

Rapid Synthesis of Multi-Model Simulations
for Computational Experiments in C2

H. Neema, H. Nine, G. Hemingway, J. Sztipanovits, G. Karsai
Institute for Software Integrated Systems

Vanderbilt University
Nashville, TN, USA

Email: { himanshu, hnine, heminggs, sztipaj, gabor } @isis.vanderbilt.edu

Abstract-Virtual evaluation of complex command and

control concepts demands the use of heterogeneous simulation
environments. Development challenges include how to
integrate multiple simulation platforms with varying semantics
and how to integrate simulation models and the complex
interactions between them. While existing simulation
frameworks may provide many of the required services needed
to coordinate among multiple simulation platforms, they lack
an overarching integration approach that connects and relates
the semantics of heterogeneous domain models and their
interactions. This paper outlines some of the challenges
encountered in developing a command and control simulation
environment and discusses our use of the GME meta-modeling
tool-suite to create a model-based integration approach that
allows for rapid synthesis of complex HLA-based simulation
environments.

I. INTRODUCTION

Evaluation of emerging command and control
(C2) concepts necessitates a sophisticated modeling
and simulation infrastructure that allows for the
concurrent modeling, simulation and evaluation of (1)
the C2 system architecture (advanced system-of-
systems modeling), (2) the battle space environment
(scenario modeling and generation), and the (3) human
organizations and (group and individual) decision
making processes (human performance and man-
machine interaction modeling). The complexity of
this issue demands the use of a multitude of existing
simulation tools interacting in a coordinated
environment.

Issues encountered in developing this
environment relate to the integration of various
simulation platforms, each with its own semantics,
and integration of the models that execute on the
platforms and the interactions between models.
Integration frameworks, such as the High-Level
Architecture (HLA) ([1], [11], and [25]) provide
APIs that have helped to reduce the complexity of
developing simulations that span multiple different
platforms, but many challenges remain in developing
and deploying these simulations. Pervasive use of
models and integration at the domain-specific model
level can decrease the effort required to integrate
multiple platforms and increase the adaptability of

the resulting environment, though this approach is
still not without its own set of challenges.

 Each simulation platform, when incorporated
into the overall simulation environment, requires
integration at both the API level and at the semantic
or interaction level. API integration provides basic
services such as time coordination, message passing,
and shared object management. Semantic integration
is more subtle and depends upon the context of the
overall simulation environment.

The explicit use of models throughout the
simulation environment opens the door for model-
based integration techniques. The C2 Wind Tunnel
environment uses the Generic Modeling Environment
(GME) [2] meta-modeling tool chain to integrate the
operational semantics of multiple simulation
platforms, to manage the configuration and
deployment of scenarios into the simulation
environment, and to generate necessary integration
code for each integrated platform.

The GME tools use a generic modeling
environment to facilitate graphical development of
domain-specific modeling languages (DSML). These
languages can express both the structural and
operational semantics of a model. The C2 Wind
Tunnel project has developed DSMLs that capture
the semantics of each integrated simulation platform
and an overarching DSML to model the interactions
between simulation models. We have written custom
interpreters to dynamically import and export
platform-native models into the GME DSMLs and to
generate HLA configuration files and glue code.
These tools allow our environment to be rapidly
reconfigured or extended, furthering the goal of rapid
evaluation of emerging command and control
concepts.

The organization of the remainder of this paper
is as follows. The next section discusses the work
related to our research. Section III details the C2
Wind Tunnel simulation framework and our
approach for model integration using the GME
environment. Section IV reviews the details of the
integration of several simulation tools. Section V

covers results from using the framework in a real-
world scenario. The final section concludes the paper
and outlines the planned future work.

II. RELATED WORK

There has been some work to integrate a set of
simulation packages with or without HLA. For
example, one of the previous efforts at our institute,
that relates to heterogeneous simulation, particularly
of embedded systems, is the MILAN framework [10].
While efforts that relate to integrating simulation
packages with HLA include OPNET [12],
MATLAB-HLA integration methods [13], SLX
integration [14], JavaGPSS integration [15],
DEVSJAVA [16], [17], and PIOVRA [18]. Also,
there is some amount of commercial integration
software available, including HLA Toolbox [19] for
MATLAB federates by ForwardSim Inc. [20] and
MATLAB and Simulink interfaces to HLA and DIS
based distributed simulation environments [21] by
MÄK Technologies [22]. Additionally, there also
have been some efforts on enhancing HLA support
by complementary simulation methodologies such as
in [23], and [24]. However, most of these efforts
pursue HLA integration of isolated simulation tools,
do not exploit HLA for distributed simulation, or are
commercial applications for a dedicated simulation
tool. Moreover, these efforts (except MILAN) do not
have any support for model-based rapid integration of
simulation tools.

