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Abstract-Virtual evaluation of complex command and 

control concepts demands the use of heterogeneous simulation 
environments.  Development challenges include how to 
integrate multiple simulation platforms with varying semantics 
and how to integrate simulation models and the complex 
interactions between them.  While existing simulation 
frameworks may provide many of the required services needed 
to coordinate among multiple simulation platforms, they lack 
an overarching integration approach that connects and relates 
the semantics of heterogeneous domain models and their 
interactions.  This paper outlines some of the challenges 
encountered in developing a command and control simulation 
environment and discusses our use of the GME meta-modeling 
tool-suite to create a model-based integration approach that 
allows for rapid synthesis of complex HLA-based simulation 
environments. 
 

I. INTRODUCTION 
 

Evaluation of emerging command and control 
(C2) concepts necessitates a sophisticated modeling 
and simulation infrastructure that allows for the 
concurrent modeling, simulation and evaluation of (1) 
the C2 system architecture (advanced system-of-
systems modeling), (2) the battle space environment 
(scenario modeling and generation), and the (3) human 
organizations and (group and individual) decision 
making processes (human performance and man-
machine interaction modeling).  The complexity of 
this issue demands the use of a multitude of existing 
simulation tools interacting in a coordinated 
environment. 

Issues encountered in developing this 
environment relate to the integration of various 
simulation platforms, each with its own semantics, 
and integration of the models that execute on the 
platforms and the interactions between models.  
Integration frameworks, such as the High-Level 
Architecture (HLA) ([1], [11], and [25]) provide 
APIs that have helped to reduce the complexity of 
developing simulations that span multiple different 
platforms, but many challenges remain in developing 
and deploying these simulations.  Pervasive use of 
models and integration at the domain-specific model 
level can decrease the effort required to integrate 
multiple platforms and increase the adaptability of 

the resulting environment, though this approach is 
still not without its own set of challenges. 

 Each simulation platform, when incorporated 
into the overall simulation environment, requires 
integration at both the API level and at the semantic 
or interaction level.  API integration provides basic 
services such as time coordination, message passing, 
and shared object management.  Semantic integration 
is more subtle and depends upon the context of the 
overall simulation environment. 

The explicit use of models throughout the 
simulation environment opens the door for model-
based integration techniques.  The C2 Wind Tunnel 
environment uses the Generic Modeling Environment 
(GME) [2] meta-modeling tool chain to integrate the 
operational semantics of multiple simulation 
platforms, to manage the configuration and 
deployment of scenarios into the simulation 
environment, and to generate necessary integration 
code for each integrated platform. 

The GME tools use a generic modeling 
environment to facilitate graphical development of 
domain-specific modeling languages (DSML).  These 
languages can express both the structural and 
operational semantics of a model.  The C2 Wind 
Tunnel project has developed DSMLs that capture 
the semantics of each integrated simulation platform 
and an overarching DSML to model the interactions 
between simulation models.  We have written custom 
interpreters to dynamically import and export 
platform-native models into the GME DSMLs and to 
generate HLA configuration files and glue code.  
These tools allow our environment to be rapidly 
reconfigured or extended, furthering the goal of rapid 
evaluation of emerging command and control 
concepts. 

The organization of the remainder of this paper 
is as follows. The next section discusses the work 
related to our research. Section III details the C2 
Wind Tunnel simulation framework and our 
approach for model integration using the GME 
environment. Section IV reviews the details of the 
integration of several simulation tools. Section V 



 

covers results from using the framework in a real-
world scenario. The final section concludes the paper 
and outlines the planned future work. 
 

II. RELATED WORK 
 

There has been some work to integrate a set of 
simulation packages with or without HLA. For 
example, one of the previous efforts at our institute, 
that relates to heterogeneous simulation, particularly 
of embedded systems, is the MILAN framework [10]. 
While efforts that relate to integrating simulation 
packages with HLA include OPNET [12], 
MATLAB-HLA integration methods [13], SLX 
integration [14], JavaGPSS integration [15], 
DEVSJAVA [16], [17], and PIOVRA [18]. Also, 
there is some amount of commercial integration 
software available, including HLA Toolbox [19] for 
MATLAB federates by ForwardSim Inc. [20] and 
MATLAB and Simulink interfaces to HLA and DIS 
based distributed simulation environments [21] by 
MÄK Technologies [22]. Additionally, there also 
have been some efforts on enhancing HLA support 
by complementary simulation methodologies such as 
in [23], and [24]. However, most of these efforts 
pursue HLA integration of isolated simulation tools, 
do not exploit HLA for distributed simulation, or are 
commercial applications for a dedicated simulation 
tool. Moreover, these efforts (except MILAN) do not 
have any support for model-based rapid integration of 
simulation tools. 

