
Semantic Anchoring with Model

Transformations�

Kai Chen, Janos Sztipanovits, Sherif Abdelwalhed, and Ethan Jackson

Institute for Software Integrated Systems, Vanderbilt University,
P.O. Box 1829 Sta. B., Nashville, TN 37235, USA

{kai.chen, janos.sztipanovits, sherif.abdelwalhed, ethan.jackson}
@vanderbilt.edu

Abstract. Model-Integrated Computing (MIC) is an approach to
Model-Driven Architecture (MDA), which has been developed primar-
ily for embedded systems. MIC places strong emphasis on the use of
domain-specific modeling languages (DSML-s) and model transforma-
tions. A metamodeling process facilitated by the Generic Modeling En-
vironment (GME) tool suite enables the rapid and inexpensive develop-
ment of DSML-s. However, the specification of semantics for DSML-s is
still a hard problem. In order to simplify the DSML semantics, this pa-
per discusses semantic anchoring, which is based on the transformational
specification of semantics. Using a mathematical model, Abstract State
Machine (ASM), as a common semantic framework, we have developed
formal operational semantics for a set of basic models of computations,
called semantic units. Semantic anchoring of DSML-s means the specifi-
cation of model transformations between DSML-s (or aspects of complex
DSML-s) and selected semantic units. The paper describes the semantic
anchoring process using the meta-programmable MIC tool suite.

1 Introduction

The Model-Driven Architecture (MDA) advocates a model-based approach for
software development. Model-Integrated Computing (MIC) [27,24] is a domain-
specific approach to MDA, which has been developed primarily for embedded
systems. The MIC approach eases the complicated task of embedded system
design by equipping developers with domain-specific modeling languages [25]
tailored to the particular constraints and assumptions of their various applica-
tion domains. A well-made DSML captures the concepts, relationships, integrity
constraints, and semantics of the application domain and allows users to program
imperatively and declaratively through model construction.

While a metamodeling process enables the rapid and inexpensive develop-
ment of DSML syntax, the semantics specification for DSML-s remains a chal-
lenge problem. Transformational specification of semantics [9], gives us a chance

� This research was supported by the NSF Grant CCR-0225610 “Foundations of
Hybrid and Embedded Software System”.

A. Hartman and D. Kreische (Eds.): ECMDA-FA 2005, LNCS 3748, pp. 115–129, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

116 K. Chen et al.

to simplify the DSML semantics design. This paper exploits the transforma-
tional semantics specification approach for creating a semantic anchoring infras-
tructure [22]. This infrastructure incorporates a set of metaprogrammable MIC
tools, including: the Generic Model Environment (GME) [4] for metamodeling,
the Graph Rewriting and Transformation (GReAT) [2] tool for model trans-
formation, the Abstract State Machines (ASM) [18,12], as a common semantic
framework to define the semantic domain of DSML-s, and AsmL [1] – a high-level
executable specification language based on the concepts of ASM for semantics
specification.

The organization of this paper proceeds as follows: Section 2 describes the
background for DSML specifications. Semantic anchoring is summarized in Sec-
tion 3. In Section 4, we use a simple DSML that captures the finite state machine
domain from Ptolemy II [5] as a case study to demonstrate the key steps in the
semantic anchoring process. Conclusions and future work appear in Section 5.

2 Background: DSML Specification

A DSML can be formally defined as a 5-tuple L = 〈A, C, S, MS , MC〉 consisting
of abstract syntax (A), concrete syntax (C), syntactic mapping (MC), semantic
domain (S) and semantic mapping (MS) [28]. The syntax of a DSML consists
of three parts: an abstract syntax, a concrete syntax, and a syntactic mapping.
The abstract syntax A defines the language concepts, their relationships, and
well-formedness rules available in the language. The concrete syntax C defines
the specific notations used to express models, which may be graphical, textual,
or mixed. The syntactic mapping, MC : C → A, assigns syntactic constructs to
elements in the abstract syntax.

DSML syntax provides the modeling constructs that conceptually form an in-
terface to the semantic domain. The semantics of a DSML provides the meaning
behind each well-formed domain model composed from the syntactic modeling
constructs of the language. For example, in MIC applications, the semantics of a
domain model often prescribes the behavior that simulates an embedded system.

