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CHAPTER I 

INTRODUCTION 

Recent advances in MEMS technology, embedded processing, and wireless 

communication are enabling the deployment of mobile networks, and location-aware 

systems and services. Some notable examples include the federal E911 program which 

mandates that the location of a distressed mobile user be made available to the public 

safety access points (PSAPs) with an accuracy of 50-100m [4]. Several industrial and 

marketing efforts are based on customization: Prada, a fashion company is currently 

fielding a marketing system that suggests matching clothes to a customer trying out a 

particular item of clothing [1]. The system communicates with RF IDs, or labels, attached 

to the merchandize to identify the user selection and searches a database to suggest 

complimentary fashion accessories . RF IDs or infra-red tags may also be used to build an 

in-building location network [6]: such a system may be used in a health-provider facility 

to keep track of doctors and other healthcare professionals within its premises. Location 

information may be used to route timely help to the patients in need or to contact the 

professionals without a need for broadcasting messages over the intercom. Also, for law-

enforcement agencies, real-time updates on the location of a suspect or a distressed caller 

can be invaluable.  

A similar trend is also observed in the strategic and commercial surveillance 

sectors. Knowledge of troop location and movement, both friendly and hostile, improves 

the effectiveness of the armed forces while significantly reducing friendly fire and 
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collateral damage [7]. Industrial customers interested in facility security may also employ 

similar systems. 

While location intelligence may be gathered using a variety of methods, the 

solution offered by a network of distributed, low-power, low-cost sensors has several 

advantages including ubiquitous-presence, longevity and low-cost. Autonomous sensors 

may be deployed to fill gaps in information collection left by other higher cost 

surveillance mechanisms such as human intelligence (HUMINT) [7]. Sensor systems 

designed for low-power consumption can provide reliable monitoring capabilities with 

low false alarm rates from a few hours to several months. OmniSense ® [3] and Sparton 

IDS ® [4] are two commercially available systems that provide such capabilities. 

Typically maintaining surveillance capabilities using automated sensors is cheaper than 

maintaining a team of dedicated surveillance personnel [12]. In the recent past DARPA 

programs such as SensIT [8], [9], and Smart modules [2] have been instituted to 

investigate such networks.  

Prior endeavors, such as Smart-dust [22], have primarily concentrated on remote 

information gathering using acoustic, infra-red, magnetic or seismic sensors, with little or 

no effort expended towards monitoring the radio frequency (RF) spectrum. Presence in 

the RF spectrum can not only help provide location fixes, but can also potentially provide 

valuable communication associated with a location. Should communication be lost, a 

history of transmission locations and the associated conversation can not only help first 

response personnel estimate the distressed caller’s last location, and can help emergency 

response personnel better address the emergency. Similarly, in military operations, cues 

about the quarry’s motion and intent can be invaluable in planning a course of action. 
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Widely Adaptive Signal Processing [11] was a DARPA effort to enhance situation 

awareness and geolocation capabilities in the RF spectrum. Widely Adaptive Signal 

Processing (WASP) aimed at producing a fleet of unmanned aerial vehicles (UAVs) 

capable of performing radio geolocation. Since manufacturing cost and physical size 

limitations were primary concerns, the geolocation sensor electronics platform was 

highly constrained in size, cost, weight and processing power.  

 

Problem Statement 

This thesis develops three techniques for accurately estimating the time-of-arrival 

(TOA) on resource constrained sensor nodes of a distributed radio geolocation system. 

Firstly, a multi-resolution approach for discriminating between signals of interest and 

spurious transmissions is presented. It is shown that this technique reduces the 

computational costs involved in the discrimination operation, and consequently, also 

reduces the overall time-required by the system to obtain a fix on the transmitter. 

Secondly, the problem of drifting sample rate clocks on different units is posed as a time-

scaling problem. Instead of the conventional, but computationally expensive resampling, 

frequency shifting (known in the RADAR community as Doppler frequency shifting) is 

proposed as a solution. To circumnavigate the computational costs associated with the 

Doppler frequency shifting solution, a related time-based shifting technique is developed 

and analyzed. The duality between the two approximation techniques is highlighted. 

Finally, the problems of estimating a node’s operating frequency and GPS jitter problem 

are posed together as a linear regression problem. Results are presented to support the 

techniques proposed. 
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Chapter II examines the existing radio-geolocation techniques and lists the 

challenges in designing a distributed, resource-constrained, mobile geolocation system. It 

also translates the real-world physical and operational requirements into overall system 

and lower level hardware, software design constraints. In Chapter III the multi-resolution 

signal detection algorithm is developed and analyzed mathematically. The computational 

savings achieved with this method are highlighted. In Chapter IV, two related methods of 

Doppler shift correction and time-shift (or equivalently, phase-shift) correction are 

developed to compensate for sampling frequency differences between received signals 

and their ideal expected versions. In Chapter V, the GPS jitter correction solution is 

mathematically developed and analyzed. Chapter VI showcases the actual system 

performance and examines the overall contribution of the compensation algorithms. 

Finally, Chapter VII envisions the possible future improvements and developments on the 

current work.  
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CHAPTER II 

BACKGROUNDS 

Depending on where the position measurements are made and how the location 

information is used, location determination systems can be broadly classified as self-

positioning systems and remote-positioning systems [32], [16]. This classification is 

useful when comparing solutions for a given geolocation problem.  