In contrast to the current research efforts, we 
have focused on developing a model-based 
integration framework to integrate a range of 
simulation tools such as MATLAB/Simulink, 
OMNeT++, DEVSJAVA, CPN Tools, Delta3D, and 
legacy Java, C, or C++ HLA-federates, and to rapidly 
synthesize large-scale HLA-based heterogeneous 
simulation. To that end, this paper gives a detailed 
description of our approach demonstrating rapid 
model-based integration of various simulation tools. 
 

III. MODEL-BASED SIMULATION 
ENVIRONMENT 

 
Complex command and control simulations 

require coordination between multiple existing 
simulation platforms.  The HLA provides a standard 
for a Run-Time Infrastructure (RTI) that supports the 
coordinated execution of distributed simulations.  
However, integration of the different platform-
specific simulation models remains a challenging 
problem.  Our project introduces a new model-
integrated approach for the simulation integration 
problem.  The primary contribution of this effort is 
the development of an overarching modeling 

environment, based on the GME, and a suite of 
model transformations to synchronize between 
multiple platform-specific models. 

The composition, deployment and execution of 
the entire simulation is configured using the central 
modeling environment.  A large set of well-known 
simulation tools are supported for heterogeneous 
simulations.  We provide reusable run-time 
components to coordinate the execution of the 
various domain-specific models.  These components 
are configured from the modeling environment with a 
set of XML files. In some cases, both glue code and 
configuration files are generated for configuring the 
simulation tool. 

The virtual component models in the C2 Wind 
Tunnel are integrated using the GME environment.  
Model transformations, executed using custom 
interpreters, generate the necessary configuration 
information and glue code.  These pieces are 
incorporated into each of the different simulator 
platforms.  At run-time, the platforms interact using 
the HLA infrastructure. 

In the following sub-sections, we briefly 
describe the HLA and the GME tool-chain, and then 
we discuss in detail the integration approach and life-
cycle of the entire environment. 
 
A. HLA AND GME BACKGROUND 

The High-Level Architecture ([1], [11], and [25]) 
is a standard framework for distributed computer 
simulation systems.  It was originally developed by 
the U.S. Department of Defense and is their required 
standard for simulation interoperability.  IEEE now 
oversees the ongoing evolution of the architecture as 
HLA Standard 1516.  Communication between 
different federates is managed by the Run-Time 
Infrastructure (RTI).  The RTI provides a set of 
services such as time management, data distribution, 
and ownership management. Other components of 
the HLA standard are the Object Model Template 
(OMT) and the Federate Interface Specification 
(FIS). 

Since HLA is an accepted standard, a number of 
commercial, academic, and alternate RTI 
implementations are available. Currently, we use the 
Portico RTI [4] – which provides support for both 
C++ and Java clients and is compliant with version 
1.3 of the HLA standard. 

Command and control simulations are composed 
of a variety of simulation tools such as 
Matlab/Simulink, CPN Tools, and OMNeT++.  Each 
of these simulation tools has its own simulation clock 
and methods for progressing the simulation forward 
through time.  The HLA interface specifications - 
HLA-interactions and HLA-objects (shared objects) - 
form the basis of communication among these 



 

heterogeneous simulation tools. An interface 
specification for a federation consists of a definition 
for each of the interactions and objects that are to be 
supported by the RTI.  This is typically specified in a 
textual language that is specific to the chosen RTI.  A 
graphical representation of the same information is 
more comprehensible and readable and it allows for 
capturing a variety of configuration elements that are 
necessary for the synthesis of heterogeneous 
simulations.  The C2 Wind Tunnel captures not only 
the necessary interface specification for running 
heterogeneous simulations over HLA, but also a 
variety of mechanisms for configuring, enhancing, 
and detailing the simulation execution. 