DSML semantics are defined in two parts: a semantic domain S and a se-
mantic mapping MS : A → S [21]. The semantic domain S is usually defined
in some formal, mathematical framework, in terms of which the meaning of the
models is explained. The semantic mapping relates syntactic concepts to those of
the semantic domain. In DSML applications, semantics may be either structural
or behavioral. The structural semantics describes the meaning of the models in
terms of the structure of model instances: all of the possible sets of components
and their relationships, which are consistent with the well-formedness rules, are
defined by the abstract syntax. Accordingly, the semantic domain for structural
semantics is defined by a set-valued semantics. The behavioral semantics may de-
scribe the evolution of the state of the modeled artifact along some time model.
Hence, the behavioral semantics is formally captured by a mathematical frame-
work representing the appropriate form of dynamics. In this paper, we focus on
the behavioral semantics of a DSML.

Semantic Anchoring with Model Transformations 117

3 Semantic Anchoring

Although DSML-s use many different notations, modeling concepts and model
structuring principles for accommodating needs of domains and user communi-
ties, semantic domains for expressing basic behavior categories are more limited.
A broad category of component behaviors can be represented by basic behavioral
abstractions, such as Finite State Machine, Timed Automaton, Continuous Dy-
namics and Hybrid Automaton. This observation led us to the following strategy
in defining behavioral semantics for DSML-s:

1. Define a set of minimal modeling languages {Li} for the basic behavioral
abstractions and develop the precise specifications for all components of
Li = 〈Ci, Ai, Si, MSi, MCi〉. We use the term ”semantic unit” to describe
these basic modeling languages.

2. Define the behavioral semantics of an arbitrary L = 〈C, A, S, MS , MC〉 mod-
eling language transformationally by specifying the MA : A → Ai mapping.
The MS : A → S semantic mapping of L is defined by the MS = MSi ◦ MA

composition, which indicates that the semantics of L is anchored to the Si

semantic domain of the Li modeling language.

The tool architecture supporting the semantic anchoring process above is
shown in Figure 1. The GME tool suite [4] is used for defining the abstract
syntax, A, for an L = 〈C, A, S, MS , MC〉 DSML using UML Class Diagrams
[7] and OCL as metalanguage [8]. The Li = 〈Ci, Ai, Si, MSi, MCi〉 semantic
unit is defined as an AsmL specification [1] in terms of (a) an AsmL Abstract
Data Model (which corresponds to the Ai, abstract syntax specification of the
modeling language defining the semantic unit in the AsmL framework), (b) the
Si, semantic domain (which is implicitly defined by the ASM mathematical
framework), and (c) the MSi, semantic mapping (which is defined as a model
interpreter written in AsmL).

The MA : A → Ai semantic anchoring of L to Li is defined as a model
transformation using the GReAT tool suite [2]. The abstract syntax A and Ai

Fig. 1. Tool Architecture for DSML Design throughs Semantic Anchoring

118 K. Chen et al.

are expressed as metamodels. Connection between the GME-based metamod-
eling environment and the AsmL environment is provided by a simple syntax
conversion. Since the GReAT tool suite generates a model translation engine
from the meta-level specification of the model transformation [23], any legal do-
main model defined in the DSML can be directly translated into a corresponding
AsmL data model and can be simulated by using the AsmL native simulator. In
the following, we give explanation of our methodology and the involved tools.

3.1 Formal Framework for Specifying Semantic Units

Semantic anchoring requires the specification of semantic units in a formal frame-
work using a formal language, which is not only precise but also manipulable.
The formal framework must be general enough to represent all three compo-
nents of the MS : A → S specification; the abstract syntax, A, with set-valued
semantics, the S semantic domain to represent the dynamic behavior and the
mapping between them. We select Abstract State Machine (ASM) as a formal
framework for the specification of semantic units.

Abstract State Machine (ASM), formerly called Evolving Algebras [18], is a
general, flexible and executable modeling structure with well-defined semantics.
General forms of behavioral semantics can be encoded as (and simulated by) an
abstract state machine [12]. ASM is able to cover a wide variety of domains: se-
quential, parallel, and distributed systems, abstract-time and real-time systems,
and finite- and infinite-state domains. ASM has been successfully used to specify
the semantics of numerous languages, such as C [19], Java [14], SDL [17] and
VHDL [13]. In particular, the International Telecommunication Union adopted
an ASM-based formal semantics definition of SDL as part of SDL language def-
inition [6].