In contrast to the current research efforts, we
have focused on developing a model-based
integration framework to integrate a range of
simulation tools such as MATLAB/Simulink,
OMNeT++, DEVSJAVA, CPN Tools, Delta3D, and
legacy Java, C, or C++ HLA-federates, and to rapidly
synthesize large-scale HLA-based heterogeneous
simulation. To that end, this paper gives a detailed
description of our approach demonstrating rapid
model-based integration of various simulation tools.

III. MODEL-BASED SIMULATION
ENVIRONMENT

Complex command and control simulations

require coordination between multiple existing
simulation platforms. The HLA provides a standard
for a Run-Time Infrastructure (RTI) that supports the
coordinated execution of distributed simulations.
However, integration of the different platform-
specific simulation models remains a challenging
problem. Our project introduces a new model-
integrated approach for the simulation integration
problem. The primary contribution of this effort is
the development of an overarching modeling

environment, based on the GME, and a suite of
model transformations to synchronize between
multiple platform-specific models.

The composition, deployment and execution of
the entire simulation is configured using the central
modeling environment. A large set of well-known
simulation tools are supported for heterogeneous
simulations. We provide reusable run-time
components to coordinate the execution of the
various domain-specific models. These components
are configured from the modeling environment with a
set of XML files. In some cases, both glue code and
configuration files are generated for configuring the
simulation tool.

The virtual component models in the C2 Wind
Tunnel are integrated using the GME environment.
Model transformations, executed using custom
interpreters, generate the necessary configuration
information and glue code. These pieces are
incorporated into each of the different simulator
platforms. At run-time, the platforms interact using
the HLA infrastructure.

In the following sub-sections, we briefly
describe the HLA and the GME tool-chain, and then
we discuss in detail the integration approach and life-
cycle of the entire environment.

A. HLA AND GME BACKGROUND

The High-Level Architecture ([1], [11], and [25])
is a standard framework for distributed computer
simulation systems. It was originally developed by
the U.S. Department of Defense and is their required
standard for simulation interoperability. IEEE now
oversees the ongoing evolution of the architecture as
HLA Standard 1516. Communication between
different federates is managed by the Run-Time
Infrastructure (RTI). The RTI provides a set of
services such as time management, data distribution,
and ownership management. Other components of
the HLA standard are the Object Model Template
(OMT) and the Federate Interface Specification
(FIS).

Since HLA is an accepted standard, a number of
commercial, academic, and alternate RTI
implementations are available. Currently, we use the
Portico RTI [4] – which provides support for both
C++ and Java clients and is compliant with version
1.3 of the HLA standard.

Command and control simulations are composed
of a variety of simulation tools such as
Matlab/Simulink, CPN Tools, and OMNeT++. Each
of these simulation tools has its own simulation clock
and methods for progressing the simulation forward
through time. The HLA interface specifications -
HLA-interactions and HLA-objects (shared objects) -
form the basis of communication among these

heterogeneous simulation tools. An interface
specification for a federation consists of a definition
for each of the interactions and objects that are to be
supported by the RTI. This is typically specified in a
textual language that is specific to the chosen RTI. A
graphical representation of the same information is
more comprehensible and readable and it allows for
capturing a variety of configuration elements that are
necessary for the synthesis of heterogeneous
simulations. The C2 Wind Tunnel captures not only
the necessary interface specification for running
heterogeneous simulations over HLA, but also a
variety of mechanisms for configuring, enhancing,
and detailing the simulation execution.

The Generic Modeling Environment is a meta-
programmable model-integrated computing (MIC)
toolkit that supports creation of rich domain-specific
modeling and program synthesis environments.
Configuration is accomplished through metamodels
specifying the modeling paradigm (modeling
language) of the application domain. A metamodel is
used to define all the syntactic, semantic, and
presentation information regarding the domain.

