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Abstract

The size and complexity of present day systems motivates the need for de-
veloping distributed fault diagnosis algorithms. This paper uses the Tran-
scend approach to fault diagnosis to develop a methodology that partitions the
set of possible fault candidates in a physical system to independent sets of faults
given a set of measurements. Separate diagnosers that do not interact with each
other can be constructed for each independent fault set while maintaining complete
diagnosability of the system. The implication of this approach is that a compu-
tationally expensive diagnosis task is decomposed into a set of computationally
simpler tasks that can be performed independently.

1 Introduction

In the model based approach to fault diagnosis [5], an important entity is the system
model that provides the basis for analyzing observed discrepancies in system behavior for
isolating faulty components in the system. For large systems, building accurate models
becomes is difficult, and analyzing faulty behaviors is computationally expensive. This
motivates the need to develop methodologies for decomposing the diagnosis task into sets
of smaller problems that reduce the overall computational complexity of the online fault
isolation. This may be achieved by decomposing the system into subsystems, where each
subsystem has a diagnosis module, and results of the modules are composed to derive
the system-level diagnosis.

Previous work on distributed diagnosis has focused on systems with discrete behaviors,
such as a set of interconnected processors [3, 7]. An approach for decentralized diagnosis
has been presented in [4] where the local diagnosers communicate with a coordination
process that assembles a global diagnosis, but these methods are subject to robustness and
scalability issues. Distributed diagnosis approaches where local diagnosers communicate
directly with esvh other are presented in [8, 14]. A distributed diagnosis method that
does not require coordination between local diagnosers has been proposed in [2], but the
structure of the local models makes the local diagnosis and communication complicated.

In this paper, we extend previous work and develop a distributed diagnosis solution for
continuous systems. In continuous systems, the energy flow between components results
in fault effects propagating to all parts of the system as time progresses. Therefore, the
traditional notion of independence among subsystems does not apply to the fault isolation
task. Our approach is to partition the set of faults into subsets so that we can construct
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independent diagnosers for each subset. Two diagnosers are independent if they do not
have to share information in establishing unique diagnosis results that are globally valid.
We establish this by ensuring that the two diagnosers do not require the same set of
measurements to achieve complete diagnosability. Complete diagnosability is the ability
to uniquely isolate every fault candidate in the system given a set of measurements.
Although such system decomposition will not always be possible, our approach can be
the first step for designing distributed diagnosers.

Intuitively, fewer measurements imply the number of independent fault sets that can
be constructed will be smaller, and the number of faults in each subset will be larger.
Assuming the complexity of each diagnoser is directly linked to the number of faults
it has to isolate, fewer measurements will produce more complex diagnosers. In the
other extreme, by choosing a large number of relevant measurements, one may establish
a one-to-one relationship between every fault and a corresponding measurement. This
implies that we can construct a diagnoser for each fault. In practice, this will not be
feasible because not all system variables are accessible, and the cost of placing sensors
in particular locations may be prohibitive. Our proposed solution assumes we have a
sufficient measurement set that makes the system completely diagnosable. We apply
the notion of independent fault sets to develop the distributed diagnosis scheme as an
extension to Transcend , a qualitative model-based fault isolation scheme [11].

2 Transcend Architecture
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Figure 1: Architecture for Transcend .

The Transcend architecture, shown in Fig. 1 combines a qualitative and quanti-
tative, model-based approach for isolation and identification of abrupt faults in process
components. System models are constructed using bond graphs [6] that capture dynamic
interactions between components of a physical system using a topological description.
The faults correspond to component parameter changes in the bond graph. Further-
more, Transcend focuses on faults that are modeled as discrete and persistent changes
in component parameters, referred to as abrupt faults.

Definition 2.1 An abrupt fault is a change in a component parameter value that occurs
at a much faster rate than the nominal dynamics of the system. ¥



The occurrence of an abrupt fault results in transient behavior in the system. Fault
isolation in Transcend is based on the analysis of the fault transient dynamics using
a qualitative framework. Specifically, the magnitude and slope of the transient resid-
ual, derived from measurements, are mapped onto (+, 0,−) symbols (after energy-based
filtering [9]) for qualitative matching against fault signatures.

