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ABSTRACT

An emerging trend in Internet of Things (IoT) applications
is to move the computation (cyber) closer to the source of
the data (physical). This paradigm is often referred to as
edge computing. If edge resources are pooled together they
can be used as decentralized shared resources for IoT appli-
cations, providing increased capacity to scale up computa-
tions and minimize end-to-end latency. Managing applica-
tions on these edge resources is hard, however, due to their
remote, distributed, and possibly dynamic nature, which ne-
cessitates autonomous management mechanisms that facili-
tate application deployment, failure avoidance, failure man-
agement, and incremental updates. To address these needs,
we present CHARIOT, which is an orchestration middleware
capable of autonomously managing IoT systems consisting
of edge resources and applications. CHARIOT implements
a three-layer architecture. The topmost layer comprises a
system description language; the middle layer comprises a
persistent data storage layer and the corresponding schema
to store system information; and the bottom layer comprises
a management engine, which uses information stored persis-
tently to formulate constraints that encode system proper-
ties and requirements thereby enabling the use of Satisfiabil-
ity Modulo Theories (SMT) solvers to compute optimal sys-
tem (re)configurations dynamically at runtime. This paper
describes the structure and functionality of CHARIOT and
evaluates its efficacy as the basis for a smart parking system
case study that uses sensors to manage parking spaces.

1. INTRODUCTION
Emerging trends and challenges. Popular IoT ecosystem
platforms, such as Beaglebone Blacks, Raspberry Pi, Intel
Edison and other related technologies like SCALE [5] and
Paradrop[33], provide new capabilities for data collection,
analysis, and processing at the edge [32] (also referred to as
Fog Computing [6]). When pooled together, edge resources
can be used as decentralized shared resources that host the

data collection, analysis, and actuation loops of IoT appli-
cations. Examples of such applications include air quality
monitoring, parking space detection, and smart emergency
response. In this paper, we refer to the combination of re-
mote edge resources and applications deployed on them as
IoT systems. These IoT systems provide the capacity to
scale up computations as well as minimize end-to-end la-
tency, which makes them well-suited to support novel use
cases for smart and connected communities.

While the promise of the IoT paradigm is significant, sev-
eral challenges must be resolved before they become ubiqui-
tous and effective. Conventional enterprise architectures use
centralized servers or clouds with static network layouts and
a fixed number of devices without sensors and actuators to
interact with their physical environment. In contrast, edge
deployment use cases raise key challenges not encountered
in cloud computing, including (1) handling the high degree
of dynamism arising from computation and communication
resource uncertainty, and (2) managing resource constraints
imposed due to the cyber-physical nature of applications and
system hardware/software components.

Computation resource uncertainty in IoT systems stems
from several factors, including increased likelihood of fail-
ures, which are in turn caused by increased exposure to nat-
ural and human-caused effects, as well as dynamic environ-
ments where devices can join and leave a system at any time.
Communication resource uncertainty is caused by network
equipment failure, interference, or due to the mobile na-
ture of some systems (e.g., swarm of drones or fractionated
satellites). Unlike traditional enterprise architectures, whose
resource constraints narrowly focus on only CPU, memory,
storage and network, IoT systems must be able to express
and satisfy more stringent resource constraints due to their
cyber-physical nature, such as their deployment on resource-
limited sensors and actuators.

Even under aforementioned uncertainties and constraints,
IoT systems must be capable of managing their applications
to ensure maximum availability, especially since these appli-
cations are often mission-critical. Each application deployed
for a mission has specific goal(s) that must be satisfied at
all times. IoT systems should therefore be equipped with
mechanisms that ensure all critical goals are satisfied for
as long as possible, i.e., they must be resilient by facilitat-
ing failure avoidance, failure management, and operations
management to support incremental hardware and software
changes over time. Moreover, since IoT systems compris-
ing edge resources are often remotely deployed, resilience
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associated with camera nodes. As a result, an instance of the
ImageCapture component runs on each active camera node.
We model this requirement using the per-node redundancy
pattern (see line 32-33 in Figure 9). Likewise, the failure of
a camera node implies failure of the hosted ImageCapture
component instance, so this failure cannot be mitigated.