B. C2 WIND TUNNEL META MODEL

Below, we describe briefly the C2 Wind Tunnel
metamodel for HLA integration of federates running
in the C2 Wind Tunnel framework. This is used to

automatically configure GME as a modeling
environment that supports modeling heterogeneous
simulations to run on the C2W framework.

Fig. 1 shows the primary portion of the
metamodel that defines the universe of composition
elements of an HLA federation running in the C2
Wind Tunnel framework and the set of
communication elements for inter-federate
communication.

As shown in Fig. 1, the three main elements in a
federation (defined by the model FOMSheet) are
Interaction, Object, and Federate representing an
HLA-Interaction, HLA-Object, and an HLA-Federate
respectively. Note that the proxy elements are simply
references to their respective main models. Federates
in an HLA federation communicate among each other
using HLA-interactions and HLA-objects – which are
in turn managed by the RTI. Interactions and objects,
in an analogy with inter-process communication,
correspond to message passing and shared memory
respectively. As seen in Fig. 1, the metamodel fully
supports the key attributes of these communication
elements such as delivery method, message order
(timestamp or receive order), and parameters. The
main attribute of a federate, as far as HLA-based
synchronization is concerned, is its Look-ahead – the
period of time in the future during which the federate
guarantees that it will not send an interaction or

Fig. 1: Part of the C2 Wind Tunnel Meta Model

update an object. Further, we define specialized
federate elements for simulation tools requiring
special integration models, such as CPN Tools and
OMNeT++, and define special communication
elements required by them, viz. Place and EndPoint
respectively. We discuss model-based integration of
these special simulation tools in subsequent sections.
The metamodel goes an additional step forward by
also providing full support for defining the means to
publish and subscribe elements required for the
heterogeneous simulation. This is accomplished by
defining special publish and subscribe connection
elements for both interactions and objects. Lastly, the
attributes of FOMSheet captures the names and
location for configuration code that enables the
integration of a range of supported simulation tools.
We will be describing this capability in detail in a
following section. Model-based integration of
OMNeT++, Delta3D, Matlab/Simulink, CPN Tools,
and DEVSJAVA is discussed in Section 4.

C. INTEGRATING SIMULATION MODELS

Two main aspects, the data representation and
the data flow, are common elements of most of the
domain-specific simulation modeling paradigms – so
these are the key points of our integration models.
The integration models describe both the data
representation and data flow elements and, in some
cases, include special elements as the placeholders
for domain-specific models.

The data representation models consist of
interaction and object models. Interactions are
stateless and can have parameters while objects have
states – which are represented as a set of attributes.
Both interactions and objects can have an inheritance
hierarchy. These data representation models directly
map to the HLA Federation Object Model (FOM).
Fig. 2 shows an example of the data representation
models with an interaction class-inheritance tree on
the top, and an object class-inheritance tree on the
bottom.

Once the data representation models are created
the modeler can define publish-subscribe data flow
relations by creating federates and connecting them
to interactions or object attributes with directional
links. Federates can publish or subscribe interactions
or object attributes.

To aid in organization, the integration model can
be broken down into sheets. This type of partitioning
is up to the modeler and does not directly affect the
semantics of the model. The GME modeling
language supports references and proxies to connect
the sheets. In this manner, large models can be
visualized and edited easily. In addition, libraries of
such models can be built and reused later.

Fig. 2: Data Representation Model Examples

D. THE DEVELOPMENT CYCLE

The GME supports a plug-in architecture to add
model operator modules called interpreters. These
interpreters can access the model through a high-level
easy-to-use interface, the Builder Object Model
(BON). Interpreters can be written in either C++ or
Java. The C2 Wind Tunnel comes with a set of
interpreters that support the transformation between
domain-specific and integration models, and the
generation of run-time configuration information.

In many cases the domain specific models
already exists, so data representation and data flow
models can be easily imported. In other cases, we
need to export these from the integration models. An
iteration of these steps can be performed until the
models are synchronized. An example of this is
presented in the Colored Petri Nets section.

Several integration-related parameters can be set
in the modeling environment. One example is the
static look-ahead value of a federate. This value can
be set manually if it is not possible to calculate it
automatically.