The Abstract State Machine Language, AsmL [1], developed by Microsoft
Research, makes writing ASM specifications easy within the .NET environment.
AsmL specifications look like pseudo-code operating on abstract data structures.
As such, they are easy for programmers to read and understand. A set of tools
is also provided to support the compilation, simulation, test case generation
and model checking for AsmL specifications. The fact that there exists plentiful
supporting tools for AsmL specifications was a important reason for us to select
AsmL over other formal specification languages, such as Z [16], tagged signal
model [26] and Reactive Modules [11]. A detailed introduction to ASM and
AsmL is beyond the scope of this paper, but readers can refer to other papers
[1,12,18].

3.2 Formal Framework for Model Transformation

We use model transformation techniques as a formal approach to specify the
MA : A → Ai mapping between the abstract syntax of a DSML and the abstract
syntax of the semantic unit. Based on our discussion above, the abstract syntax
A of the DSML is defined as a metamodel using UML class diagrams and OCL,
and the Ai abstract syntax of the semantic unit is an Abstract Data Model

Semantic Anchoring with Model Transformations 119

expressed using the AsmL data structure. However, the specification of the MA

transformation requires that the domain and codomain of the transformation is
expressed in the same language. In our tool architecture, this common language
is the abstract syntax metamodeling language (UML class diagrams and OCL),
since the GReAT tool suite is based on this formalism.

This choice requires building a UML/OCL-based metamodeling interface for
the Abstract Data Model used in the AsmL specification of the semantic unit.
One possible solution is to define a UML/OCL metamodel that captures the
abstract syntax of the generic AsmL data structures. The other solution is to
construct a metamodel that captures only the exact syntax of the AsmL Ab-
stract Data Model of a particular semantic unit. Each solution has its own ad-
vantages and disadvantages. In the first solution, different semantic units can
share the same metamodel and the same AsmL generator can be used to gen-
erate the data model in the native AsmL syntax. The disadvantage is that the
model transformation rules and the AsmL specification generator are more com-
plicated. Figure 2 shows a simplified version of the metamodel of generic AsmL
data structures as it appears in the GME metamodeling environment. In the
second solution, a new metamodel needs to be constructed for different semantic
units, but the transformation rules are simpler and more understandable. Since
the metamodel construction is easier compared with the specification of model
transformation rules, we selected the second solution in our current work. We
will present a metamodel example using this approach in section 4.4.

The MA : A → Ai semantic anchoring is specified by using the Unified Model
Transformation (UMT) language of the GReAT tool suite [23]. UMT itself is a

Fig. 2. Metamodel for a Set of AsmL Data Structures

120 K. Chen et al.

DSML and the transformation MA can be specified graphically using the GME
tool. The GReAT tool uses GME and allows users to specify model-to-model
transformation algorithms as graph transformation rules between metamodels.
The transformation rules between the source and the target metamodels form
the semantic anchoring specifications of a DSML. The GReAT engine can ex-
ecute these transformation rules and transform any allowed domain model to
an AsmL model stored in an XML format. Then the AsmL specification gen-
erator parses the XML file, performs specification rewriting and generates data
model in the native AsmL syntax. Note that UMT provides designers with cer-
tain modeling constructs (e.g. ”any match”) to specify non-deterministic graph
transformation algorithms. However, we can always achieve a unique semantic
anchoring result by using only the UMT modeling constructs that do not cause
the non-determinism.

4 Semantic Anchoring Case Study: FSM Domain in
Ptolemy II

We have applied the semantic anchoring method and tool suite to design several
DSML-s, including one patterned after the finite state machine (FSM) domain
in Ptolemy II [5], the MATLAB Stateflow [20], and the IF timed automata based
modeling language [15]. The detailed implementation can be downloaded from
[3]. We use the FSM domain from Ptolemy II as a case study to illustrate the
process described above.