The Generic Modeling Environment is a meta-
programmable model-integrated computing (MIC) 
toolkit that supports creation of rich domain-specific 
modeling and program synthesis environments.  
Configuration is accomplished through metamodels 
specifying the modeling paradigm (modeling 
language) of the application domain.  A metamodel is 
used to define all the syntactic, semantic, and 
presentation information regarding the domain.  
 
B. C2 WIND TUNNEL META MODEL 

Below, we describe briefly the C2 Wind Tunnel 
metamodel for HLA integration of federates running 
in the C2 Wind Tunnel framework.  This is used to 

automatically configure GME as a modeling 
environment that supports modeling heterogeneous 
simulations to run on the C2W framework. 

Fig. 1 shows the primary portion of the 
metamodel that defines the universe of composition 
elements of an HLA federation running in the C2 
Wind Tunnel framework and the set of 
communication elements for inter-federate 
communication. 

As shown in Fig. 1, the three main elements in a 
federation (defined by the model FOMSheet) are 
Interaction, Object, and Federate representing an 
HLA-Interaction, HLA-Object, and an HLA-Federate 
respectively.  Note that the proxy elements are simply 
references to their respective main models.  Federates 
in an HLA federation communicate among each other 
using HLA-interactions and HLA-objects – which are 
in turn managed by the RTI.  Interactions and objects, 
in an analogy with inter-process communication, 
correspond to message passing and shared memory 
respectively.  As seen in Fig. 1, the metamodel fully 
supports the key attributes of these communication 
elements such as delivery method, message order 
(timestamp or receive order), and parameters. The 
main attribute of a federate, as far as HLA-based 
synchronization is concerned, is its Look-ahead – the 
period of time in the future during which the federate 
guarantees that it will not send an interaction or 

Fig. 1: Part of the C2 Wind Tunnel Meta Model 



 

update an object.  Further, we define specialized 
federate elements for simulation tools requiring 
special integration models, such as CPN Tools and 
OMNeT++, and define special communication 
elements required by them, viz. Place and EndPoint 
respectively.  We discuss model-based integration of 
these special simulation tools in subsequent sections.  
The metamodel goes an additional step forward by 
also providing full support for defining the means to 
publish and subscribe elements required for the 
heterogeneous simulation.  This is accomplished by 
defining special publish and subscribe connection 
elements for both interactions and objects. Lastly, the 
attributes of FOMSheet captures the names and 
location for configuration code that enables the 
integration of a range of supported simulation tools.  
We will be describing this capability in detail in a 
following section.  Model-based integration of 
OMNeT++, Delta3D, Matlab/Simulink, CPN Tools, 
and DEVSJAVA is discussed in Section 4. 
 
C. INTEGRATING  SIMULATION MODELS 

Two main aspects, the data representation and 
the data flow, are common elements of most of the 
domain-specific simulation modeling paradigms – so 
these are the key points of our integration models.  
The integration models describe both the data 
representation and data flow elements and, in some 
cases, include special elements as the placeholders 
for domain-specific models. 

The data representation models consist of 
interaction and object models.  Interactions are 
stateless and can have parameters while objects have 
states – which are represented as a set of attributes.  
Both interactions and objects can have an inheritance 
hierarchy. These data representation models directly 
map to the HLA Federation Object Model (FOM).  
Fig. 2 shows an example of the data representation 
models with an interaction class-inheritance tree on 
the top, and an object class-inheritance tree on the 
bottom. 

Once the data representation models are created 
the modeler can define publish-subscribe data flow 
relations by creating federates and connecting them 
to interactions or object attributes with directional 
links.  Federates can publish or subscribe interactions 
or object attributes.  

To aid in organization, the integration model can 
be broken down into sheets.  This type of partitioning 
is up to the modeler and does not directly affect the 
semantics of the model.  The GME modeling 
language supports references and proxies to connect 
the sheets.  In this manner, large models can be 
visualized and edited easily. In addition, libraries of 
such models can be built and reused later. 

 
Fig. 2: Data Representation Model Examples 

 
D. THE DEVELOPMENT CYCLE 

The GME supports a plug-in architecture to add 
model operator modules called interpreters.  These 
interpreters can access the model through a high-level 
easy-to-use interface, the Builder Object Model 
(BON).  Interpreters can be written in either C++ or 
Java.  The C2 Wind Tunnel comes with a set of 
interpreters that support the transformation between 
domain-specific and integration models, and the 
generation of run-time configuration information. 

