Algorithm 1,
we run the congestion forecasts for ĉn1(e) only, instead of
the whole set of N1

in(e). Thus we are reducing the execution
time of the overall congestion forecasting algorithm by an
order of ĉn1(e)/N1

in(e) for each of the road segments. Xiong
et al. [7] also used congestion propagation probabilities to
construct propagation graphs from congestion matrices. But,
in this work we use the likelihood of congestion propagation to

8

Algorithm 3: Algorithm to identify ∆−Cascade−Event
from Nashville traffic data

for each e in TMC list do
for each timestep n do

if (s[e][n] and s[e][n+ 1]) < 0.6 ∗ FF then
for i in N1

in(e) do
count = 0
temp = 0
s array = s[i][n : n+ 4]
if any item in s array < 0.6 ∗ FF then
temp = 1

end if
if temp = 1 then
count = count+ 1

end if
end for
if count ≥ 0.5 ∗ |N1

in(e)|) then
Output: TMC e has congestion at timestep n

end if
end if

end for
end for

save the time complexity of the overall congestion forecasting
algorithm. However, our algorithm can still be applied to edges
that are left out.

VI. VALIDATION

We validate our algorithm on the Nashville dataset described
in Section II-B. The data from January 28, 2018 to February
12, 2018 was used for validation purposes. The outline of this
section is as follows. We first identify the set of congestion
events (definition 6). Then we discuss the results. We specif-
ically look at one of the congestion events and show how
we can further resolve the time to propagation to a 5 minute
resolution.

A. Cascade Event Dataset

The procedure for finding the cascade events from validation
dataset (see Algorithm 3) starts with checking for TMC IDs
whose current speeds are less than 60% of the free flow speed
(FF) for two consecutive timesteps n and n+1. Then for each
of the incoming neighbors N1

in(e) for TMC e it checks their
corresponding normalized speed from timestep n to n + ∆.
We select ∆ = 4 for this purpose as the hypothesis is if there
is a congestion event that affects a neighborhood, then the
congestion propagation between any two consecutive hops are
within this ∆ number of timesteps. The parameter ∆ is just
a heuristic here and will vary depending on the problem. If
it detects congestion in any of the incoming neighbors within
this specified time range, it turns the flag temp on for that
road as specified in Algorithm 3. After that the algorithm
counts the number of times the flag temp turned on and sum
them up. This count indicates how many incoming neighbors
showed the sign of congestion within that time range. If more
than or equal to 50% of the incoming neighbors showed

the effect of congestion, then the algorithm classifies it as
a congestion event and outputs the traffic network edge ‘e’
has congestion at timestep n. The assumption here is, that
not all of the neighbors necessarily need to be congested in
a dynamic real-world traffic scenario. By identifying these
cascaded congestion events, we are creating a validation set
to verify the proposed congestion forecasting algorithm. We
have identified ten such events from the Nashville dataset.

B. Congestion Progression Using 10 minute resolution LSTM

We validate our algorithms on a total of ten congestion
events identified across Nashville. To give a more precise
idea of the efficacy of the algorithm we calculated the cor-
responding precision and recall values in identifying the onset
of congestion in each of the neighboring road segments. For
each road segment we carried out an experiment for three
consecutive timesteps including the actual time of onset of
congestion and one timestep before and after that and classified
whether the proposed algorithm outputted the presence of
congestion or not for those timesteps and compared them with
true conditions. When the onset of congestion is correctly
identified, we consider it to be true positive. When the algo-
rithm forecasts the onset of congestion before the actual onset,
it is considered as false positive for those number of timesteps
during when congestion was forecasted but was not actually
present. When the algorithm forecasts the onset of congestion
after the actual onset, it is considered to be false negative for
those number of timesteps during when congestion was not
forecasted but was actually present.

We test our algorithms only on neighbors that had higher
likelihood congestion propagation as outlined in Algorithm 2.
We present various scenarios where the congestion is confined
within the 1st hop neighbors itself or affects a larger number
of neighbors ranging upto the 3rd hop. Table I summarizes
the congestion forecasting results by comparing the actual and
predicted time for onset of congestion w.r.t. the time of onset
of congestion at source for each specific congestion event. It
also reports the event index, TMC ID of the congestion source
and the time of actual onset of congestion for the congestion
source outputted by Algorithm 3 on which our approach was
tested. It only shows the results for the neighbors where
likelihood of congestion propagation was higher according
to Algorithm 2. Figure 11 shows the corresponding results
of the precision and recall values in identifying the onset of
congestion 10 minutes in advance in the neighboring segments
and the corresponding number of neighbors that got affected
by the congestion for ten different congestion events. The
average precision and recall are obtained as 0.9269 and 0.9118
respectively tested on these ten events. The variance of these
precision and recall values are recorded as 0.02 and 0.0131
respectively.