We illustrate fault isolation in Transcend , and the new algorithms developed in
this paper, using a hypothetical physical system that consists of six coupled fluid tanks.
We model this system using the bond graph modeling paradigm. Fig. 2 shows a single
tank fluid system with a single in- and out-flow, with its corresponding bond graph.
The tank is modeled as a capacity, C, the inflow as a source of flow, f, and the pipe
as a resistance, R. The 0−junction represents a lossless common pressure (effort) point,
where energy transfer takes place among components.
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Figure 2: One-tank fluid system and bond graph.

In the multi-tank system, the tanks are connected with each other by pipes, with a
source of flow into the first tank and a pipe draining each of the tanks. All the pipes are
modeled by linear resistances and tanks are modeled as capacities, making this a sixth
order system. Fig. 2 show this system with its corresponding bond graph. Pipe Ri drains
tank Ci and pipe Rij connects tanks Ci and Cj. The set possible faults contains all compo-
nent parameters in the model, i.e. F = {C1, . . . , C6, R1, . . . , R6 R12, . . . , R56}. The set of
possible measurements consists of the pressures in the tanks and flows through the pipes,
i.e. M = {e1, e6, e11, e16, e21, e26, f2, f7, f12, f17, f22, f27, f4, f9, f14, f19, f24, f27}.
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Figure 3: Six-tank system diagram and corresponding bond graph model.



Qualitative Fault Isolation

Fault isolation is developed as a graph based algorithm that operates on the Temporal
Causal Graph (TCG), that is derived automatically from the bond graph [11].

Definition 2.2 A Temporal Causal Graph (TCG) is a directed graph < V, L, D >, where
V = E ∪ F (E is a set of efforts and F is a set of flows of a bond graph), L is the label
set {=, 1,−1, p, p−1, pdt, p−1dt} (p is a parameter name of the physical system model).
The dt specifier indicates a temporal edge relation, which implies that a vertex affects
the derivative of its successor vertex across the temporal edge, and D ⊆ V × L× V is a
set of edges. ¥

Thus the TCG represents the causality of physical effects in the system, and retains
the dynamics of the bond graph model. The TCG in effect specifies the signal flow graph,
albeit in a form where each edge relation contains at most one component parameter
value. Fig. 2 shows the TCG for the six-tank system.
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Figure 4: Temporal causal graph for the six-tank system.

Transcend exploits the fact that system dynamics can be expressed in a qualitative
form using the TCG, and follows a hypothesize-and-test approach to diagnosis. The key
aspect of the approach is the notion of the fault signature, which captures the predicted
transient behavior around the point of fault occurrence.

Definition 2.3 A fault signature of order N is an N -tuple consisting of the predicted
magnitude and 1st through N th order time-derivative effects of a residual signal in re-
sponse to a fault, expressed as qualitative values: below normal (−), normal (0), and
above normal (+). Typically N is chosen to be the order of the system. ¥

During hypothesis generation the algorithm identifies the set of component parame-
ters that may explain the observed deviation, together with a hypothesized direction of
change. During hypothesis refinement, new symbolic measurement variables are matched
against the fault signatures for each possible candidate. When the signature is no longer
consistent with the observed behavior in the system, the candidate is dropped. A system-
atic analysis of the qualitative diagnosis approach employed in Transcend , established
the discriminatory power of qualitative fault signatures:

Lemma 2.1 In a purely qualitative framework, only the following characteristics of a
signal can be used to discriminate among faults:

1. if there is an abrupt change, the direction of abrupt change plus the direction of
change immediately following the abrupt change. This implies that there are four
distinct fault signatures. i.e. (+, +), (+,−), (−, +) and (−,−).

2. If there is no abrupt change, then only the first direction of change in the measured
signal provides discriminatory information. Therefore, this case has two distinct
fault signatures. i.e., (0..+) and (0..−). ¥



The above lemma is employed to determine when the qualitative fault isolation scheme
would no longer be able to discriminate among fault candidates [10]. The results were
also used in measurement selection algorithms [12] to find the minimum number of mea-
surements that establish complete diagnosability in the faults of interest. These ideas
are exploited to establish independent fault sets among a set of fault hypotheses.