After finalizing the models and setting the
parameters, an interpreter generates all the necessary
configuration information. This includes the HLA
.fed file, XML and other configuration files for the
domain specific federates. Where necessary, Java or

C++ skeleton code, based on the integration models,
is generated for run-time use in federates.

At times, the modeling environment itself may
need some extensions when either a change in
metamodel is made or integration glue code needs to
be updated. An example of this type of change would
include addition of support for a previously
unsupported simulation platform. For this, slight
extensions to the metamodel (though rarely) may
need to be made (e.g., to define new interactions or
objects for the new simulation platform). In addition,
the interpreter needs slight extensions for generating
glue code for the new simulation platform. The
current infrastructure enables one to accomplish
support for newer simulation platforms with much
ease and speed.

IV. SUPPORTED DOMAIN SPECIFIC
MODELS

This section describes the domain specific

simulation platforms currently supported by the C2
Wind Tunnel. These platforms are OMNeT++,
Delta3D, Matlab/Simulink, and Colored Petri Nets.
This set was selected to support a wide range of
unmanned aerial vehicle command and control
scenarios.

A. OMNeT++ - COMMUNICATIONS FEDERATE

In a command and control simulation
environment it is essential to model and simulate the
communication network in order to study mission
critical situations like network failures or network
attacks. After evaluating multiple public domain
network simulators against project requirements,
OMNeT++ [6] was selected as the network
simulation platform.

OMNeT++ provides high performance, faithful
protocol simulation above the physical layer. Its
modular architecture allows for easy replacement of
the event scheduler in order to integrate with HLA,
obviously a key requirement. OMNeT++ does not
use computationally expensive radio-signal
propagation models; instead, it simulates the physical
layer with simple probabilistic models.

Even in the case of a small network, simulating
the full protocol stack generates a large number of
messages, which would flood the simulation and
decrease performance if they were dispatched to the
RTI. This approach does not scale well for large
numbers of communicating actors. Finding the
optimal tradeoff between scalability, speed and
simulation accuracy is an important issue.

We developed a tool, NetworkSim, which is an
HLA-compliant reusable communication network
simulator based on OMNeT++. NetworkSim

provides a set of high-level communication protocols
(reliable send, streaming) while internally it faithfully
simulates the full network stack. This approach
allows for application level interactions of interest to
be captured while minimizing HLA traffic.

The NetworkSim scheduler keeps the RTI and
OMNeT++ clocks synchronized. The advanceTime()
call inside receives interactions from the RTI and a
dispatcher mechanism converts them to the
appropriate protocol module which interprets it and
can schedule new OMNeT++ messages.

B. DELTA3D - VISUALIZATION, SENSOR DATA, AND

PHYSICS FEDERATE
Delta3D [3] is an actively developed open-

source project that integrates numerous modules for
visualization, communications, and dynamics. It
provides native HLA integration and scene modeling
tools. Because of its native HLA integration, no
GME interpreter is needed to integrate it within the
C2 environment.

Delta3D-based federates play several different
roles in the C2 Wind Tunnel. The first role is to
provide 3D visualization of the virtual world as the
simulation executes. The second role is to simulate
the sensor data being collected by cameras mounted
on each UAV. The real-time video data is sent back
to an operator station. The logical packets are sent
through the simulated network via HLA interactions
and objects shared between Delta3D and OMNeT++,
but the actual image data is not transferred. It is
regenerated on the operator side since the network
bandwidth is more of a bottleneck in this situation
than CPU load. Using this approach, the transmitted
video stream can be faithfully simulated and the
solution remains scalable as well. The final use of
Delta3D federate is as the physics simulator handling
tasks such as collision detection.

C. MATLAB/SIMULINK - UAV PLANT AND

CONTROLLER FEDERATE
Simulink [5] is a widely used simulation

environment for modeling dynamic and embedded
systems such as communications, controls, and signal
processing. It uses a set of pre-built block libraries
for designing and controlling the simulation.