4.1.4 Summary of the Design Layer

CHARIOT-ML is a Domain Specific Modeling Language
(DSML) built using the Xtext framework [2] that comprises
CHARIOT’s design layer. This DSML is a textual modeling
language designed using the Xtext framework [2]. Currently,
CHARIOT-ML allows modeling of resources such as soft-
ware artifacts, devices, memory, storage, operating system,
and communication middleware. Although this is an exten-
sive list of resource types for most IoT systems, it might
not be sufficient for all possible IoT systems. Therefore,
it might require modifications and extensions depending on
the domain in which it is being used. For example, in order
to model self-degrading systems that rely on monitoring of
QoS parameters, CHARIOT-ML must facilitate modeling of
QoS thresholds at different levels of abstractions.

Furthermore, the language currently only facilitates repli-
cation constraints, which are a type of deployment con-
straint that specifies the number of certain functionality
that must be deployed. There are other scenarios, however,
where replication constraints are not sufficient and more spe-
cific deployment constraints are required, such as deploy-on-
same-node, deploy-on-different-node, and deploy-only-on-a-
specific-resource-category.

Due to the modular nature of the xtext framework, in-
troducing these changes will not be difficult. However, we
must ensure that the new concepts do not violate any ex-
isting rules already implemented. Furthermore, the data
schema defined in Section 4.2 ensures that the extensions
introduced at design layer can be supported by the underly-
ing management layer, assuming that the functionalities are
only being added in and not modifying existing concepts.

4.2 Data Description Layer
This section presents the CHARIOT data layer, which de-

fines a schema that forms the basis for persistently storing
system information, such as design-time system description
and runtime system information. This layer codifies the for-
mat in which system information should be represented. A
key advantage of this codification is its decoupling of CHAR-
IOT’s design layer (top layer) from its management layer
(bottom layer), which yields a flexible architecture that can
accommodate varying implementations of the design layer,
as long as those implementations adhere to the data layer
schema described in this section.

Figure 12 presents UML class diagrams as schemas used
to store design-time system description and runtime system
information. These schemas are designed for document-
oriented databases. An instance of a class that is not a
child in a composition relationship therefore represents a
root document. Below we describe CHARIOT’s design-time
and runtime schemas in detail.

4.2.1 Design-time System Description Schema

The schema for design-time system description comprises
entities to store node categories, component types, and goal
descriptions, as shown in Figure 12a. These concepts have

been previously described in Section 4.1. Neither node cat-
egories nor component types are application-specific since
multiple applications can be simultaneously hosted on nodes
of an IoT system and a component type can be used by
multiple applications. In addition to other attributes, the
ComponentType class also captures scripts that can be used
to start and stop an instance of a component type; this in-
formation is used at runtime to instantiate components.

As shown in Figure 12a, a goal description comprises ob-
jectives, which are composed of functionalities, and repli-
cation constraints. The ReplicationConstraint class repre-
sents replication constraints and consists of maxInstances,
minInstance, and numInstances attributes that are related
to the degree of replication. The latter attribute is used if a
specific number of replicas are required, whereas the former
two attributes are used to describe a range-based replication.
The nodeCategories attribute is used for per-node replica-
tion constraints. The serviceComponentType attribute is re-
lated to specific component types that provide special repli-
cation services, such as a component type that provides a
voter service or a consensus service.

4.2.2 Runtime Information Schema

The schema for runtime system information comprises en-
tities to store functionality instances, nodes, deployment ac-
tions, reconfiguration events, and look-ahead information,
as shown in Figure 12b. Since functionalities can be repli-
cated, the FunctionalityInstance class is used to store infor-
mation about functionality instances. The ComponentType
attribute is only relevant for voter and consensus service
providing functionality instances as they are not associated
with functionalities that are part of a goal description. Fur-
thermore, the alwaysDeployOnNode attribute ties a func-
tionality instance to a specific node and is only relevant
for functionality instances related to per-node replication
groups. Finally, the mustDeploy boolean attribute indicates
whether a functionality instance should always be deployed.