 

Self-positioning systems 

In self-positioning systems, the positioning receiver makes appropriate signal 

measurements from geographically separated transmitters and uses these measurements 

to compute its position [32], [16]. Applications associated with the receiver may then use 

this information as needed. The most notable examples of self-positioning systems are 

the GPS receivers. A GPS receiver receives synchronized transmissions from a 

constellation of 24 low-orbit satellites. By measuring the differences in the time of arrival 

(TOA) of the signals from the different satellites, the GPS receiver is able to compute its 

location on the globe [17]. Figure 1 shows a schematic of this operation. Another 

common example is autonomous vehicle self-localization via triangulation in a bounded 

environment using active beacons [18]. 
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Figure 1. Schematic of the GPS self-positioning system. The mobile GPS-enabled receiver 
generates a pseudo-random sequence that is identical to the one transmitted by the GPS satellites. 
Once carrier phase-lock is achieved, a simple correlation operation estimates the time of flight of 
the transmitted signal. Using 3 to 8 such measurements, the receiver can determine its position on 
the globe. Figure adapted from [9] 

 

Remote positioning systems 

In remote positioning systems (RPS), receivers at one or more locations measure 

a signal originating from, or reflecting off, the source to be located. These measurements 

are communicated to a central location where they are combined to estimate the location 

of the transmitter. The onus of running the computationally intensive location estimation 

algorithms is thus relegated from the remote device to the central location. Depending on 

the source of the electromagnetic transmissions, such remote positioning systems may be 

further sub-classified as direct or ambient illumination systems. In direct illumination 

systems, the receivers “hear” a signal emanating from transmitter to be positioned. The 
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Ambient illuminationsource
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Target echo

Figure 2. Schematic of a passive RADAR system. A powerful emitter, such as a TV or FM radio 
broadcast station provides ambient illumination. These signals when bounced off a potential 
target, such as an enemy aircraft, produce multi-path effects at the receiver site, which can be 
analyzed for Doppler shifts to produce an estimate of the range and bearing of the target aircraft. 
Figure adapted from [15] 

JSTARS radar-jammer detection system [13] and cell phone location systems fall into 

this category. In ambient illumination systems [15], the receivers compare signals from 

ambient, non-cooperative sources of illumination, such as a television or radio broadcast 

stations, against echoes from the target being tracked. Figure 2 and Figure 3 illustrate the 

difference between these two sub-classes. 

  In practice, however, the remote positioning systems have several advantages 

over self-positioning systems. With RPS, the computationally expensive operations of 

determining location are relegated to base stations which have access to greater 

resources. The remote stations are usually severely constrained in terms of computational 

capabilities, form factor, and operating power, making computationally intensive tasks 

such as correlation (as performed by the GPS receivers) infeasible. Incorporating a GPS 
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Figure 3. Schematic of passive self-location system. A Rosum enabled device "hears" transmissions 
from different ambient transmitters, such as radio and TV broadcast stations, and transmits the 
observed time of arrival characteristics to a base-station. Knowledge of the different clock offsets for 
each of the ambient sources heard enables the base-station to compute the location of the remote 
station. This information may be communicated back to the remote station or used by the base-
station to provide location specific services [9] 

receiver in a commercial cell-phone increases its weight, size, and cost. This extra 

hardware negatively impacts end-user convenience and hence mars usability. When 

dealing with a non-cooperative quarry, positioning systems such as GPS and assisted-

GPS (A-GPS) generally fail and one must rely on passive methods of locus computation 

such as Angle of arrival (AOA), time difference of arrival (TDOA) or carrier phase. 

Remote positioning systems which use the uplink time difference of arrival (UTDOA) are 

extensively used by North-American cell phone providers as a solution for the E911 

mandate [13], [19]. These techniques are briefly discussed in the following section.   
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Figure 4. Schematic of active positioning system. When requested by the mobile-station, the base-
stations "listen" to the signals emanating from the MS. For remote-positioning systems, the BSs fuse 
the measurements to produce a location estimate for the mobile station. For self-positioning systems, 
the roles are reversed. Adapted from [9] 

Positioning techniques 

Table 1 lists the various positioning techniques and their applications. We discuss 

each of the techniques below. 

Table 1. Various geolocation techniques and their current applications 

 Techniques Applications 

1. Propagation time Cell-phone geolocation, RADAR, commercial 
laser range measuring devices 

2. Angle of arrival (AOA) RADAR 
3. Signal strength Cell-phone geolocation (GSM) 

4. Time difference of arrival 
(TDOA) 

Cell-phones (GSM and CDMA), WASP, 
COMBAT-Q 

5. Carrier phase GPS 

6. GPS / A – GPS CDMA Cell-phone geolocation, vehicle 
navigation, PCS based “friend finder”  

 9



Propagation time 

In this technique, the time required for the signal from a transmitter to reach a 

measuring station is measured. Alternatively, an artificial echo approach may be used, 

wherein the receiver echoes back a signal transmitted from the receiver, giving a result 

twice that of the one-way measurement. For self-positioning systems, the mobile station 

(MS) usually initiates the positioning protocol and “listens” for transmissions or echoes 

from one or more fixed base-stations (BS) [9], [32], [16]. In remote positioning systems, 

one or more base-stations listen for transmissions from the remote mobile transmitter and 

fuse measurements to compute the transmitter’s location. The one-way measurement 

approach assumes a good synchronization of the transmitter and receiver clocks, while 

the echo approach depends on small and accurately known response times from the 

remote station.  