In our scenarios, we use X4 Simulink models for
simulating the dynamic behavior of Unmanned
Aerial Vehicles (UAVs) with four rotors. The
simulation model is a high-fidelity dynamics model
with a range of parameters to setup the simulation
such as initial location, speed and acceleration
vectors, yaw, pitch, and roll. Additionally, the model
takes as input a set of time-stamped waypoints that
allow the model to calculate the trajectory of the
UAV to reach the waypoint in the given amount of

time. The model can then calculate the flight
parameters including speed and turns to find a
shortest-path that makes the UAV reach the waypoint
at the required time. At run-time, the Simulink
model provides continuous outputs of the current
position of the UAV as well as its current flight
parameters such as yaw, pitch, and roll.

Our UAV federate subscribes to NewWayPoint
interactions and publishes PosUpdate interactions.
Once modeled in GME, the interpreter for the model
generates code that can be used to directly link the
Simulink model with the C2 Wind Tunnel
framework.

In addition, we have written four generic Java
classes that are used for integration of any Simulink
model. These are Matlab-Federate, Matlab-HLA-
Bridge-Base, Matlab-Interaction, and Matlab-
Interaction-Parameter. The class Matlab-
Interaction-Parameter is simply a container class to
hold a variety of supported data types as RTI
interaction parameters. The class Matlab-Interaction
captures interactions sent to or from the RTI and
contains a non-null parameter representing the ID of
the interaction and an array of supplied Matlab-
Interaction-Parameters. The abstract class Matlab-
HLA-Bridge-Base provides interfaces for converting
between Matlab-Interaction and HLA-Interaction.
Finally, the abstract class Matlab-Federate
encapsulates interfacing with the HLA for initializing
the federate, its Look-ahead, interactions models
used, and it’s publish and subscribe relationships
with other federates in the federation. Additionally,
the Matlab-Federate class serves as a mediator for
communication with other federates via the HLA by
providing a number of methods that are accessible
from MATLAB.

A custom GME interpreter generates a set of
Java and MATLAB files. The generated class
Matlab-<FedName> is derived from the generic
class Matlab-Federate. It implements the method for
registering the published and subscribed interactions
and provides wrapper code for send and receive
interaction methods and simulation control methods.
The generated class Matlab-<FedName>-Matlab-
HLA-Bridge is derived from the generic class
Matlab-HLA-Bridge-Base. It populates the used
interaction types and implements the base class
methods for converting interaction parameters
between HLA and C2 Wind Tunnel framework types.
Additionally, the interpreter generates a pair of S-
functions for the input and output bindings from
Simulink (viz., Matlab-<FedName>-Receiver.m and
Matlab-<FedName>-Sender.m) respectively. To
control the Simulink clock and to provide input and
output bindings, these S-functions use block methods

mdlGetTimeOfNextVarHit, mdlUpdate, and
mdlOutput.

D. CPN - ORGANIZATIONAL DECISION MAKING

FEDERATE
C2 Wind Tunnel scenarios use Colored Petri

Nets (CPN) to model and simulate human decision-
making organizations. We use the CPNTools [8]
environment augmented with the BRITNeY [9]
extension tools. This extension provides access to
lower level functionality, which was necessary for
integration.

The primary challenge while integrating CPN
into the C2 environment was correct time
synchronization. To ensure the CPN model
execution stops at desired times an extra place and a
transition, which is set to fire with a predefined
frequency, was added. The CPN model optimistically
progresses ahead of the HLA clock, but when
needed, it can be rolled back to a desired time.

CPN models can be imported into integration
models with a GME model interpreter. Upon
importing a CPN model, a CPNFederate model is
created in the integration model and the CPN places
show up as ports of the CPNFederate. The ports can
be connected to the other parts of the integration
model to specify inputs and outputs for the CPN. Fig.
3 shows the integration steps.

In the configuration phase, an XML file is
created which describes the input-output bindings.
The run-time CPN execution engine will read this file
and simulate the CPN according to the specification.
The set of places to monitor during execution can
also be specified.