The Node class represents compute nodes, the Process
class represents processes running on nodes, and the Com-
ponentInstance class represents component instances hosted
on processes. As shown in Figure 12b, these three classes
have containment relationship. The functionalityInstance-
Name attribute in ComponentInstance class represents the
name of the corresponding functionality instance as a com-
ponent instance is always associated with a functionality
instance (see Section 4.3.3).
The DeploymentAction class represents runtime deploy-

ment actions that are computed by the CHARIOT manage-
ment engine to (re)configure a system. The DeploymentAc-
tion class consists of an action, a completed boolean flag to
indicate if an action has been taken, process affected by the
action, node on which the action should be performed, and
scripts to perform the action. CHARIOT supports two kinds
of actions: start actions and stop actions. The LookAhead
class represents precomputed solutions (see Section 4.3.6).
It consists of attributes that represent a failed entity, and
a set of recovery actions (deployment actions) that must be
performed to recover from the failure.

The ReconfigurationEvent class represents runtime recon-
figuration events. It is used to keep track of failure and up-
date events that trigger system reconfiguration. It consists
of detectionTime, solutionFoundTime, and reconfiguredTime
to keep track of when a failure or update was detected, when
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Algorithm 1 Functionality Instances Computation.

Input: objective (obj), nodes (nodes list), computed functionalities (computed functionalities)
Output: functionality instances for obj (ret list)

1: for func in obj.functionalities do

2: if func not in computed functionalities then ⊲ Make sure a functionality is processed only once.
3: if func has associated replication constraints then
4: constraints = all replication constraints associated with func

5: for c in constraints do

6: if c.kind == PER NODE then ⊲ Handle per node replication.
7: for node category in c.nodeCategories do

8: nodes = nodes in nodes list that are alive and belong to category node category

9: for n in nodes do

10: create functionality instance and add it to ret list

11: add assign (functionality instance, n) constraint

12: else

13: replica num = 0 ⊲ Initial number of replicas, which will be set to max value if range given.
14: range based = False ⊲ Flag to indicate if a replication constraints is range based.
15: if c.numInstances 6= 0 then

16: replica num = c.numInstances

17: else

18: range based = True

19: replica num = c.maxInstances

20: for i = 0 to replica num do ⊲ Create replica functionality instances.
21: create replica functionality instance and add it to ret list

22: if c.kind == CONSENSUS then ⊲ Handle consensus replication.
23: create consensus service functionality instance and add it to ret list

24: add implies (replica functionality instance, consensus service functionality instance) constraint
25: add collocate (replica functionality instance, consensus service functionality instance) constraint

26: if c.kind == V OTER then ⊲ Handle voter replication.
27: create voter functionality instance and add it to ret list

28: if range based == True then ⊲ If replication range is given, add atleast constraints.
29: add atleast (c.rangeMinValue, replica functionality instances) constraint

30: add distribute (replica functionality instances) constraint

31: else

32: create functionality instance and add it to ret list

33: add func to computed functionalities

ity instance for the entire replication group (line 27). In the
case of a cluster replication constraint, no special function-
ality instance is generated as a cluster replication comprises
independent functionality instances that do not require any
synchronization (see Section 4.1.2).

In order to ensure proper management of instances related
to functionalities with voter, consensus, or cluster replica-
tion constraints, CHARIOT uses four different constraints:
(1) implies, (2) collocate, (3) atleast, and (4) distribute.
The implies constraint ensures all replica functionality in-
stances associated with a consensus pattern require their
corresponding consensus service functionality instances (line
24). Similarly, the collocate constraint ensures each replica
functionality instance and its corresponding consensus ser-
vice functionality instance are always collocated on the same
node (line 25). The atleast constraint ensures the minimum
number of replicas are always present in scenarios where
a replication range is provided (line 28-29). Finally, the
distribute constraint ensures that the replica functionalities
are distributed across different nodes (line 30). CHARIOT’s
ability to support multiple instances of functionalities and
distribute them across different nodes is the basis of the fail-
ure avoidance mechanism.

After functionality instances are created, CHARIOT next
creates the component instances corresponding to each func-
tionality instance. In general, it identifies a component type
that provides the functionality associated with each func-
tionality instance and instantiates that component type. As
explained in Section 4.1.3, component types are modeled as
part of the system description. Different component types
can provide the same functionality, in which case multiple
component types are instantiated, but a constraint is added
to ensure only one of those instances is deployed and running
at any given time. In addition, all constraints previously
created in terms of functionality instances are ultimately
applied in terms of corresponding component instances. We
describe the constraints next.