4.1 The FSM Domain in Ptolemy

The Ptolemy FSM domain was proposed by Edward Lee with the name *charts
[10] in 1999. It allows the composition of hierarchical FSMs with a variety of
concurrency models. For simplicity, we define a DSML called the FSM Modeling
Language (FML) which only supports Ptolemy-style hierarchical FSMs. For a
detailed description of *charts and the hierarchical FSMs in Ptolemy II, readers
may refer to [5,10].

4.2 The Abstract Syntax Definition for FML

Figure 3 shows a UML class diagram for the FML metamodel as represented
in GME. The classes in the UML class diagram define the domain modeling
concepts. For example, the State class denotes the FSM domain concept of state.
Instances of the State class can be created in a domain model to represent the
states of a specific FSM. Note that the State class is hierarchical: each State
object can contain another state machine as a child in the hierarchy.

A set of OCL constraints is added to the UML class diagram to specify well-
formedness rules. For example, the constraint,
self.parts(State)→size>0 implies
self.parts(State)→select(s:State|s.initial)→size=1,

Semantic Anchoring with Model Transformations 121

Fig. 3. A UML Class Diagram for the FML Metamodel

is attached to the FSM class. It specifies that if a FSM object has child states,
exactly one child state must be the initial state. This is a constraint in Ptolemy
II FSM domain.

Visualizations for instances of classes also need to be specified in the meta-
model, so that an icon in a domain model will denote an instance of the cor-
responding class in the metamodel. In GME, this is usually done by setting a
metamodel class’s ”Icon” attribute to the name of the desired bitmap.

4.3 Semantic Unit Specifications for FML

An appropriate semantic unit for FML should be generic enough to express
the behavior of all syntactically correct FSMs. Since our purpose in this paper
is restricted to demonstrate the key steps in semantic anchoring, we do not
investigate the problem of identifying a generic semantic unit for hierarchical
state machines. We simply define a semantic unit, which is rich enough for FML.

The semantic unit specification includes two parts: an Abstract Data Model
and a Model Interpreter defined as operational rules on the data structures.
Whenever we have a domain model in AsmL (which is a specific instance of the
Abstract Data Model), this domain model and the operational rules compose
an abstract state machine, which gives the model semantics. The AsmL tools
can simulate its behavior, perform the test case generation or perform model
checking. Since the size of the full semantic unit specification is substantial, we
can only show a part of the specifications together with some short explanations.
Interested readers can download the full specifications from [3].

Constructing Abstract Data Model for FML. In this step, we specify an
Abstract Data Model using AsmL data structures, which will correspond to the
semantically meaningful modeling constructs in FML. The Abstract Data Model

122 K. Chen et al.

does not need to capture every details of the FML modeling constructs, since
some of them are only semantically-redundant. The semantic anchoring (i.e.
the mapping between the FML metamodel and the Abstract Data Model) will
map the FML abstract syntax onto the AsmL data structures that we specify
below.

Event is defined as an AsmL abstract data type structure. It may consist
of one or more fields via the AsmL case construct. The keyword structure in
AsmL declares a new type of compound value. In AsmL, classes contain instance
variables and are the only way to share memory. Structures contain fields and do
not share memory. Note that each AsmL language construct has its mathematical
meaning in ASM. Readers can refer to [29] for their relationships. These fields
are model-dependent specializations of the semantic unit, which give meaning
to different types of events. The AsmL class FSM captures the top-level of
the hierarchical state machine. The field outputEvents is an AsmL sequence
recording the chronologically-ordered model events generated by the FSM. The
field initialState records the start state of a machine. The children field is an
AsmL set that records all state objects which are the top-level children of the
state machine.

State and Transition are defined as first-class types. Note that the variable
field initalState of the State class records the start state of any child machine
contained within a given State object. The initalState will be undefined whenever
a state has no child states. This possibility forces us to add the ? modifier to
express that the value of the field may be either a State instance or the AsmL
undef value. For a similar reason, we add the ? modifier after several other types
of variable fields.

Behavioral Semantics for FML. We are now ready to specify the behav-
ioral semantics for FML as operational rules, which can interpret the AsmL
data structures defined above. Due to the space limitation, we show only two
operational rules here.