In many cases the domain specific models 
already exists, so data representation and data flow 
models can be easily imported.  In other cases, we 
need to export these from the integration models.  An 
iteration of these steps can be performed until the 
models are synchronized. An example of this is 
presented in the Colored Petri Nets section. 

Several integration-related parameters can be set 
in the modeling environment.  One example is the 
static look-ahead value of a federate.  This value can 
be set manually if it is not possible to calculate it 
automatically.  

After finalizing the models and setting the 
parameters, an interpreter generates all the necessary 
configuration information.  This includes the HLA 
.fed file, XML and other configuration files for the 
domain specific federates.  Where necessary, Java or 



 

C++ skeleton code, based on the integration models, 
is generated for run-time use in federates. 

At times, the modeling environment itself may 
need some extensions when either a change in 
metamodel is made or integration glue code needs to 
be updated. An example of this type of change would 
include addition of support for a previously 
unsupported simulation platform. For this, slight 
extensions to the metamodel (though rarely) may 
need to be made (e.g., to define new interactions or 
objects for the new simulation platform). In addition, 
the interpreter needs slight extensions for generating 
glue code for the new simulation platform. The 
current infrastructure enables one to accomplish 
support for newer simulation platforms with much 
ease and speed. 
 

IV. SUPPORTED DOMAIN SPECIFIC 
MODELS 

 
This section describes the domain specific 

simulation platforms currently supported by the C2 
Wind Tunnel. These platforms are OMNeT++, 
Delta3D, Matlab/Simulink, and Colored Petri Nets. 
This set was selected to support a wide range of 
unmanned aerial vehicle command and control 
scenarios. 
 
A. OMNeT++ - COMMUNICATIONS FEDERATE 

In a command and control simulation 
environment it is essential to model and simulate the 
communication network in order to study mission 
critical situations like network failures or network 
attacks.  After evaluating multiple public domain 
network simulators against project requirements, 
OMNeT++ [6] was selected as the network 
simulation platform. 

OMNeT++ provides high performance, faithful 
protocol simulation above the physical layer.  Its 
modular architecture allows for easy replacement of 
the event scheduler in order to integrate with HLA, 
obviously a key requirement.  OMNeT++ does not 
use computationally expensive radio-signal 
propagation models; instead, it simulates the physical 
layer with simple probabilistic models. 

Even in the case of a small network, simulating 
the full protocol stack generates a large number of 
messages, which would flood the simulation and 
decrease performance if they were dispatched to the 
RTI.  This approach does not scale well for large 
numbers of communicating actors.  Finding the 
optimal tradeoff between scalability, speed and 
simulation accuracy is an important issue. 

We developed a tool, NetworkSim, which is an 
HLA-compliant reusable communication network 
simulator based on OMNeT++.  NetworkSim 

provides a set of high-level communication protocols 
(reliable send, streaming) while internally it faithfully 
simulates the full network stack.  This approach 
allows for application level interactions of interest to 
be captured while minimizing HLA traffic. 

The NetworkSim scheduler keeps the RTI and 
OMNeT++ clocks synchronized.  The advanceTime() 
call inside receives interactions from the RTI and a 
dispatcher mechanism converts them to the 
appropriate protocol module which interprets it and 
can schedule new OMNeT++ messages. 

 
B. DELTA3D - VISUALIZATION, SENSOR DATA, AND 

PHYSICS FEDERATE 
Delta3D [3] is an actively developed open-

source project that integrates numerous modules for 
visualization, communications, and dynamics.  It 
provides native HLA integration and scene modeling 
tools.  Because of its native HLA integration, no 
GME interpreter is needed to integrate it within the 
C2 environment.   

Delta3D-based federates play several different 
roles in the C2 Wind Tunnel.  The first role is to 
provide 3D visualization of the virtual world as the 
simulation executes.  The second role is to simulate 
the sensor data being collected by cameras mounted 
on each UAV. The real-time video data is sent back 
to an operator station.  The logical packets are sent 
through the simulated network via HLA interactions 
and objects shared between Delta3D and OMNeT++, 
but the actual image data is not transferred.  It is 
regenerated on the operator side since the network 
bandwidth is more of a bottleneck in this situation 
than CPU load.  Using this approach, the transmitted 
video stream can be faithfully simulated and the 
solution remains scalable as well. The final use of 
Delta3D federate is as the physics simulator handling 
tasks such as collision detection. 
 