4.3.4 Phase 2: Constraint Encoding

The second phase of the CPC algorithm is responsible for
constraint encoding and optimization. These constraints are
summarized below:

1. Since reconfiguration involves transitioning from one
configuration point to another, constraints that repre-
sent a configuration point are of utmost importance.
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2. Constraints to ensure component instances that must
be deployed are always deployed.

3. Constraints to ensure component instances that com-
municate with each other are either deployed on the
same node or on nodes that have network links be-
tween them.

4. Constraints to ensure resources’ provided-required re-
lationships are valid.

5. Constraints encoded in the first phase of the CPC algo-
rithm for proper management of component instances
associated with replication constraints.

6. Constraints to represent failures, such as node failure
or device failures.

The remainder of this section describes how CHARIOT
implements the constraints listed above as SMT constraints.

Representing the configuration points: A configu-
ration point in CHARIOT is therefore presented using a
component-instance-to-node (C2N) matrix, as shown below.
A C2N matrix comprises rows that represent component in-
stances and columns that represent nodes; the size of this
matrix is α × β, where α is the number of component in-
stances and β is the number of available nodes (Equation 1).
Each element of the matrix is encoded as a Z3 integer vari-
able whose value can either be 0 or 1 (Equation 2). A value
of 0 for an element means that the corresponding compo-
nent instance (row) is not deployed on the corresponding
node (column). Conversely, a value of 1 for an element indi-
cates deployment of the corresponding component instance
on the corresponding node. For a valid C2N matrix, a com-
ponent instance must not be deployed more than once, as
shown in Equation 3.

C2N =











c2n00 c2n01 c2n02 . . . c2n0β

c2n10 c2n11 c2n12 . . . c2n1β

c2n20 c2n21 c2n22 . . . c2n2β

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

c2nα0 c2nα1 c2nα2 . . . c2nαβ











c2ncn : c ∈ {0 . . . α}, n ∈ {0 . . . β}, (α, β) ∈ Z
+ (1)

∀c2ncn ∈ C2N : c2ncn ∈ {0, 1} (2)

∀c :

β
∑

n=0

c2ncn ≤ 1 (3)

Now that we have constraints defined to represent a con-
figuration point (i.e., a valid component-instance-to-node
mapping), a constraint is needed to ensure component in-
stances that should be deployed are always deployed. At
this point it is important to recall range-based replication
described in Section 4.1.2. This approach results in a set of
instances where a certain number (at least the minimum)
should always be deployed, but the remaining (difference
between maximum and minimum) are not always required,
even though all of them are deployed initially. At any given
time, therefore, a configuration point can comprise of some
component instances that must be deployed and others that
are not always required be deployed. In CHARIOT we en-
code the ”must deploy assignment” constraint as follows:

Capturing the Must Deploy Constraint: The “must
deploy assignment” constraint is used to ensure all compo-
nent instances that should be deployed are in fact deployed.

This constraint therefore uses the C2N matrix (Equation 1)
and a set of component instances that must be deployed, as
shown in Equation 4.

Let M be a set of all component instances that must be
deployed.

∀m ∈ M :

β
∑

n=0

c2nmn == 1 (4)

The third set of constraints ensure that component in-
stances with inter-dependencies (i.e., that communicate with
each other) are either deployed on the same node or on nodes
that have network links between them. CHARIOT encodes
this constraint as follows:

Capturing the dependencies between components:
This constraint ensures that interacting component instances
are always deployed on resources with appropriate network
links to support communication. This constraint is encoded
in terms of a node-to-node (N2N) matrix, which is a square
matrix that represents existence of network links between
nodes. This N2N matrix thus comprises rows and columns
that represents different nodes (Equation 5). Each element
of the N2N matrix is either 0 or 1, where 0 means there does
not exist a link between the two corresponding nodes and
1 means there exists a link between the two corresponding
nodes. The constraint is presented in Equation 6.

N2N =









n2n00 n2n01 n2n02 . . . n2n0β

n2n10 n2n11 n2n12 . . . n2n1β

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

n2nβ0 n2nβ1 n2nβ2 . . . n2nββ









n2nn1n2
: (n1, n2) ∈ {0 . . . β}, β ∈ Z

+ (5)

Let cs and cd be two component instances that are depen-
dent on each other.