C. Fine tuning progression results Using LSTM with
timestep = 5

Figure 12 shows the transportation network for congestion
event index 10 described in table I. For better understanding of
the result on the cascaded congestion prediction using LSTM

9

TABLE I: Summary of the congestion forecasting result for ten congestion events whose precision and recall values are shown
in Figure 11. The congestion sources, the date and time of onset of congestion at source, the actual and predicted times of
onset of congestion at each of the neighbors. Note that there are multiple neighbor rows for the same congestion source, one
for each incoming neighbor at that hop distance. Dashes indicate that there were no congestion events on the neighbors.

1-hop neighbors 2-hop neighbors 3-hop neighborsIndex Congestion source
(ID)

Congestion source
(Road name) Date Time Actual Predicted Actual Predicted Actual Predicted

1 7413+3.57391 Hillsboro Pike 02.01.2018 16:30 16:40 16:40 - - - -

2 4564+0.68565 I-24 01.30.2018 18:00 18:20 18:20 - - - -
3 4418-0.94469 Charlotte Avenue 01.29.2018 16:20 16:30 16:30 16:40 16:40 - -
4 4470+1.91003 I-24 02.02.2018 14:40 14:50 14:50 - - - -

15:10 15:30 15:205 6847-1.51788 Memorial Boulevard 01.31.2018 15:00 15:00 15:30 15:20 - -

14:20 14:206 6841+0.23911 South Church Street 02.09.2018 14:10 14:50 15:00 15:00 15:10 - -

15:20 15:20
15:20 15:207 5041+1.16158 Dickerson Pike 01.30.2018 15:20
15:50 16:00

16:00 16:00 - -

06:50 06:50 07:40 07:30
- 07:108 6017+0.46437 US 231 02.05.2018 06:30

07:20 07:10 07:50 07:50 - -

11:00 11:00 10:40 10:50
11:10 11:209 8649-0.30317 West End Avenue 02.09.2018 10:40 11:10 11:10 11:20 11:20

- -

07:00 07:00 07:00 07:00
07:10 07:00
07:30 07:30
07:30 07:30
07:20 07:20

10 13710-0.32285 21st Ave North 02.02.2018 06:50 06:50 06:50 07:40 07:20

07:30 07:30

Fig. 11: Precision and recall values identifying the onset of
congestion in all 1st, 2nd and 3rd hop neighboring segments
of a congestion source tested over ten congestion events.

with timestep = 10 we present Figure 13a which shows
the effectiveness of the algorithm in identifying the onset of
congestion in each of the neighbors through three different
radar charts. The chart in the middle shows the results for
one 1st and two 2nd hop neighbors. The radar charts on the
left and the right shows the results for the 3rd hop neighbors
corresponding to each of the 2nd hop neighbors. It is seen that
the onset of congestion can be identified accurately most of
the time.

When a congestion is predicted for a neighboring segment
within next ten minutes, we fine tune our solution to identify
whether the congestion will take place within next 0 to 5
minutes or next 5 to 10 minutes. Figure 13b summarizes the
actual and predicted time of onset of congestion for all the
neighbors using LSTM with timestep = 5. It refers back
to the event index 10 in table I and identifies whether the
congestion is going to take place in the 0-5 minute time-slot

Fig. 12: Road segment for congestion event 10 in Table I.
The source road of congestion is road segment ‘A’. Following
the congestion at the source road segment, the congestion
propagates to the 1st (‘B’), 2nd (‘C’, ‘G’) and 3rd hop (‘D’,
‘E’, ‘F’, ‘H’, ‘I’, ‘J’) incoming neighbors respectively.

or 5-10 minute time-slot. The average precision and recall
values for identifying the onset of congestion in one of the
two possible higher resolution time-slots are calculated as 0.75
and 0.92 respectively.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we demonstrated mechanisms for spatiotem-
poral modelling of traffic network and learned the distribution
of traffic speed of a road segment as a function of its neighbor-
ing segments. We developed a traffic congestion forecasting
framework based on city-level connected LSTM networks.
Figure 14 summarizes the workflow of our approach. We took
into account the likelihood of congestion propagation for each
of the neighboring segments of any congestion source and
identified the onset of congestion at each of them with an
average precision of 0.9269 and an average recall of 0.9118

10

(a)

Neighbors of TMC ID
‘13710-0.32285’ Actual Predicted

B 06:40-06:45 06:40-06:45
C 06:50-06:55 6:55-07:00
G 07:35-07:40 07:10-07:15
D 06:55-07:00 06:50-06:55
E 07:05-07:10 06:55-07:00
F 07:20-07:25 07:20-07:25
J 07:20-07:25 07:20-07:25
H 07:10-07:15 07:10-07:15
I 07:20-07:25 07:20-07:25

(b)

Fig. 13: a) Radar chart showing the accuracy of forecasting results applied to the for road section and congestion event shown
in Figure 12. b) The table shows the actual and predicted time for onset of congestion w.r.t. the time of onset of congestion
at source at 5 minute resolution.