For systems using the Global Systems for Mobile Communication (GSM) 

technology, the range measurements may also be available as a consequence of the 

timing advance (TA) requirement [9].  

Each propagation time measurement constrains the locus of the mobile station to a 

circle. An intersection of two such loci produces two possible locations in a 2D space. 

While using 3 such measurements theoretically resolves this ambiguity, system noise 

introduces errors and uncertainty; the locus of the transmitter is transformed from a circle 

to a circular band or ring. The thickness of the band is a function of the accuracy with 

which the propagation time can be measured: the lower the accuracy, the wider the band. 

By using 4 or more propagation readings, one may construct an overly constrained 

system, which may be solved by searching for an optimal least-squared solution. 
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Time difference of arrival (TDOA) 

A mobile station can “listen” to a series of base-stations and measure the time 

difference between each pair of arrivals. If, for example, there are n base-stations, then n 

choose two (nC2) independent difference measurements can be made. Each TDOA 

measurement defines a hyperbolic locus on which the mobile station must lie [27]. The 

intersection of two such hyperbolas produces a location estimate. Since the intersection 

of two hyperbolas can produce ambiguous estimates, in practice three or more are used. 

This also has the advantage of reducing the influence of noise. As in the propagation time 

measurement technique, the accuracy and synchronization of the receiver clocks is 

critical. However, TDOA scores over propagation time measurement because it doesn’t 

require a protocol between the mobile and base-stations.  

There also exists a trade off between the computational complexities of the 

propagation time (or range measurement) and TDOA techniques. While the former 

produces a set of linear equations amenable to a closed form solution, the TDOA 

measurements produce a non-linear system, which must either be solved iteratively or be 

cast as linear approximation [20].  

 

Angle of arrival (AOA) 

This involves measuring the direction of approach of signal transmissions from 

the mobile station to the plane of a directional antenna installed at the base-station. For a 

single measurement, the locus of the mobile station is computed as a straight line along 

the estimated angle of arrival. Combining two measurements produces an estimate of the 

location, since two lines can intersect at only one point. In practical situations noise 
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corrupts the location estimates. Hence, as before, a greater number of estimates are used 

to construct an overly-constrained system, which is solved using a least mean squared 

error approach. Location estimates are optimal when the transmitter within the convex 

hull of the receiver constellation [25]. AOA determination also needs a special array 

antenna and beam-forming algorithms for best results [23].  

 

Signal strength 

The strength of a received signal can serve as an indicator the distance traversed, 

provided that the initial transmission strength and the channel characteristics are well 

known. It is not difficult to see that this system suffers from many practical difficulties. 

RF shadowing and multi-path effects can change significantly over relatively small 

fractions of the carrier wavelength, altering perceived signal strengths. [24], [16]. Also, in 

GSM and GPRS systems remote handsets frequently change their transmission power 

levels to optimize battery life and communication quality. To ensure reliable 

measurements, the network must not only possess an accurate model of RF environment, 

but also update the model as the MS moves through then environment and encounters 

interferes and effects not known a priori. Also, the network must be cognizant of the 

changes in power levels of the communicating MS. Nonetheless, in conjunction with 

other techniques such as AOA or propagation time, the strength of a signal may be used 

to reduce ambiguity of position estimates. Figure 4 illustrates a cell-phone geolocation 

system that uses both the received signal strength (RXLEV) and the GSM timing advance 

delay to estimate transmitter location.  
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$$
Large stand off

Figure 5 Characteristics of existing radio geolocation systems. Typically such systems are expensive 
and installed on defense vehicles enforcing large stand-off ranges. Consequently, they tend to have a 
small field of view (FOV) leading to a greater geometric dilution of precision (GDOP).  

 

Carrier phase 

The phase of a carrier has the potential to provide position estimates with an error 

considerably less than the carrier wavelength [32]. However, with this technique, a large 

number of ambiguities arise in the positioning solution: the technique only determines the 

phase differences, but cannot resolve the absolute path difference between signals 

received at two different sites. Another challenge is maintaining a continuous phase-lock 

on the carrier. Though challenging, this technique has been successfully employed in 

GPS receivers [27].  
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Disadvantages of existing geolocation systems 

Given the strong need for position awareness, several geolocation systems (using 

one of the technologies listed above or their combinations) exist. For e.g., the armed 

forces have had access to such devices for over a decade. Commercial geolocation 

solutions for North-American cell-phone service providers have been mandated by the 

E911 program. The FCC mandate [28] requires that cellular and broadband personal 

communication system (PCS) providers be able to provide the PSAP attendants with the 

location of the mobile station with an estimate of the callers location within a radius of 

125 meters in 67 percent of all cases. The FCC further classifies accuracy requirements 

based on the nature of the geolocation solution deployed: for handset based solutions 

(GPS, A-GPS etc.) the location of the mobile station must be accurate to 50 meters in 67 

% of all calls and 150 meters for 97 % of all calls; for network based solutions (U-

TDOA, propagation time etc.) the reported location must be accurate within 100 meters 

for 67% of all calls and 150 meters for 95% of all calls.  

Existing long stand-off solutions suffer because they assume a point-source, while 

in a cluttered urban environment, a low-power cell phone or FRS radio behaves more like 

a spatially distributed source [29]; the MS may be obstructed or shadowed by large 

structures or be in a location where multi-path effects may distort available 

measurements. Such effects lead to a dilution of precision of location estimates. Also, 

with fixed measurement sites, tracking a MS in a cluttered urban environment is difficult.  