Semantic Anchoring with Model Transformations 123

Top-Level FSM Operations. A FSM instance waits for input events. Whenever
an allowed input event arrives, the FSM instance reacts in a well-defined manner
by updating its data fields and activating enabled transitions. To avoid non-
determinism, the Ptolemy II FSM domain defined its own priority policy for
transitions, which supports both the hierarchical priority concept and preemptive
interrupt. The operational rule fsmReact specifies this reaction step-by-step.
Note that the AsmL keyword step introduces the next atomic step of the abstract
state machine in sequence. The operations specified within a given step all occur
simultaneously.

First, the rule determines the current state, which might be an initial state.
Next, it checks for enabled preemptive transitions from the current state. If one
exists, then the machine will take this transition and end the reaction. Otherwise,
the rule will first determine if the current state has any child states. If it does,
then the rule will invoke the child states of the current state. Next, it checks for
enabled non-preemptive transitions from the current state. If one exists, the rule
will take this transition and end this reaction. Otherwise, it will do nothing and
end this reaction.

Invoke Slaves. The operational rule invokeSlaves describes the operations re-
quired to invoke the child machine in a hierarchical state. The AsmL construct
require is used here to assert that this state should be a hierarchical state, and
it should have a start state in its child machine. The rule first determines the
active state in the child machine. The rest of this operational rule is the same
as the fsmReact rule. The similarity between the reactions of the top-level state
machine and any child machine facilitates the Ptolemy II style composition of
different models of computations.

124 K. Chen et al.

4.4 Semantic Anchoring Specifications for FML to the Semantic
Unit

Having the abstract syntax of FML and an appropriate semantic unit specified,
we are now ready to describe the semantic anchoring specifications for FML. We
use UMT, a language supported by the GReAT tool, to specify the model trans-
formation rules between the metamodel of FML (Figure 3) and the metamodel
for the semantic unit shown in Figure 4.

The semantic anchoring specifications in UMT consist of a sequence of model
transformation rules. Each rule is finally expressed using pattern graphs. A pat-
tern graph is defined using associated instances of the modeling constructs de-
fined in the source and destination metamodels. Objects in a pattern graph can
play three different roles as follows:

1. bind : Match object(s) in the graph.
2. delete: Match objects(s) in the graph, then, remove the matched object(s)

from the graph.
3. new : Create new objects(s) provided all of the objects marked Bind or Delete

in the pattern graph match successfully.

The execution of a model transformation rule involves matching each of its
constituent pattern objects having the roles bind or delete with objects in the
input and output domain model. If the pattern matching is successful, each
combination of matching objects from the domain models that correspond to
the pattern objects marked delete are deleted and each new domain objects that
correspond to the pattern objects marked new are created.

We give an overview of the model transformation algorithm with a short
explanation for selected role-blocks below. The transformation rule-set consists
of the following steps:

1. Start by locating the top-level state machine in the input FML model; create
an AsmL FSM object and set its attribute values appropriately.

Fig. 4. Metamodel Capturing AsmL Abstract Data Structures for FML

Semantic Anchoring with Model Transformations 125

2. Handle Events : Match the event definitions in the input model and create
the corresponding variants through the Case construct in Event.

3. Handle States : Navigate through the FML FSM object; map its child State
objects into instances of AsmL State class, and set their attribute values ap-
propriately. Since the State in FML has a hierarchical structure, the trans-
formation algorithm needs to include a loop to navigate the hierarchy of
State objects.

4. Handle Transition: Navigate the hierarchy of the input model; create an
AsmL Transition object for each matched FML Transition object and set
its attribute values appropriately.

Figure 5 shows the top-level transformation rule that consists of a sequence
of sub-rules. These sub-rules are linked together through ports within the rule
boxes. The connections represent the sequential flow of domain objects to and
from rules. The ports FSMIn, and AsmLIn are input ports, while ports FSMOut
and AsmLOut are output ports. In the top-level rule, FSMIn and AsmLIn are
bound to the top-level state machine in the FSM model that is to be trans-
formed, and the root object (a singleton instance of AsmLADS) in the semantic
data model that is to be generated, respectively. The four key steps in the trans-
formation algorithm, as described above, are corresponding to the four sub-rules
contained in the top level rule.

The figure also shows a hierarchy, i.e., a sub-rule may be further decomposed
into a sequence of sub-rules. The CreateStateObjects rule outlines a graphical
algorithm which navigates the hierarchical structure of a state machine. It starts
from the root state, does the bread-first navigation to visit all child state objects
and creates corresponding AsmL State objects.