∀n1, ∀n2 : ((c2ncsn1
× c2ncdn2

6= 0) ∧ (n1 6= n2)) =⇒

(n2nn1n2
== 1)

(6)

Capturing the Resource Constraints: The fourth
set of constraints ensure the validity of resources’ provided-
required relationships, such that essential component in-
stances of one or more applications can be provisioned. In
CHARIOT these constraints are encoded in terms of re-
sources provided by nodes and required by component in-
stances. Moreover, resources are classified into two cat-
egories: (1) cumulative resources and (2) comparative re-
sources. Cumulative resources have a numerical value that
increases or decreases depending on whether a resource is
used or freed. Examples of cumulative resources include
primary memory and secondary storage. Comparative re-
sources have a boolean value, i.e., they are either available
or not available and their value does not change depending
on whether a resource is used or freed. Examples of compar-
ative resources include devices and software artifacts. These
two constraints can be encoded as follows:

The “cumulative resource” constraint is encoded using a
provided resource-to-node (CuR2N) matrix and a required
resource-to-component-instance (CuR2C) matrix. The ma-
trix CuR2N comprises rows that represent different cumu-
lative resources and columns that represent nodes; the size
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of this matrix is γ×β, where γ is the number of cumulative
resources and β is the number of available nodes (Equa-
tion 7). The CuR2C matrix comprises rows that represent
different cumulative resources and columns that represent
component instances; the size of this matrix is γ ×α, where
γ is the number of cumulative resources and α is number of
component instances (Equation 8). Each element of these
matrices are integers. The constraint itself ensures that for
each available cumulative resource and node, the sum of the
amount of the resource required by the component instances
deployed on the node is less than or equal to the amount of
the resource available on the node, as shown in Equation 9.

CuR2N =









r2n00 r2n01 r2n02 . . . r2n0β

r2n10 r2n11 r2n12 . . . r2n1β

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

r2nγ0 r2nγ1 r2nγ2 . . . r2nγβ









r2nrn : r ∈ {0 . . . γ}, n ∈ {0 . . . β}, (γ, β) ∈ Z
+ (7)

CuR2C =









r2c00 r2c01 r2c02 . . . r2c0α
r2c10 r2c11 r2c12 . . . r2c1α
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

r2cγ0 r2cγ1 r2cγ2 . . . r2cγα









r2crc : r ∈ {0 . . . γ}, c ∈ {0 . . . α}, (γ, α) ∈ Z
+ (8)

∀r, ∀n :

(

α
∑

c=0

c2ncn × r2crc

)

≤ r2nrn (9)

The “comparative resource” constraint is encoded using a
provided resource-to-node (CoR2N) matrix and a required
resource-to-component-instance (CoR2C) matrix. The ma-
trix CoR2N comprises rows that represent different com-
parative resources and columns that represents nodes; the
size of this matrix is φ × β, where φ is the number of com-
parative resources and β is the number of available nodes
(Equation 10). Similarly, the CoR2C matrix comprises rows
that represent different comparative resources and columns
that represent component instances; the size of this matrix
is φ×α, where φ is the number of comparative resources and
α is number of component instances (Equation 11). Each el-
ement of these matrices is either 0 or 1, where 0 means the
corresponding resource is not provided by the corresponding
node (for CoR2N matrix) or not required by the correspond-
ing component instance (for CoR2C matrix) and 1 means the
opposite. The constraint itself (Equation 12) ensures that
for each available comparative resource, node, and compo-
nent instance, if the component instance is deployed on the
node and requires the resource, then the resource must also
be provided by the node.

CoR2N =









r2n00 r2n01 r2n02 . . . r2n0β

r2n10 r2n11 r2n12 . . . r2n1β

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

r2nφ0 r2nφ1 r2nφ2 . . . r2nφβ









r2nrn : r ∈ {0 . . . φ}, n ∈ {0 . . . β}, (φ, β) ∈ Z
+ (10)

CoR2C =









r2c00 r2c01 r2c02 . . . r2c0α
r2c10 r2c11 r2c12 . . . r2c1α
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

r2cφ0 r2cφ1 r2cφ2 . . . r2cφα









r2crc : r ∈ {0 . . . φ}, c ∈ {0 . . . α}, (φ, α) ∈ Z
+ (11)

∀r, ∀n, ∀c : Assigned(c, n) =⇒ (r2nrn == r2crc) (12)

Assigned (c, n) function returns true if component c is
deployed on node n, i.e., it returns true if c2ncn == 1.