3 Designing a Distributed Diagnosis System

It is clear when one deals with continuous dynamic systems, the system topology and
the relations between variables are more complex. The state space representation for
continuous systems clearly indicates that system variable dependencies are expressed as
continuous functions of time. However, decomposition of a system based on the physi-
cal connections between components and the temporal properties of event propagation
cannot easily be achieved in the state space representation. In this work, we exploit prop-
erties of the bond graph model of continuous systems, and the TCG models derived from
these bond graphs to establish independence among sets of faults given a set of measure-
ments, and then develop non-interacting diagnosers for the independent subsets. This
extends our previous work in the area of measurement selection algorithms [12]. The rest
of this section establishes the framework for partitioning the fault set into independent
subsets, and establishes an effective method for finding good set partitions.

3.1 Complete Diagnosability and Measurement Selection

A good fault isolation system must have the capability to uniquely isolate all single
faults of interest in a physical system. Given that we have an adequate system model,
the ability to diagnose faults depends on the measurements used for diagnostic analysis.

Definition 3.1 Given a set of faults F = {f1, f2, . . . , fl} and a set of measurements
M = {m1,m2, . . . , mn}, a fault isolation scheme achieves complete diagnosability if it
can uniquely isolate all possible single faults fi, for i ∈ [1 . . . l] given M . ¥

In more detail, a fault, fi is diagnosable if there is at least one distinguishing fault
signature between fi and any other fault in the system. A system is diagnosable if all its
faults are diagnosable. In the Transcend structure this translates to

(∀i, j ∈ [1, l], i 6= j)(∃mk ∈ M) FS(fi,mk) 6= FS(fj,mk)

where FS(fi,mj) is the observed fault signature for measurement mk given that fault fi

occurs, and the inequality of fault signatures is defined in terms of the discriminatory
power of measurements given by Lemma 2.1.

Complete diagnosability is based on the number of measurements available to the
fault isolation algorithm. For example, consider the six-tank system in Fig. 2. Let us
assume that the fault parameters of interest the tank capacities, C1 and C2, and the
outlet pipe resistances, R1 and R2. If the pressures at the bottom of the two tanks,
i.e., the effort variables e1 and e6 in the bond graph model, are the measured variables,
then by inspecting the fault signatures in Table 1, we see that we can uniquely isolate
all possible faults. For the sake of discussion, if e6 is the only measured variable, then
the faults C1− (decrease in tank 1 capacitance) and R2+ (partial block in outlet pipe 2
resistance) can no longer be differentiated from each because their signatures for e6 are



the same i.e. {0 + − . . .}, and, therefore, the system is not completely diagnosable. On
the other hand, fault C2− is still uniquely diagnosable from the rest of the faults, because
its fault signature for measurement e6 is {+− . . . } which is different from signatures of
all other faults for e6.

Fault e1 e6

C−
1 {+−+−+−+} {0 +−+−+−}

R+
2 {0 0 +−+−+} {0 +−+−+−}

C−
2 {0 +−+−+−} {+−+−+−+}

R+
1 {0 +−+−+−} {0 0 +−+−+}

Table 1: Fault signatures for the six-tank system example.

Definition 3.2 Given a set of faults F = {f1, f2, f3...fl} and a set of measurements, M =
{m1,m2,m3...mn}, measurement selection identifies the smallest set of measurements
MS ⊆ M , that can uniquely isolate every single fault in the system, i.e., the subset of
measurements makes the system completely diagnosable. ¥

Depending on the initial choice of M , it may not be possible to find MS such that
the F is completely diagnosable. Also, it is possible to find more than one subset MS
that guarantees complete diagnosability.

The problem of measurement selection is an instance of the set cover problem [1, 13],
which is known to be NP-complete. Consequently, the optimal solution for this problem
(i.e., one that guarantees that MS has the least number of measurements) cannot be time
efficient. However, for large systems, this algorithm can be run at design time to address
the sensor placement problem and provide certain performance guarantees for the imple-
mented diagnoser. We have developed and analyzed measurement selection algorithms
as a partitioning problem [12]. Given an initial partition Po = F , find a set of measure-
ments, MS = {mp|mp ∈ M} that refines Po towards the set {{f1}, {f2}, · · · , {fl}}, i.e.,
each element of the final partition contains only one fault. In this work, we extend the
measurement selection algorithm for deriving sets of independent faults.

3.2 Independence of faults for diagnosis

As discussed earlier, our goal is to implement the overall diagnosis system as a set of
distributed noninteracting local diagnosers. To this end, we develop the notion of inde-
pendence of faults within a system, and then develop an algorithm for partitioning the
fault set F into subsets that are independent of each other. An independent diagnoser
can then be employed for each fault subset. Two fault sets are independent for diagnosis
purposes if they can be completely diagnosed with measurement sets that do not overlap.