Figure 6 shows the SetAttributes rule. This rule sets the attribute values for
the newly created AsmL State object. First, the sub-rule SetInitialState checks
whether the current FML State object is a hierarchical state and has a start
state. If it has a start state, set the value of the attribute initialState to this start
state. Otherwise set the value to null. Then, the sub-rule SetSlaves searches for
all hierarchically-contained child states in the current state and adds them as
members into the attribute Slave whose type is a set. Finally, the transitions out

Fig. 5. Top-level model transformation rule

126 K. Chen et al.

Fig. 6. Model Transformation Rule: SetAttributes

Fig. 7. Model Transition Rule: SetInitialState

Fig. 8. Model Transition Rule: CreateChildStateObject

from the current state are added as members to the attribute OutTransitions by
the sub-rule SetOutTransitions.

The final contents of model transformation rules are pattern graphs that
are specified in UML class diagrams. Figure 7 shows a part of the SetInitial-
State rule, which is a pattern graph. This rule features a GReAT Guard code
block and a GReAT AttributeMapping code block. This rule is executed only

Semantic Anchoring with Model Transformations 127

if the graph elements match and the Guard condition evaluates to true. The
AttributeMapping block includes code for reading and writing object attributes.

The CreateChildStateObejct rule, shown in Figure 8, creates a new AsmL
State object when a FML child State object is matched. It also enables the
hierarchy navigation. Through a loop specified in the CreateStateObjects rule
(Figure 5), the child State object output by the Child port will come back as an
input object to the Parent port.

In the semantic anchoring process, the GReAT engine takes a legal FML
domain model, executes the model transformation rules and generates an AsmL

Fig. 9. A Hierarchical FSM model: ComputerStatus

Fig. 10. Part of the AsmL Data Model Generated from the ComputerStatus Model

128 K. Chen et al.

data model. As an example, we design a simple hierarchical FSM model in the
GME modeling environment (Figure 9), which simulates the status of a com-
puter. An XML file storing the AsmL data model is generated through the se-
mantic anchoring process. We developed an AsmL specification generator, which
can parse this XML file and generate the data model in native AsmL syntax as
shown in Figure 10. The newly created AsmL data model plus the previously-
defined AsmL semantic domain specifications compose an abstract state machine
that gives the semantics for the FSM model ComputerStatus. With these speci-
fications, the AsmL tools can simulate the behavior, do the test case generation
and model checks. For more information about the AsmL supported analysis,
see [1].

5 Conclusion and Future Work

This paper proposes a rapid and formal DSML design methodology, which in-
tegrates the semantic anchoring method and the metamodeling process. As the
example showed, combining operational specification of semantic units with the
transformational specification of DSML-s has the potential for improving signif-
icantly the precision of DSML specifications. We expect that substantial further
effort is required to identify the appropriate set of semantic units and the best
formal framework, which is general enough to cover a broad range of models
of computations and can integrate both operational and denotational semantic
specifications. We are now working on specifying a semantic unit that can cap-
ture the common semantics for varied real-time system modeling languages. An
interesting area for further research is use cases for semantic units. This may in-
clude the automatic generation of model translators that confirm the operational
semantic captured in the semantic unit and offer semantically well founded tool
integration and tool verification technology.

References

1. The Abstract State Machine Language. www.research.microsoft.com/fse/asml.
2. Graph Rewriting and Transformation. www.isis.vanderbilt.edu/Projects/

mobies.
3. Link for semantic anchoring tool suite. www.isis.vanderbilt.edu/SAT.
4. The Generic Modeling Environment: GME. www.isis.vanderbilt.edu/Projects/

gme.
5. The Ptolemy II. www.ptolemy.eecs.berkeley.edu/ptolemyII.
6. ITU-T recommendation Z.100 annex F: SDL formal semantics definition. Interna-

tional Telecommunication Union, Geneva, 2000.
7. OMG unified modeling language specification version 1.5. Object Management

Group document, 2003. formal/03-03-01.
8. UML 2.0 OCL final adopted specification. Object Management Group document,

2003. ptc/03-10-14.
9. A. Maggiolo-Schettini and A. Peron. Semantics of full statecharts based on graph

rewriting. In LNCS, pages 265–279. Springer-Verlag, 1994.