Existing systems are usually expensive: cell-phone geolocation requires either 

expensive A-GPS enabled handsets. For network based approaches, such as uplink 

TDOA (UTDOA) [13], expensive (~$25,000) location measurement units must be 
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installed at each cell site. Deployed military systems cost several hundreds of thousands 

of dollars. All these systems also suffer from large weight and form factors and are either 

not mobile or, at best, have limited mobility. Moreover, existing commercial solutions 

fail for close range tracking of non-cooperative entities beyond the established network 

range. Thus there is a strong, justified need for a low-cost, mobile and robust geolocation 

system that is easily deployable and employable. Figure 5 demonstrates the 

characteristics of existing geolocation solutions. 

 

Challenges in distributed UAV based system 

Fleets of UAVs and UGSs have long been the appropriate means of providing 

reconnaissance at close quarters, with low risk of life to the scouting mission [7]. These 

can also be designed for stealth, so that they may aid in greater situation awareness 

without alerting the target under surveillance [3]. A fleet of mobile measurement sites can 

also overcome the shortcomings of conventional geolocation systems: the receiver site 

configuration may be dynamically adapted to account for the transmitter’s motion. Given 

knowledge of the RF environment, the receivers may be housed in locations with 

minimum parasitic effects, resulting in optimal measurements. 

Equipping UAVs with the technological components necessary to achieve this 

aim is fraught with challenges. These mobile units must be economical to mass produce. 

Should such a device fail, its replacement should be relatively cheap and easy. While this 

imposes a strong constraint on the production and maintenance costs, it also implies that 

the components used be economical, and hence neither as accurate nor powerful as in a 

high precision system. The mobility and stealth requirement of such devices suggests that 
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they be constrained in size and weight. To be of any practical use, these devices must 

have long field lives, implying extensive operating cycles. The constraint of a small 

weight limits the battery size and, hence, bounds the operating life. To ensure longevity, 

the devices must therefore consume as little power as possible. To be usable, the final 

system must provide the necessary accuracy: for the WASP project, the desired system 

accuracy is 75 meters over an area of a few square kilometers. The accuracy constraints 

and physical requirements of mobility and cost are generally non-confluent and hence 

produce a challenging problem. Table 2 illustrates the implication of these constraints. 

 

Translating Constraints into Design Objectives 

The logistical and fiscal challenges, adumbrated in prior sections, form a set of 

interacting and cross-cutting constraints. This prohibits a highly-structured, quantitative 

analysis to produce the best hardware / software design. Instead, we adopt a more 

qualitative approach based on heuristics. The constraints may be mapped into the 

following criteria: economic feasibility, distributed processing, goal-oriented on-demand 

processing, and multi-resolution processing [56]. The translation of the higher level 

requirements into design objectives are presented below.  
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Table 2. Desired characteristics of a UAV based radio-geolocation system and implications on system 
design 

 Qualities Implications 

1. Accuracy 

75m – 100 m over a few sq. km. To be usable, the final system accuracy must 
match existing solutions. Since the system being developed is a passive RF 
geolocation network, the accuracy of existing network based geolocation systems 
is used as a starting point. The system is expected to perform better as it capable 
of relocation to compensate for transmitter motion.  

2. Low cost 

Lack of high-precision components. Components have greater error tolerances, 
which subsequent processing must compensate for. This also precludes the use of 
algorithms which work only under ideal or near ideal conditions; i.e. the system 
must account for no-high SNRs, no common global clock synchronization, 
varying operational characteristics etc.  
 
Lack of large memory. While memory may no longer be expensive, the total 
system cost provides a strong upper bound for the financial that may be allocated 
for more memory, providing a strong constraint: cannot have arbitrarily large 
data rates; limit on length of FFT, or equivalently, limited tempo-frequency 
resolution.  

3. Longevity 

Low-power consumption. To be usable over a finite deployment period, the 
units must consume as little power as possible. Since the same on-board energy 
sources (battery packs and/or solar cells) would power the units’ control and 
functional components, the available power must be used judiciously. This 
precludes long-duration power hungry algorithms.  
 
Reduced radio communication. Since each radio transmission consumes pico-
joules to milli-joules per transmitted bit [30] constantly synchronizing or 
extremely collaborative system designs must be eschewed.  

4. Stealth 

Mechanically design. The UAV based system must be designed to closely track 
and monitor without alerting the target being tracked. Mechanical operational 
noise (such as the whirring of rotors) might alert the quarry to the presence of 
these tracking devices.  
 
Radio silent design: Frequent radio communications in or around the target may 
cue it to take evasive or aggressive action against the tracking devices. Also, a 
capable target may use a similar triangulation technique to locate and eliminate 
one or more of these devices.  

5. Mobile / UAV 
mountable 

Small form factor  
Light weight 
Low power 

6. “Attritable” Easy to replace.  
Low cost. 

7. Adaptable Modular/ Configurable design. The system should be independent of the 
modulation technique or the frequency spectrum range to enable agility.  