Handling the replication constraints: The fifth set of
constraints ensures management of component instances as-
sociated with replication constraints. As mentioned in Sec-
tion 4.3.3, assign, implies, collocate, atleast, and distribute
are the five different kinds of constraints that must be en-
coded. Each of these constraints is encoded as follows:

The “assign constraint” is used for component instances
corresponding to functionalities associated with per-node
replication constraint. It ensures that a component instance
is only ever deployed on a given node. In CHARIOT, an
assign constraint is encoded, as shown in Equation 13.

Let c be a component instance that should be assigned to
a node n.

Enabled(c) =⇒ (c2ncn == 1) (13)

Enabled(c) function returns true if component instance c

is assigned to any node, i.e, it checks if
∑β

n=0
c2ncn == 1.

The“implies” constraint is used to ensure that if a compo-
nent depends upon other components then its dependencies
are satisfied. It is encoded using the implies construct pro-
vided by an SMT solver like Z3.

A “collocate” constraint is used to ensure that two collo-
cated component instances are always deployed on the same
node. In CHARIOT this constraint is encoded by ensuring
the assignment of the two component instances is same for
all nodes, as shown in Equation 14.

Let c1 and c2 be two component instances that need to be
collocated.

(Enabled(c1) ∧ Enabled(c2)) =⇒

(∀n : c2nc1n == c2nc2n)
(14)

An “atleast” constraint is used to encode a M out of N
semantics to ensure that given a set of components (i.e. N),
a specified number of those components (i.e. M) is always
deployed. CHARIOT only uses this constraint for range-
based replication constraints and its implementation is two
fold. First, during the initial deployment CHARIOT tries
to maximize M and deploy as many component instances
as possible. Current implementation of CHARIOT uses the
maximum value associated with a range and initially deploys
N component instances, as shown in Equation 15. This of
course assumes availability of enough resources. A better
solution to this would be to use the maximize optimization,
as shown in Equation16. However, in Z3 solver, which is
the SMT solver used by CHARIOT, this optimization is
experimental and does not scale well. Second, for subsequent
non-initial deployment CHARIOT relies on the fact that
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maximum possible deployment was achieved during initial
deployment, so it ensures the minimum number required is
always met, as shown in Equation 17.

Let S = {c1, c2 . . . cα′} be a set of replica component in-
stances associated with an atleast constraint; N is the size
of this set. Also, let min value be the minimum number of
component instances required; this is synonymous to M.

∑

c∈S

β
∑

n=0

c2ncn == max value (15)

maximize(
∑

c∈S

β
∑

n=0

c2ncn) (16)

∑

c∈S

β
∑

n=0

c2ncn ≥ min value (17)

A “distribute” constraint is used to ensure that a set of
components is deployed on different nodes. In CHARIOT
this constraint is encoded by ensuring at most only one com-
ponent instance out of the set is deployed on a single node,
as shown in Equation 18.

Let S = {c1, c2 . . . cα′} be a set of components that needs
to be distributed.

∀n :
∑

c∈S

c2ncn ≤ 1 (18)

Capturing failures as constraints: The final step (step
8) of the second phase of the CPC algorithm encodes and
adds failure constraints. Depending on the type of failure,
there can be different types of failure constraints. This sixth
set of constraints handles failure representation, which are
encoded in CHARIOT as shown below:

A “node failure” constraint is used to ensure that no com-
ponents are deployed on a failed node. CHARIOT encodes
this constraint as shown in Equation 19.

Let nf be a failed node.

α
∑

c=0

c2ncnf
== 0 (19)

Since component can fail for various reasons, there are dif-
ferent ways to resolve a component failure. One approach is
to ensure that a component is redeployed on any node other
than the node in which it failed (Equation 20). If a compo-
nent keeps failing in multiple different nodes, then CHAR-
IOT may need to consider another constraint to ensure the
component is not redeployed on any node (Equation 21).