Definition 3.3 Two sets of faults F1, F2 ∈ F, F1 ∩ F2 = ∅ are said to be independent
for diagnosis given measurement set M if there exists two sets M1, M2 ⊆ M such that,

• F1 is diagnosable for the measurement set M1

• F2 is diagnosable for the measurement set M2

• M1 ∩M2 = ∅ ¥



For example, consider the two sets of faults F1 = {C1−, R1+} and F2 = {C2−, R2+}
in the six-tank system (Fig. 2). Assuming pressures e1 and e6 are the two measured
variables, Table 3.1 indicates that the measurement e1 is sufficient to isolate the faults
in F1, whereas measurement e6 is sufficient to isolate the faults in F2. Therefore, F1 and
F2 are independent of each other for the purpose of diagnosis.

3.3 Algorithm for Partitioning the Fault Set

Since independent fault sets can be diagnosed with non-interacting diagnosers, and the
complexity of designing and running a diagnosis algorithm increases as the size of the
model and the number of faults to be diagnosed increase, our goal for the partitioning
algorithm is to create a maximal number of independent fault subsets as the set of given
measurements will allow.

To develop a systematic formulation for this problem we first define a fault signature
matrix given F and M . The rows in this matrix correspond to the faults of interest in
the system {fi|1 ≤ i ≤ l}, and the columns correspond to the available measurements
{mj|1 ≤ j ≤ n}. This matrix is given as

FSM =
[
FS(fi,mj)

]
l×n

,

where FS(fi,mj) is the fault signature for measurement mj given fault fi. Next, we define
the notion of a distinguishing set for fault, fi ∈ F .

Definition 3.4 The distinguishing measurement set for fault fi ∈ F is defined by the
map Dis : F → P2(M) where

Dis(fi) = {M ′ ⊆ M | fi is diagnosable given M ′}

¥

In general, Dis(fi) will contain multiple measurement subsets. (We assume Dis(fi) 6=
∅). The partitioning problem is then to find a maximal size partition P of F that satisfies

(∀pi, pj ∈ P )

[ ⋃

fi∈pi

Dis(fi)

] ⋂

 ⋃

fj∈pj

Dis(fj)


 = ∅

It is clear that the solution to the partitioning problem is at least as complex as the
measurement selection problem described in the last section. Therefore, this problem too
is NP-complete, and a time constrained practical solution to this problem will require
the use of heuristics. We apply knowledge of the diagnosis task in Transcend to solve
the partitioning problem in multiple steps, applying reasonable heuristics to reduce the
complexity of the search for a good partition.

As a first step to the solution, we construct the distinguishing measurement sets,
Dis(fi) for all the faults in set F . The second step identifies the sets in the Dis(fi)’s that
include measurements with discontinuities (mwd). Measurement mj for fault fi is mwd, if
the corresponding fault signature has a non zero magnitude value, i.e., the first element of
the fault signature list, FS(fi,mj) 6= 0. The non zero magnitude value in a fault signature
implies that the measurement mj shows a discontinuous change at the time point of fault
occurrence. In the tank system, for example, if fault C1− occurs, measurement e1 is



mwd because its residual value will show an immediate positive jump. In previous work,
we have established that discontinuities in measurements, if reliably detected provide
quick discriminatory evidence for fault isolation [11]. Therefore, discontinuity detection
typically improves the overall time for fault isolation.

We define a distinguishing measurement set with a discontinuity as an element of
Dis(fi) that includes an mwd measurement, which is more likely to distinguish the current
fault. This set will be denoted MWDs.

Definition 3.5 M ′ ∈ Dis(fi) is defined to be a measurement set with discontinuity, if
M ′ ∩ MWDS 6= ∅. The set of measurement sets with discontinuity in Dis(fi) is denoted
MWD(fi). ¥

To complete this step, we identify all the M ′ ∈ Dis(fi) | 1 ≤ i ≤ l such that M ′ ∈
MWD(fi).