C. MATLAB/SIMULINK - UAV PLANT AND 

CONTROLLER FEDERATE 
Simulink [5] is a widely used simulation 

environment for modeling dynamic and embedded 
systems such as communications, controls, and signal 
processing.  It uses a set of pre-built block libraries 
for designing and controlling the simulation. 

In our scenarios, we use X4 Simulink models for 
simulating the dynamic behavior of Unmanned 
Aerial Vehicles (UAVs) with four rotors.  The 
simulation model is a high-fidelity dynamics model 
with a range of parameters to setup the simulation 
such as initial location, speed and acceleration 
vectors, yaw, pitch, and roll.  Additionally, the model 
takes as input a set of time-stamped waypoints that 
allow the model to calculate the trajectory of the 
UAV to reach the waypoint in the given amount of 



 

time.  The model can then calculate the flight 
parameters including speed and turns to find a 
shortest-path that makes the UAV reach the waypoint 
at the required time.  At run-time, the Simulink 
model provides continuous outputs of the current 
position of the UAV as well as its current flight 
parameters such as yaw, pitch, and roll. 

Our UAV federate subscribes to NewWayPoint 
interactions and publishes PosUpdate interactions.  
Once modeled in GME, the interpreter for the model 
generates code that can be used to directly link the 
Simulink model with the C2 Wind Tunnel 
framework. 

In addition, we have written four generic Java 
classes that are used for integration of any Simulink 
model.  These are Matlab-Federate, Matlab-HLA-
Bridge-Base, Matlab-Interaction, and Matlab-
Interaction-Parameter.  The class Matlab-
Interaction-Parameter is simply a container class to 
hold a variety of supported data types as RTI 
interaction parameters.  The class Matlab-Interaction 
captures interactions sent to or from the RTI and 
contains a non-null parameter representing the ID of 
the interaction and an array of supplied Matlab-
Interaction-Parameters.  The abstract class Matlab-
HLA-Bridge-Base provides interfaces for converting 
between Matlab-Interaction and HLA-Interaction.  
Finally, the abstract class Matlab-Federate 
encapsulates interfacing with the HLA for initializing 
the federate, its Look-ahead, interactions models 
used, and it’s publish and subscribe relationships 
with other federates in the federation.  Additionally, 
the Matlab-Federate class serves as a mediator for 
communication with other federates via the HLA by 
providing a number of methods that are accessible 
from MATLAB. 

A custom GME interpreter generates a set of 
Java and MATLAB files.  The generated class 
Matlab-<FedName> is derived from the generic 
class Matlab-Federate.  It implements the method for 
registering the published and subscribed interactions 
and provides wrapper code for send and receive 
interaction methods and simulation control methods.  
The generated class Matlab-<FedName>-Matlab-
HLA-Bridge is derived from the generic class 
Matlab-HLA-Bridge-Base.  It populates the used 
interaction types and implements the base class 
methods for converting interaction parameters 
between HLA and C2 Wind Tunnel framework types.  
Additionally, the interpreter generates a pair of S-
functions for the input and output bindings from 
Simulink (viz., Matlab-<FedName>-Receiver.m and 
Matlab-<FedName>-Sender.m) respectively.  To 
control the Simulink clock and to provide input and 
output bindings, these S-functions use block methods 

mdlGetTimeOfNextVarHit, mdlUpdate, and 
mdlOutput. 

 
D. CPN - ORGANIZATIONAL DECISION MAKING 

FEDERATE 
C2 Wind Tunnel scenarios use Colored Petri 

Nets (CPN) to model and simulate human decision-
making organizations.  We use the CPNTools [8] 
environment augmented with the BRITNeY [9] 
extension tools.  This extension provides access to 
lower level functionality, which was necessary for 
integration. 

The primary challenge while integrating CPN 
into the C2 environment was correct time 
synchronization.  To ensure the CPN model 
execution stops at desired times an extra place and a 
transition, which is set to fire with a predefined 
frequency, was added. The CPN model optimistically 
progresses ahead of the HLA clock, but when 
needed, it can be rolled back to a desired time.  

CPN models can be imported into integration 
models with a GME model interpreter.  Upon 
importing a CPN model, a CPNFederate model is 
created in the integration model and the CPN places 
show up as ports of the CPNFederate.  The ports can 
be connected to the other parts of the integration 
model to specify inputs and outputs for the CPN. Fig. 
3 shows the integration steps. 