Let us assume component c1 failed on node n1.

c2nc1n1==0 (20)

β
∑

n=0

c2nc1n == 0 (21)

4.3.5 Solution Computation Phase

The third and final phase of the CPC algorithm involves
computing a “least distance” configuration point, i.e., a con-
figuration point that is the least distance away from current

configuration point. This computation ensures that a sys-
tem always undergoes the least possible number of changes
during reconfiguration. The distance is computed as the
number of changes required to transition to the new config-
uration point. Since a configuration point is a component-
instance-to-node mapping represented as C2N matrix (see
Equation 1), the distance between two configuration points
is the distance between their corresponding C2N matrices.
In CHARIOT, the least distance constraint is encoded as
shown below:

Least Distance Constraint The “least distance” con-
straint is used to ensure that we find a valid configuration
point that is closest to the current configuration point. The
distance between two configuration points is the distance
between their corresponding C2N matrices. This distance is
computed as shown in Equation 22. The distance between
two valid configuration points A and B is the sum of the ab-
solute difference between each element of the C2N matrices
corresponding to the two configuration points.

To ensure we obtain least distance configuration point, an
ideal solution would be to use minimize optimization (Equa-
tion 23), which is supported by SMT solvers like Z3. Like
the Z3 maximize optimization, however, the Z3 minimize
optimization implementation is experimental and does not
scale well. In CHARIOT we therefore implement this con-
straint using an iterative logic, which upon every successful
solution computation adds the distance constraint (Equa-
tion 22) before invoking the solver again to find a solution
that is at a lesser distance compared to the previous solu-
tion. This iteration stops when no solution can be found,
in which case the previous solution is used as the optimum
(least distance away) solution.

config distance =

β
∑

n=0

|c2n Acn − c2n Bcn| (22)

minimize(config distance) (23)

At this point in the CPC algorithm, CHARIOT invokes
the Z3 solver to check for a solution. If all constraints are sat-
isfied and a solution is found, the CPC algorithm computes
a set of deployment actions. CHARIOT computes deploy-
ment actions by comparing each element of the C2N matrix
that represents the current configuration point with the cor-
responding element of the C2N matrix associated with com-
puted solution, i.e., the target configuration point. If the
value of an element in the former is 0 and later is 1, CHAR-
IOT adds a START action for the corresponding component
instance on the corresponding node. Conversely, if the value
of an element in the former is 1 and the later is 0, CHARIOT
adds a STOP action. Applying this operation to each ele-
ment of the matrix results in a complete set of deployment
actions required for successful system transition.

4.3.6 The Look-ahead Reconfiguration

The CPC algorithm presented above yields a reactive self-
reconfiguration approach since the algorithm executes after
a failure is detected. As such, runtime reconfiguration in-
curs the time taken to compute a new configuration point
and determine deployment actions required to transition to
a new configuration. This approach may be acceptable for
IoT systems consisting of non-real-time applications that
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can incur considerable downtime. For IoT systems involving
real-time mission-critical applications, however, predictable
and timely reconfiguration is essential. Since all dynamic
reconfiguration mechanisms rely on runtime computation to
calculate a reconfiguration solution, the time to compute a
solution increases with the scale of the IoT system. The
CPC algorithm is no different, as shown by experimental
results in our prior work [26].

To address this issue, we therefore extend the CPC al-
gorithm by adding a configurable capability to use a finite
horizon look-ahead strategy that pre-computes solution and
thus significantly improves the performance of the manage-
ment engine. We call this capability the Look-ahead Re-
Configuration (LaRC). The general goal of the LaRC ap-
proach is to pre-compute and store solutions, so it just finds
the appropriate solution and applies it when required. When
the CPC algorithm is configured to execute in the “look-
ahead” mode, solutions are pre-computed every time the
system state (i.e., the current configuration point) changes.

The first pre-computation happens once the system is ini-
tially deployed using the default CPC algorithm. After a
system is initially deployed, CHARIOT pre-computes solu-
tions to handle failure events. These pre-computed solutions
cannot be used for update events since these types of events
change the system is such a way that the previously pre-
computed solutions are rendered invalid. Once CHARIOT
has a set of pre-computed solutions, therefore, failures are
handled by finding the appropriate pre-computed solution,
applying the found solution, and pre-computing solutions
to handle future failure events. For update events, in con-
trast, the default CPC algorithm is invoked again (same as
during initial deployment) to compute a solution. After a
solution for an update event is computed, CHARIOT again
pre-compute solutions to handle failure events.