8. Real time 
Finite and deterministic time to fix. Throughput must be maintained. Real time 
constraints must be satisfied. The system cannot take an arbitrarily long time to 
compute the results. Typically a few seconds after sensing activity in the RF 
spectrum of interest is acceptable delay.  
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Economical feasibility 

The WASP units (WUs) must be “attritable”, viz. the loss of a WASP unit is 

favored to loss of trained military personnel. Should a WU be damaged or lost during a 

mission, it must be easy and affordable to procure a replacement. This implies an ease of 

production, maintenance and, if necessary, augmentation. This is best achieved by using 

cheap, mass-produced, and commercial-off-the-shelf (COTS) components. The overall 

system cost is minimized by realizing a minimal system that delivers acceptable 

performance.  

 

Distributed processing 

To enable stealth, a passive geolocation strategy is adopted. The deployed units 

serve as remote, distributed sensors that gather target signal characteristics, while the 

computationally intensive tasks of information-fusion, higher level objective definition 

and path planning are relegated to a remote base-station (BS).  

Low operating power, low communication bandwidth and stealth behavior require 

that the signals sampled at each node be processed locally. With current technology, 

heuristics for power consumption vary between picojoules to nanojoules per instruction 

for processing, while radio communication consumes microjoules to millijoules per bit, 

depending on desired range and link geometry [30]. When communicating at a low 

elevation and in an environment cluttered with foliage and human-made structures, 

significant losses in transmitted power may arise due to shadowing and channeling 

effects [31] necessitating significantly higher power levels for reliable RF links.  
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To ensure adequate temporal resolution the RF signals must be sampled at a fairly 

high rate (~2 MHz), while a sufficiently large number (100,000 to 1,000,000) of sample 

points must be generated to enable reliable “discrimination” between signals of interest 

and static. The conventional sensor-array technique of correlating data sampled by the 

different sensors would require repeated cross-communications of the entire time-series 

data, implying prohibitive power and time costs. Also, sustained transmission by the 

sensor nodes would render them susceptible to detection. 

The above arguments make a strong case for reducing the number and duration of 

transmissions over the wireless network, obviating common time-series processing at the 

base station. Instead, the nodes must use some form of a priori knowledge about the 

signal of interest (SOI) to extract the relevant discriminators. Figure 6 depicts the 

distributed nature of the WASP solution.  

 

Table 3. Template (pseudo-random sequence) design parameters 

Sampling frequency 2 MHz 

Duration 200 m-sec 

Bandwidth 3 KHz 

Center frequency 1.5 KHz 
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Figure 6. Distributed processing in the WASP geolocation system. Each deployed sensor node 
“watches” for the RF emissions of the transmitter. The nodes match received transmissions against 
an on-board version of the SOI. Once found, the time of detection, denoted time of arrival (TOA), is 
noted and transmitted to the remote-base station. Knowledge of geographical location of the nodes 
with the observed time-differences enables the base-station to estimate the location of the 
transmitter. The base-station may also initiate a repositioning of the mobile nodes to enhance future 
measurements or compensate for the transmitter’s motion. The inter-node communication is 
completely eliminated using this approach. Since the geographic location and TOA may be 
compactly represented, communications between the nodes and base-station are limited to a few 
bytes. 

The “optimal” set of signal features that constitutes a SOI is heavily dependent on 

the application as well as the nature of device being tracked. For a digital communication 

system, such as a GSM cell-phone, a relevant SOI may be the synchronization sequence 

in each GSM frame [24] [32], while for an analog system, it may be the frequency 

content or a certain keying pattern, such as the calling tone or “auto-over” pulse common 

to most voice carrying radio units [33].  For passive operation, the SOI is identified and 
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stored on board the WUs as a template, which is compared against the received signals. 

For the current application, a band-limited (base-band) pseudo-random sequence sampled 

at 2 MHz is used as the template. The template parameters are enumerated in Table 3. 

The target emitter is assumed to be a 500 mW family radio service (FRS) band 

unit. The FRS unit modulates audio frequencies in the range of about 500 Hz – 3 KHz 

onto a specified FM channel in the frequency range 462.5625 MHz - 467.7125 MHz [34] 

with a bandwidth of approximately 12.5 kHz [35]. This designated radio channel is 

continuously monitored by the nodes. When radio activity (above background noise) is 

observed, time-series data are recorded for further processing. The intermediate 

frequency (IF) FM data are gathered by a 12-bit A/D at a sampling frequency of 2 MHz, 

barring oscillator clock drift. The time-series data are demodulated and compared with 

the on-board template to discriminate between relevant signals and spurious 

transmissions. 

Since communicating the time-series data between the nodes or the base-station is 

infeasible, the TDOA approach is adopted: each node communicates its location and the 

time at which it detects the SOI on the radio channel to the remote base-station, which 

uses this knowledge to estimate the location of the transmitter. Other passive techniques 

such as angle of arrival (AOA) and beam-forming are ruled-out because they either 

require expensive or bulky specialized equipment (such as a directional antenna) [23] and 

are computationally expensive.  
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Goal-oriented on-demand processing 

The nodes must expend power only when an interesting event occurs. The nodes 

communicate their location and TOA estimates only when requested by the base station. 

This aids in stealth because the nodes operate in a passive mode between transmission 

requests, and even when they transmit, the transmissions are low-power, small duration, 

frequency hopping, low-bandwidth (9600 BPS) transmissions and thus have a lower 

probability of intercept (LPI). Since each radio communication consumes micro-joules to 

milli-joules per transmitted bit (depending on the desired range and link geometry of the 

radio network), power is conserved by transmitting data on demand or when an signal of 

interest is detected [30].  