Extrapolating the intuition that all measurement in MWD contain a lot of discrimina-
tory information, the corresponding MWD(fi) will typically include a small number of
measurements. This observation leads to the next step, which is to form the seed ele-
ments of partition P . The seed elements are selected as follows. First, pick Fseed, where
Fseed = {fi ∈ F | MWD(fi) 6= ∅}. Here fi ∈ Fseed becomes a seed in P if

MWD(fi)
⋂


 ⋃

fj∈F\fi

MWD(fj)


 = ∅

Each of the chosen fi’s then becomes the seed about which the elements p1, p2, . . . of
partition P are formed. The partition completion step takes the remaining faults in F
that have not been assigned to an element in P one by one, and sequentially searches for
the best pi to add the fault to. There are two considerations in making the addition.

1. Avoid adding fk to pi’s which then cause this pi to merge with some other pj. Two
elements of the partition will merge if Dis(pi)

⋂
Dis(pj) 6= ∅.

2. Add fk to that pi, such that the distinguishing measurements for pi increases by
the smallest amount. The intuition here is that keeping Dis(pi) small is more likely
to keep elements of the partition being merged as more faults are added to it.

Note that the above described algorithm does a sequential (as opposed to exhaustive)
search for forming partition seeds and adding faults to partition elements, therefore, it
is generally suboptimal.

4 Example: A Six-tank System

We demonstrate the algorithm on a hypothetical connected six-tank system. The six
tank examples are run for different fault and measurement sets to demonstrate the effect
of different measurement sets on the partitions formed.

We present two examples for the six-tank system, varying both the fault and
measurement sets. In the first experiment, we measure tank pressures, i.e. M =
{e1, e6, e11, e16, e21, e26}, and start with a fault set F that includes tank capacities (Ci’s
and outlet pipe resistances (Rj’s). The algorithm picks {C1}, {C2}, {C3}, {C4}, {C5},



and {C6} as the seeds for the partition P . This is because each tank pressure
is a mwd for the corresponding tank capacity fault. Note that the Rj’s show
no discontinuity in the measurements. The algorithm then adds the Rj’s sequen-
tially. Each Rj matches up with its corresponding Cj to generate the final partition:
{{C1, R1}, {C2, R2}, {C3, R3}, {C4, R4}, {C5, R5}, {C6, R6}}. The implication is that each
pressure measurement can uniquely identify the corresponding tank capacity and outlet
pipe resistance fault.

For the second experiment, we choose the same fault set as above, but change the
measurement set to M = {f4, f7, f14, f17, f24, f27}, i.e., we assume that the
outflows from each tank are the only measured values. In this situation, the
fault set breaks down into three independent fault sets. The initial partition
formed is {{C1}, {C2}, {C3}, {C4}, {C5}, {C6}}. After adding R1 the set becomes
{{C1, R1, C2}, {C3}, {C5}}. When R1 is added the distinguishing set for {C1, R1}
requires two measurements, f4 and f7, and this causes the two elements {C1} and
{C2} to merge forming the partition set P = {{C1, R1, C2}, {C3}, {C5}}. R2 requires no
additional measurements for discrimination and merges into the first element of P .
This pattern continues, and one obtains the final partition with independent fault sets:
{{C1, R1, C2, R2}, {C3, R3, C4, R4}, {C5, C6, R5, R6}}.

5 Conclusions

This paper has developed a methodology for distributed diagnosis of complex continu-
ous systems by partitioning the given fault set into sets of independent faults for which
non-interacting diagnosers can be constructed. By simplifying the models required for
each diagnoser, and the number of faults and measurements that it has to deal with,
we significantly reduce the computational complexity of the overall diagnosis task. In
this work, we exploit the fault signatures derived from the TCG model of the physical
process that capture the transient dynamics in qualitative form, to derive independence
among fault sets. Like the measurement selection problem, the algorithm for generation
independent partitions of faults is NP-complete, so we derive a suboptimal algorithm
that uses domain-specific heuristics (measurements with discontinuities) and a sequen-
tial search process to develop a time-constrained algorithm. The algorithm produces
reasonable results when applied to a cascaded six-tank example.

In future work, we will extend this algorithm to situations where the partition sets
are not completely independent, i.e., elements of the partition have overlapping measure-
ment sets. The challenge is to extend our algorithm to find minimal overlapping sets.
Alternatively, if prior fault probabilities are available the set covering that minimizes the
communication requirements between diagnosers must be found. Then it is still possible
to design interacting diagnosers that are computationally efficient for online applications.
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