In the configuration phase, an XML file is 
created which describes the input-output bindings.  
The run-time CPN execution engine will read this file 
and simulate the CPN according to the specification.  
The set of places to monitor during execution can 
also be specified. 

 
V. EXPERIMENTATION WITH THE PLATFORM 

 
The C2 Wind Tunnel project’s goal is to create a 
heterogeneous simulation environment tailored 
towards scenarios involving the interaction of 
multiple unmanned aerial vehicles, their operating 
conditions, and the associated command and control 
organization and infrastructure.  Rapid evolution of 
scenario details and easy evaluation of command and 
control effectiveness are key motivators. A typical 
scenario involves the deployment of one or more 
UAVs (implemented using Simulink X4 models) into 
a combat zone. The deployment zone and the 
physical dynamics of the ground and aerial vehicles 
are modeled and visualized using Delta3D. The 
UAVs may have objectives including data collection, 
target acquisition and engagement, or battle damage 
assessment.  Sensors (implemented using a Java 
federate) mounted on the UAVs must collect 
information and relay it via a communications 
network back to a centralized decision making 



 

organization (a CPN model).  The organization must 
react appropriately to the information and provide 
guidance to the vehicles.  In addition, the UAVs are 
themselves highly autonomous and must utilize 
collected sensor data to pursue their given objectives. 
Out first goal was to demonstrate that we could 
rapidly synthesize such simulations using our model-
based integration environment involving all the 
domain-specific simulation platforms described 
above.  For demonstration purposes, we used an 
urban scenario with four blue UAVs and two red 
ground vehicles.  All UAVs have video sensors and 
are continuously transmitting video data to the 
control station.  The control station remotely controls 
the UAVs in a formation flight and assesses the 
targets one by one based on the initial position 
estimates of the targets. 

All network communications are simulated using 
the OMNeT++ federate.  We tested how a network 
attack affects mission performance.  The abstraction 
of low-level physical layer communication in 
OMNeT++ makes it straightforward to implement 
network attacks.  Attacks that we found most 
reasonable in our context are Distributed Denial of 
Service (DDOS) attacks. 

Using a collection of “zombie” nodes in 
dedicated sub-networks, either parameterized or 
controlled by a master node, any type of “dumb” or 
non-adaptive attacks can be simulated.  For our 
purposes, DDOS was sufficiently disruptive.  Each 
zombie machine sends, at specified intervals, service 

requests to every discovered valid node.  As 
communications degrade, the effect on formation 
flight is pronounced.  The formation flight does not 
loosen; rather it collapses altogether.  The UAVs 
continue in their individual directions entirely.  
Sensor information is lost, so the operator becomes 
unable to repair the loss manually. 

The impact of these attacks on the command and 
control of the UAVs closely mirrors both the 
theoretical and real-world consequences observed 
previously in other contexts.  This gives the 
experimenters confidence that the results of 
simulation can be directly applied to the modeled 
scenarios. 
 

VI. CONCLUSION AND FUTURE WORK 
 
Once all of the C2 Wind Tunnel federates were 

integrated via the HLA and into the GME 
environment, the team could begin exploring possible 
scenarios.  A significant motivator for the overall 
project is to be able to rapidly explore “what-if” 
scenarios and evaluate both the organizational 
decision-making and other impacts such as network 
communications disruptions. 

The use of GME to integrate domain-specific 
models from each simulation platform and generate 
all of the needed configuration and integration code 
dynamically greatly reduces the time required to 
modify a base scenario. Changing the number of 
UAVs, the paths of virtual environment adversaries, 

Fig. 3: CPN Model Integration Steps 



 

or the time, severity, and duration or network attacks 
require simple parameter modifications. Even a range 
of federates running on different simulation platforms 
can be instantiated dynamically. GME handles the 
regeneration of all the remaining code and 
configuration files for each of the affected federates. 

In the future, we expect to integrate additional 
simulation platforms to expand the range of possible 
scenarios.  Consequently, new simulation platforms 
will require expanding the existing integration 
metamodel.  These enhancements should allow for 
greater scenario flexibility and reduced development, 
configuration, and operational costs. Additionally, we 
are exploring alternatives to implement capabilities in 
the C2W framework to alter and configure the entire 
simulation at run-time. 
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