 

Multi-resolution processing 

The signal processing algorithms required to estimate the time of arrival typically 

are computation and power intensive. A higher temporal resolution demands the time 

series data be gathered and processed at a high rate. A higher bandwidth, however, 

implies larger power consumption. The nodes may thus save power by searching for an 

event of interest at a coarser temporal resolution, and then switch to a more computation 

intensive higher resolution when a SOI has been detected. This also aids in reducing the 

time-to-fix (TTF) as the initial search is performed on a pruned signal space. This is 

examined in greater detail in chapter III.   
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CHAPTER III 

MULTI-RESOLUTION SIGNAL DETECTION 

Introduction 

Traditionally, as explained in Appendix A, the “searching” of the template in the 

sampled data stream is typically done using frame-based cross-correlation using 

windowed Fourier transforms. However, one may also use a direct convolution approach 

when the template length is much smaller than the length of the stream. In this case, a 

time-reversed and delayed (by the filter duration, T) version of the template is used as a 

filter that operates over the IS. For continuous systems, the output of the filter is the 

maximum exactly T seconds after the start of the SOI in the input stream [42]. For signals 

with temporal characteristics different from the template, the response of the matched 

filter is generally small. The matched filter receiver has traditionally been the system of 

choice for analog radar systems due to the convenience of implementation [43]. In 

discrete time systems, this technique obviates the need for the forward transform, reverse 

transform and searching required in the frame based approach described in Appendix A. 

It also eliminates complex additions and multiplications and thus has a natural, simplistic 

appeal from an implementation perspective. However, the computational burden 

associated with the discrete time version of this technique is proportional to the product 

of the lengths (measured in number of samples) of the template and the IS, which for 

large template lengths may be significantly greater than the cost of searching the IS using 

a frame based approach. 
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For the current case, the SOI has a temporal footprint of about 0.2 seconds, which 

amounts to approximately 400,000 samples given a sampling rate of 2 MHz. Clearly, 

using a matched-filtering approach with such a large filter is computationally prohibitive. 

Even for a windowed approach FFT which has O(NlogN) complexity, where N is the 

length of each window (or, equivalently the template), the cost associated with such a 

long template represents an enormous burden. 

Considerable savings may be achieved during the searching phase by recognizing 

that the high sampling rate (2 MHz) introduces enormous redundancy in the sampled 

input stream. While the high sampling rate is justified for satisfying the Nyquist criterion 

(for sampling the FM data on the 450 kHz intermediate frequency), it represents an 

oversampling of the demodulated base-band data by a factor of nearly 200. The 

redundancy due to oversampling may be reduced by resampling the demodulated input 

stream at a much lower sampling frequency (say 15 KHz). Consequently, the lengths of 

the template and the input stream are also proportionately reduced. Searching on these 

reduced length sequences is several orders of magnitude faster (as shown in the 

subsequent sections) leading to enormous savings in computational effort and time. E.g, 

downsampling by a factor of 128 reduces the sampling rate to 15.625 KHz, and the 

template length to 3125 samples, which is small enough to be implemented using “pre-

packaged” optimized DSP functions.  

Once the SOI has been located in the downsampled input stream, temporal 

resolution may be regained by processing only the relevant section of the original input 

stream. The following sections develop these ideas formally. 
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Definitions 

Let P be the pseudo-random template to be detected in the sampled signal stream 

S. Let lengths of P, S be Lp, Ls samples respectively. It is assumed that Ls >> Lp and that 

there may be more than one occurrence of P in S. Let R be the number of resolution 

levels. Let the subscript { } denote a signal at resolution i, with a higher number denoting 

a signal sampled at a higher resolution, viz. at a higher sampling frequency. Let 

superscript denote the kth iteration or step through a stream. Since the incoming 

stream S is processed in overlapping blocks or frames, let αi, βi, respectively, denote the 

starting, ending sample numbers of the block being processed at resolution i. Let Ni 

denote the number of samples in each block, at each resolution i. Let Mi denote the 

number of samples of overlap between two consecutive blocks, and mi be the number of 

samples skipped over, i.e. mi = LPi - Mi. Let 

i*

)({*} k

∏ βα ,
)(n denote the discrete “gate” or 

“rectangle” function given by  

⎩
⎨
⎧ ≤≤

=∏ otherwise
n

n
,0
;1

)(
,

βα
βα  (5) 

Let,  denote the cross-correlation operation between two signals, e.g. 

)()( ττ yxRxy =  (6) 

denotes the cross-correlation between signals x(t) and y(t). Finally, let D be the 

downsample factor, i.e. the ratio of the length of signal at resolution, i, to the length of its 

downsampled version at the next coarser resolution, i-1, i.e.,  

1−

=
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L
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Figure 7. Detection of the SOI using a multi-resolution scheme. The input stream is downsampled 
after low pass filtering and searched for the template. Once found, location estimates are 
subsequently refined at higher resolutions by concentrating searches around expected locations 

Multi-resolution searching 

Table 4 summarizes the notations and variables used. At each resolution level, the 

location for the pulse may be estimated by detecting the lag, τ, corresponding to the 

maximum of the correlation function. The maximum is accepted as a valid indicator of 

the occurrence of P if its magnitude is greater than a specified threshold. Let this 

threshold be γi at each resolution level i. The location at the coarsest resolution, i, may be 

expressed mathematically as, 

)()(

)()(
)()(maxarg k

ii
n

k
i ik

i
k
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nSnPl α
βα
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⎤
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1.  P 