Fig. 14: Workflow of the congestion forecasting framework.

tested on ten congestion events. This approach serves the
purpose of forecasting the onset of congestion in advance, so
that traffic routing algorithms can divert the traffic away from
the roads to be congested in near future. In future, we plan to
extend this framework to predict cascading effects of failure
in other networked systems such as electrical grids and water
networks using similar approach.

Acknowledgements: This research is funded in part by
a grant from Siemens, CT and the following grants from
National Science Foundation: 1818901 and 1647015.

REFERENCES

[1] W. Fei, G. Song, J. Zang, Y. Gao, J. Sun, and L. Yu, “Framework model
for time-variant propagation speed and congestion boundary by incident
on expressways,” IET Intelligent Transport Systems, vol. 11, no. 1, pp.
10–17, 2017.

[2] R. Arnott, “A bathtub model of downtown traffic congestion,” Journal
of Urban Economics, vol. 76, pp. 110 – 121, 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0094119013000107

[3] X. Ma, H. Yu, Y. Wang, and Y. Wang, “Large-scale transportation
network congestion evolution prediction using deep learning theory,”
PloS one, vol. 10, p. e0119044, 03 2015.

[4] N. G. Polson and V. O. Sokolov, “Deep learning for short-term
traffic flow prediction,” Transportation Research Part C: Emerging
Technologies, vol. 79, pp. 1 – 17, 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0968090X17300633

[5] “Here developer,” 2019. [Online]. Available: https://developer.here.com/
[6] B. Pan, U. Demiryurek, C. Gupta, and C. Shahabi, “Forecasting

spatiotemporal impact of traffic incidents for next-generation navigation
systems,” Knowl. Inf. Syst., vol. 45, no. 1, pp. 75–104, Oct. 2015.
[Online]. Available: http://dx.doi.org/10.1007/s10115-014-0783-6

[7] H. Xiong, A. Vahedian, X. Zhou, Y. Li, and J. Luo, “Predicting traffic
congestion propagation patterns: A propagation graph approach,” in
Proceedings of the 11th ACM SIGSPATIAL International Workshop
on Computational Transportation Science, ser. IWCTS’18. New
York, NY, USA: ACM, 2018, pp. 60–69. [Online]. Available:
http://doi.acm.org/10.1145/3283207.3283213

[8] J. Long, Z. Gao, H. Ren, and A. Lian, “Urban traffic congestion
propagation and bottleneck identification,” Science in China Series
F: Information Sciences, vol. 51, no. 7, p. 948, Jun 2008. [Online].
Available: https://doi.org/10.1007/s11432-008-0038-9

[9] S. Sengupta, S. Basak, P. Saikia, S. Paul, V. Tsalavoutis, F. D. Atiah,
V. Ravi, and R. A. Peters, “A review of deep learning with special
emphasis on architectures, applications and recent trends,” ArXiv, vol.
abs/1905.13294, 2019.

[10] S. L. Zhang, Y. Z. Yao, J. Hu, Y. Zhao, S. Li, and J. Hu, “Deep
autoencoder neural networks for short-term traffic congestion prediction
of transportation networks,” in Sensors, 2019.

[11] Z. Zhao, W. Chen, X. Wu, P. C. Chen, and J. Liu, “Lstm network: a
deep learning approach for short-term traffic forecast,” IET Intelligent
Transport Systems, vol. 11, no. 2, pp. 68–75, 2017.

[12] F. A. Gers and E. Schmidhuber, “Lstm recurrent networks learn
simple context-free and context-sensitive languages,” Trans. Neur.
Netw., vol. 12, no. 6, pp. 1333–1340, Nov. 2001. [Online]. Available:
https://doi.org/10.1109/72.963769

[13] S. Basak, S. Sengupta, and A. Dubey, “Mechanisms for integrated
feature normalization and remaining useful life estimation using lstms
applied to hard-disks,” in 2019 IEEE International Conference on Smart
Computing (SMARTCOMP), June 2019, pp. 208–216.

[14] Y. Tian and L. Pan, “Predicting short-term traffic flow by long short-
term memory recurrent neural network,” in 2015 IEEE international
conference on smart city/SocialCom/SustainCom (SmartCity). IEEE,
2015, pp. 153–158.

[15] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997. [Online]. Available:
https://doi.org/10.1162/neco.1997.9.8.1735

[16] S. Basak, A. Ayman, A. Laszka, A. Dubey, and L. Bruno, “Data-driven
detection of anomalies andcascading failures in traffic networks,” Annual
Conference of the PHM Society, 2019, in press.