V. EXPERIMENTATION WITH THE PLATFORM

The C2 Wind Tunnel project’s goal is to create a
heterogeneous simulation environment tailored
towards scenarios involving the interaction of
multiple unmanned aerial vehicles, their operating
conditions, and the associated command and control
organization and infrastructure. Rapid evolution of
scenario details and easy evaluation of command and
control effectiveness are key motivators. A typical
scenario involves the deployment of one or more
UAVs (implemented using Simulink X4 models) into
a combat zone. The deployment zone and the
physical dynamics of the ground and aerial vehicles
are modeled and visualized using Delta3D. The
UAVs may have objectives including data collection,
target acquisition and engagement, or battle damage
assessment. Sensors (implemented using a Java
federate) mounted on the UAVs must collect
information and relay it via a communications
network back to a centralized decision making

organization (a CPN model). The organization must
react appropriately to the information and provide
guidance to the vehicles. In addition, the UAVs are
themselves highly autonomous and must utilize
collected sensor data to pursue their given objectives.
Out first goal was to demonstrate that we could
rapidly synthesize such simulations using our model-
based integration environment involving all the
domain-specific simulation platforms described
above. For demonstration purposes, we used an
urban scenario with four blue UAVs and two red
ground vehicles. All UAVs have video sensors and
are continuously transmitting video data to the
control station. The control station remotely controls
the UAVs in a formation flight and assesses the
targets one by one based on the initial position
estimates of the targets.

All network communications are simulated using
the OMNeT++ federate. We tested how a network
attack affects mission performance. The abstraction
of low-level physical layer communication in
OMNeT++ makes it straightforward to implement
network attacks. Attacks that we found most
reasonable in our context are Distributed Denial of
Service (DDOS) attacks.

Using a collection of “zombie” nodes in
dedicated sub-networks, either parameterized or
controlled by a master node, any type of “dumb” or
non-adaptive attacks can be simulated. For our
purposes, DDOS was sufficiently disruptive. Each
zombie machine sends, at specified intervals, service

requests to every discovered valid node. As
communications degrade, the effect on formation
flight is pronounced. The formation flight does not
loosen; rather it collapses altogether. The UAVs
continue in their individual directions entirely.
Sensor information is lost, so the operator becomes
unable to repair the loss manually.

The impact of these attacks on the command and
control of the UAVs closely mirrors both the
theoretical and real-world consequences observed
previously in other contexts. This gives the
experimenters confidence that the results of
simulation can be directly applied to the modeled
scenarios.

VI. CONCLUSION AND FUTURE WORK

Once all of the C2 Wind Tunnel federates were

integrated via the HLA and into the GME
environment, the team could begin exploring possible
scenarios. A significant motivator for the overall
project is to be able to rapidly explore “what-if”
scenarios and evaluate both the organizational
decision-making and other impacts such as network
communications disruptions.

The use of GME to integrate domain-specific
models from each simulation platform and generate
all of the needed configuration and integration code
dynamically greatly reduces the time required to
modify a base scenario. Changing the number of
UAVs, the paths of virtual environment adversaries,

Fig. 3: CPN Model Integration Steps

or the time, severity, and duration or network attacks
require simple parameter modifications. Even a range
of federates running on different simulation platforms
can be instantiated dynamically. GME handles the
regeneration of all the remaining code and
configuration files for each of the affected federates.

In the future, we expect to integrate additional
simulation platforms to expand the range of possible
scenarios. Consequently, new simulation platforms
will require expanding the existing integration
metamodel. These enhancements should allow for
greater scenario flexibility and reduced development,
configuration, and operational costs. Additionally, we
are exploring alternatives to implement capabilities in
the C2W framework to alter and configure the entire
simulation at run-time.

VII. ACKNOWLEDGMENTS

The authors acknowledge financial support from
the US Air Force Office of Scientific Research
(Grant No. FA9550-06-1-0267) under the project
"Human Centric Design Environments for Command
and Control Systems: The C2 Wind Tunnel."

The work described in this paper was inspired
and significantly influenced by our collaborators,
Prof. Alexander H. Levis, Prof. Lee W. Wagenhals,
and Prof. Abbas K. Zaidi from George Mason
University. Authors acknowledge contribution and
help from Mr. Mike Kretzer, AFIOC and Mr
Timothy Busch, AFRL-RI.

VIII. REFERENCES

[1] HLA standard – IEEE standard for modeling and

simulation (M&S) high-level architecture (HLA) –
framework and rules.
ieeexplore.ieee.org/servlet/opac?punumber=7179.

[2] Sztipanovits, J., and Karsai, G. 1997. “Model-Integrated
Computing”, IEEE Computer,V.30. pp. 110-112.