2.  S 

3.  L{} 

4.  R 

5.  { }i*  

6.  )({*} k  

7.  αi 

8.  βi 

9.  Ni 

10.  Mi 

11.  mi 

12.  ∏ βα ,
)(n  

13.  )()( ττ yxRxy =  

14.  D 

 

 

 

Table 4. List of notations and definitions 

Pseudo-random template to be detected 

Sampled signal stream to be searched 

“Length of” operator. E.g., Ls = length of signal S, = length 

of signal Pi 

iPL

Number of resolution levels 

“at resolution i” operator. E.g., Pi means signal P at resolution i 

“At iteration” operator. E.g., βk means β at iteration k 

Starting sample number of processing block at resolution i 

Ending sample number of processing block at resolution i 

Number of samples in a processing block at resolution i 

Step size in number of samples at resolution i  

Number of samples of overlap between two consecutive blocks 

Discrete rectangle function. For values of n between the integers 

α and β the function has a value of unity. It is zero otherwise. 

 
⎩
⎨
⎧ ≤≤

=∏ otherwise
n

n
,0
;1

)(
,

βα
βα

Cross correlation between signals x(t) and y(t) 

Downsample factor. Ratio of length in number of samples of a 

signal at one resolution to its length at the next coarser 
resolution.  
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subject to the constraint  
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where, at the lowest resolution, i = 1,  
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and for higher resolutions, viz. Ri ≤≤2 , 
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i N+= )()( αβ ; Qq ≤≤1  (13) 

where Q is the number of locations at which P was detected at resolution i = 1. 

Equations (10) and (11) indicate that at the lowest resolution, the algorithm 

divides the signal stream S into blocks of size M1 and correlates each block with the 

corresponding low-resolution template P1. The constraint of equation (9) ensures that any 

block is considered to contain P only if the magnitude of the maximum of the correlation 

function is greater than a specified threshold at that level, γi. Once all such locations for a 

given resolution level have been detected, the search moves to the next higher resolution. 

At the higher resolutions, equations (12) and (13) specify that instead of searching 

through the whole time series data, the correlations are “centered” around the scaled 

location estimate. Figure 7 illustrates these ideas. For given signal stream S containing 2 

occurrences of the SOI (P), we construct the 2 other lower resolution versions of S. The 

downsample factor, for the sake of exposition, is 2. Thus if Ls = Ls3 = 40K samples, then 
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Ls2 = 20K and Ls1 = 10K samples. At the lowest level, the algorithm steps through the 

downsampled signal stream with overlapping blocks till it locates the SOI at locations 

(say) 2000 and 7000. At the next higher resolution level, i = 2, the first block searched 

begins at sample number 4000, which is 2000 scaled by the downsample factor (2). The 

location estimate is then refined to sample number 4002 at resolution 2. At the highest 

resolution, i =3, the search block starts at location 8004 and refines the estimate to 

location 8011. Thus the multi-resolution search refines the location (sample number) 

estimate of the SOI within the stream S. At each resolution level, a portion of the signal 

stream to be searched is culled resulting in computational savings. This algorithm as 

implemented on the WUs is shown in Figure 8.  

• The EPSON crystal oscillator generates a 48 MHz clock, which is divided 

by factor of 24 generates a nominal 2 MHz sampling clock. Since the clock frequency is 

specified to be accurate to ± 100 PPM, the sampling clock may be assumed to be accurate 

to approximately ±5 Hz.  

• The signal stream from the FRS receiver after the relevant software 

filtering and demodulation operations is sampled at this frequency and stored in memory 

to produce the time series data for the signal stream S. S is filtered using a polyphase 

band-pass filter and decimated to generate S1, the downsampled version of the signal S.  
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• The template P also passes through the same filtering and decimation 

operation to generate P1. As an optimization, P1 is pre-computed and stored in the non-

volatile memory of each WU. Thus we trade memory for savings in computational effort.  

• S1 is searched for occurrences of P1 using the block correlation (frame 

based matched filtering) approach. The maximum for each block is compared against a 

threshold (see constraint specified by equation (9)).  

• If a valid maximum, i.e. if the maximum for a block is greater than the 

threshold, P1 is considered found and the estimated signal location, τη , is passed to the 

GCC block, else the estimates are discarded as invalid and the system simply keeps 

processing more data till a valid detection is obtained.  

• When activated, the GCC “block” performs a high resolution cross 

correlation of the template P against an a section of S length Lp, starting at location τη . 

The refined estimate gives the TOA for the SOI at the node under consideration. The 

GCC block uses knowledge of the current operating / sampling frequency of the node to 

compensate for the affects of relative time scaling (due to incongruent sampling 

frequencies) between S and P.  
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Computational Efficiency 

To understand the computational gains using the multi-resolution approach, we 

must compare the computational efforts required for estimating the signal location using 

the single resolution approach with those required for the multi-resolution approach. The 

location of the SOI at the highest resolution may be obtained using either the matched 

filter or block correlation approach.  

 

Matched filter approach 

As explained earlier, in the matched filter approach, a time reversed and delayed 

version of the SOI is used to define a filter, P, which operates on the incoming data 

stream, S. Since each filter output sample requires Lp multiplications and Lp additions, the 

cost for computing one filtered output sample is 2Lp operations (additions and 

multiplications), and since the desired output has Ls + Lp - 1 samples, the total 

computational cost is 2Lp (Ls + Lp - 1) operations. Since Ls >> Lp, this may be written as 

O(LsLp).  