Algorithm 2 Solution Pre-computation.

Input: nodes (nodes list)

1: remove existing look-ahead information from the config-
uration space

2: for node in node list do

3: if node is alive then

4: tmp config space = get configuration space
5: mark node as failed in tmp config space

6: actions = CPC algorithm on tmp config space

7: if actions ! = null then

8: l ahead = new LookAhead instance
9: l ahead.failedEntity = node.name

10: l ahead.failureKind = NODE
11: l ahead.deploymentActions = actions

12: store l ahead in the configuration space

To pre-compute solutions, CHARIOT currently uses Al-
gorithm 2. Since this paper focuses on node failures, Algo-
rithm 2 only pre-computes solutions for node failures. As-
suming that a system is in a stable state, this algorithm first
removes any existing look-ahead solutions (line 1) since it is
either invalid (update event) or already used (failure event).
After this the algorithm iterates through each available node
(line 2-3) and for each node, the algorithm creates a tempo-
rary copy of the configuration space (line 4), which includes
the current (stable) configuration point. All subsequent ac-
tions are taken with respect to the temporary configuration

space copy, so the original copy is not corrupted during the
pre-computation computation process.

After a copy of the configuration space is made, the partic-
ular node is marked as failed (line 5) and the CPC algorithm
is invoked (line 6). This pre-computation algorithm thus es-
sentially injects a failure and asks the CPC algorithm for
a solution. If a solution is found, the injected failure in-
formation and the solution is stored as an instance of the
LookAhead class presented in Section 4.2.2 (line 7-12).

4.3.7 Summary of management layer

The description of the LaRC approach in Section 4.3.6
yields interesting observations with regards to the solution
pre-computation algorithm. First, the current version of
the solution pre-computation algorithm only considers node
failures. We will alleviate this limitation in future work by
adding system-wide capabilities to monitor, detect, and han-
dle failures involving application processes, components, and
network elements.

Second, the pre-computation algorithm specifically pre-
computes solutions only for the next step,i.e., the algorithm
only looks one step ahead. We believe that the number of
steps to look-ahead should be a configurable parameter as
different classes of system might benefit from different set-
ting of this parameter. For example, consider highly dy-
namic IoT systems that are subject to frequent failures re-
sulting in bursts of failure events. For such systems, it is
important to look-ahead more than one step at a time, oth-
erwise multiple failures that happen in short timespan can-
not be handled. However, for IoT systems that are com-
paratively more static, such as the smart parking system
presented in Section 2.1, a higher Mean Time To Failure
(MTTF) is expected, so pre-computed solutions need not
look ahead more than one step at a time.

There is clearly a trade-off between time, space, and num-
ber of failures tolerated when considering the number of pre-
computation steps. Multi-step pre-computation takes more
time and space to store large number of solutions based on
various permutation and combination of possible failures,
but can handle bursts of failures. Conversely, a single-step
pre-computation will be much faster and occupy less space,
but it will be harder to handle bursts of failures.

An ideal solution would involve a dynamic solution pre-
computation algorithm. The dynamism is with respect to
the configuration of the pre-computation steps parameter.
For any given system, however, we assume that there is an
initial value that can change at runtime depending on the
system behavior. Further investigating and implementing
such a solution is part of our future work.

5. IMPLEMENTATION AND EVALUATION
This section describes and empirically evaluates the CHAR-

IOT runtime implementation using the Smart Parking Sys-
tem use-case scenario presented in Section 2.1. Figure 14 de-
picts CHARIOT’s implementation architecture, which con-
sists of compute nodes comprising the layered stack shown
in figure 2.

Each CHARIOT-enabled compute node hosts two plat-
form services: a Node Monitor and a Deployment Manager.
The Node Manager assesses the liveliness of its specific node,
whereas the Deployment Manager manages the lifecycle of
applications deployed on a node. In addition to compute
nodes, CHARIOT’s runtime also comprises one or more in-
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