Semantic Anchoring with Model Transformations 129

10. Alain GiraltB, Bilung Lee and E. Lee. Hierarchical finite state machines with
multiple concurrency models. IEEE Transactions On Computer-aided Design Of
Integrated Circuits And Systems, 18(6), 1999.

11. R. Alur and T. A. Henzinger. Reactive modules. Form. Methods Syst. Des.,
15(1):7–48, 1999.

12. E. Boerger and R. Staerk. Abstract State Machines: A Method for High-Level
System Design and Analysis. Springer, 2003.

13. E. Borger, U. Glasser, and W. Muller. Formal Semantics for VHDL, chapter Formal
Definition of an Abstract VHDL’93 Simulator by EA-Machines, pages 107–139.
Kluwer Academic Publishers, 1995.

14. E. Borger and W. Schulte. A programmer friendly modular definition of the se-
mantics of java. In Formal Syntax and Semantics of Java, LNCS, volume 1523,
pages 353–404. Springer-Verlag, 1999.

15. M. Bozga, S. Graf, I. Ober, and J. Sifakis. Tools and applications II: The IF toolset.
In Proceedings of SFM’04, LNCS, volume 3185. Springer-Verlag, 2004.

16. A. Diller. Z: an Introduction to Formal Methods. John Wiley & Sons Ltd., second
edition, 1994.

17. U. Glasser and R. Karges. Abstract state machines semantics of SDL. Journal of
University Computer Science, 3(12):1382–1414, 1997.

18. Y. Gurevich. Specification and Validation Methods, chapter Evolving Algebras
1993: Lipari Guide, pages 9–36. Oxford University Press.

19. Y. Gurevich and J. Huggins. The semantics of the C programming languages. In
Computer Science Logic’92, pages 274–308. Springer-Verlag, 1993.

20. G. Hamon and J. Rushby. An operational semantics for stateflow. In Fundamental
Approaches to Software Engineering: 7th International Conference, pages 229–243.
Springer-Verlag, 2004.

21. D. Harel and B. Rumpe. Meaningful modeling: What’s the semantics of ”seman-
tics”? IEEE Computer, 37(10), 2004.

22. Kai Chen, J. Sztipanovits, S. Neema, M. Emerson and S. Abdelwahed. Toward a
semantic anchoring infrastructure for domain-specific modeling languages. In 5th
ACM International Conference on Embedded Software (EMSOFT’05), 2005.

23. G. Karsai, A. Agrawal, and F. Shi. On the use of graph transformations for the
formal specification of model interpreters. Journal of Universal Computer Science,
9(11):1296–1321, 2003.

24. G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty. Model-integrated develop-
ment of embedded software. In Proceedings of the IEEE, volume 91, pages 145–164,
2003.

25. A. Ledeczi, A. Bakay, M. Maroti, P. Volgyesi, G. Nordstrom, J. Sprinkle, and
G. Karsai. Composing domain-specific design environments. IEEE Computer,
34(11):44–51, 2001.

26. E. Lee and A. Sangiovanni-Vincentelli. A denotational framework for comparing
models of computation. IEEE Trans. on Computer-Aided Design of Integrated
Circuits and Systems, 17(12), 1998.

27. J. Sztipanovits and G. Karsai. Model-integrated computing. IEEE Computer,
30(4):110–111, 1997.

28. T. Clark, A. Evans, S. Kent and P. Sammut. The MMF approach to engineering
object-oriented design languages. In Workshop on Language Descriptions, Tools
and Applications, 2001.

29. Yuri Gurevich, Benjamin Rossman and W. Schulte. Semantics essence of AsmL,
March 2004. MSR-TR-2004-27.

	Introduction
	Background: DSML Specification
	Semantic Anchoring
	Formal Framework for Specifying Semantic Units
	Formal Framework for Model Transformation

	Semantic Anchoring Case Study: FSM Domain in Ptolemy II
	The FSM Domain in Ptolemy
	The Abstract Syntax Definition for FML
	Semantic Unit Specifications for FML
	Semantic Anchoring Specifications for FML to the Semantic Unit

	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