[3] Delta3D - www.delta3d.org.
[4] Portico RTI - www.porticoproject.org.
[5] Matlab/Simulink - www.mathworks.com.
[6] OMNeT++ - www.omnetpp.org.
[7] DEVSJAVA - www.acims.arizona.edu.
[8] CPN Tools - wiki.daimi.au.dk/cpntools/cpntools.wiki.
[9] M. Westergaard: “The BRITNeY Suite: A Platform for

Experiments” in Proceedings of Seventh Workshop on
Practical Use of Coloured Petri Nets and the CPN Tools.
Århus, Denmark, October 2006.

[10] Agrawal A., Bakshi A., Davis J., Eames B., Ledeczi A.,
Mohanty S., Mathur V., Neema S., Nordstrom G., Prasanna
V., Raghavendra, C., Singh M.: MILAN: A Model Based
Integrated Simulation.

[11] Dahmann, J.S., R.M. Fujimoto, and R.M. Weatherly. 1997.
The Department of Defense High Level Architecture. In
Proceedings of the 1997 Winter Simulation Conference, ed.
S. Andradóttir, K.J. Healy, D.H. Withers, and B.L. Nelson,
142-149, Association of Computing Machinery, New York,
NY.

[12] Fan Zhang, Benxiong Huang: “HLA-Based Network
Simulation for Interactive Communication System” in
Proceedings of the First Asia International Conference on
Modelling & Simulation, 2007.

[13] Sven Pawletta, Wolfgang Drewelow, Thorsten Pawletta.
HLA-Based Simulation within an Interactive Engineering
Environment. ds-rt, p. 97, Fourth IEEE International
Workshop on Distributed Simulation and Real-Time
Applications (DS-RT'00), 2000.

[14] James O. Henriksen. SLX: The X Is For Extensibility.
http://citeseer.ist.psu.edu/518548.html.

[15] U. Klein, S. Straburger, and J. Beikrich. Distributed
simulation with JavaGPSS based on the High Level
Architecture. In P. A. Fishwick, D. R. C. Hill, and R.
Smith, editors, Proceedings of the 1998 International
Conference onWeb-Based Modeling and Simulation, pages
85--90, January11-14 1998. San Diego, CA.

[16] Zeigler, B. P., and J. S. Lee. 1998. Theory of quantized
systems: Formal basis for DEVS/HLA distributed
simulation environment. In Enabling Technology for
Simulation Science (II), SPIE AeoroSense 98, Orlando, FL.

[17] Zeigler, B. P., G. Ball., H. J. Cho., J. S. Lee. and H. Sar-
joughian. 1999. Implementation of the DEVS formalism
over the HLA/RTI: Problems and solutions. Spring
Simulation Interoperability Workshop (SIW), (Orlando,
FL, March 14--19), 99S--SIW--065.

[18] G. Zacharewicz, C. Frydman, N. Giambiasi. Mapping
PIOVRA in GDEVS/HLA Environment. In Proceedings of
Summer Simulation Multiconference (SummerSim'07),
The society for modeling and simulation international,
SCS, San Diego, CA, USA, July 2007.

[19] HLA Toolbox for developing and executing HLA federates
from MATLAB.
http://www.mathworks.com/products/connections/product_
main.html?prod_id=696&prod_name=HLA%20Toolbox.

[20] ForwardSim Inc.: http://www.forwardsim.com/.
[21] MATLAB and Simulink interfaces to HLA and DIS based

distributed simulation environments.
http://www.mathworks.com/products/connections/product_
main.html?prod_id=696&prod_name=HLA%20Toolbox.

[22] MÄK Technologies: http://www.mak.com/.
[23] DEVS and HLA: complementary paradigms for modeling

and simulation?. Transactions of the Society for Computer
Simulation International, v.17 n.4, p.187-197, Dec. 1, 2000.

[24] Tainchi Lu , Chungnan Lee , Wenyang Hsia , Mingtang
Lin. Supporting large-scale distributed simulation using
HLA. ACM Transactions on Modeling and Computer
Simulation (TOMACS), v.10 n.3, p.268-294, July 2000.

[25] DMSO. HLA Homepage. http://hla.dmso.mil/