Fast overlap-add convolutions 

For a frame or block approach, the computation effort for each block is 

O(Lslog(Lp)) assuming that the block sizes are the same as the template length. Such 

techniques are also referred to as “fast-overlap-add convolutions” in literature. [44]. The 

signal S is split into Ls/Lp having Lp non-zero samples: 
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For each ⎥
⎦
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P

S

L
Lr0 , the 2Lp non-zero samples of PSg rr ∗= (where the ‘*’ 

indicates convolution) is computed using the FFT convolution algorithm. Each such step 

requires O(Lp logLp) operations, and since there are Ls/Lp such steps, the total cost of 

computing the individual filtered blocks is O(LslogLp). The results are then combined to 

produce the entire filtered sequence as  
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The addition of these Ls/Lp blocks of size 2Lp is done with 2Ls operations. The 

overall convolution is thus performed in O(LslogLp), which is significantly less than the 

computational burden in the matched filter approach. 

 

Multiresolution approach 

For the multi-resolution case at the lowest resolution, the operation of the 

algorithm is identical to the fast overlap-add algorithm presented above. Since the signal 

and template lengths are reduced, the location computation procedure at the lowest 

resolution takes Ccoarse steps, where 

 

))log(( 11 PScoarse LLOC =  (16) 
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 At the higher resolutions each estimate is refined in . Given Q 

estimated locations and R, the total cost is then  
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Substituting equation (20) in equation (17) and exploiting laws of arithmetic 

under the order notation, we get 

)log)log(( 2
1 DQRLQROC Prefine +=  (21) 

))log(( 1
R

P DLQRO=  (22) 

where D is the downsample factor as defined earlier. The overall cost to obtain a final 

refined estimate is the sum of the efforts at all levels, given by  

refinecoarse CCCtotal +=  (23) 

))log(log)log(( 11
2

1 PSP LLDQRLQRO ++=  (24) 

))log(( 11 PS LLO=  (25) 
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To enable a fair assessment, we must factor in the costs of creating multi-

resolution representations of the sampled signal and template. Since the template is know 

a priori, its multi-resolutions may be pre-computed. This affords computational savings 

at a moderate cost to non-volatile system memory. Before the input stream can be 

decimated, it must be low-pass filtered to avoid aliasing. The low-pass filter is of a length 

M (usually 32 or less), which is much smaller than Ls. The downsampling and creation of 

the multi-resolution approach may be carried out in an efficient manner by recognizing 

that the downsampled version of the signal is smaller by a factor of DR and because of the 

small length of the filter, each lowest resolution signal sample depends only on M 

samples in the highest resolution. Thus the entire S1 signal stream may be computed in 

O(LsD-RM), i.e. in O(Ls1M)steps, yielding an overall computation expense of Cmulitres, 

given by 

))log(( 111 PSSmulitres LLMLOC +=  (26) 

))log(( 11 PS LLO=  (27) 

 

When compared to the computational expense for a direct fast overlap-add 

convolution implementation of the high-resolution search, O(LslogLp), the multi-

resolution approach leads to a reduction in the computational effort by a factor of Ls/Ls1, 

i.e. by a the downsample factor between the highest and lowest resolutions (DR).  

 

For the WASP system, we have a two level (R = 2) and a downsample factor of D 

= 128, implying theoretical savings by a factor 128, i.e., the multi-resolution approach is 

computationally over two orders of magnitude better than a direct search.   
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CHAPTER IV 

SAMPLE RATE COMPENSATION 

Due to device inconsistencies and changing environmental conditions the 

operating frequency of a node usually drifts from the ideal. The difference in sampling 

frequencies of the template and the WUs produce correlation artifacts. For relatively 

narrow-band signals, these artifacts may be approximated by Doppler shifts [47], [48]. 

Narrow band signals may be defined as those with small fractional bandwidths, i.e. when 

the ratio of the bandwidth of the SOI to the sampling frequency is fairly small. For the 

WUs, the baseband demodulated data is sampled at approximately 2 MHz, while the 

bandwidth of interest is less than 10 KHz implying a fractional bandwidth of less than 

0.005, justifying the narrowband assumption.   

 

Effects of sample rate mismatch 

When estimating the time delay between two signals using a spectrum estimation 

method such the GCC, the difference in the sampling frequencies of the two signals can 

introduce significant errors. Figure 9 shows the effects of sampling a 20 Hz cosine wave 

at two different frequencies. When the sampled signal streams are compared on a sample 

to sample basis, the common features appear skewed in time. In particular, for the signal 

sampled at a higher frequency (1000 Hz) instead of at the intended frequency (500 Hz), 

the trough appears to be delayed.  
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Figure 9. Effects of differing sample rates. The red curve indicates a 20 Hz cosine wave sampled at 
500 Hz, while the blue curve shows the same wave sampled at 1000 Hz. Notice that the trough 
appears delayed by the by a factor equal to the ratio of the sampling frequencies, i.e. by a factor of 
2. The situation is reversed when the actual sampling rate is slower than intended 

As shown in Figure 10, a similar effect is observed when these two signals are 

correlated: the expected peak appears at location 32 instead of 20. Also observe that the 

correlation peak is smaller and flatter, representing a dilution in precision of the location 

of the peak. When correlating two signals with relative time scaling due to dissimilar 

sampling rates using GCC, the problem becomes more acute. Since GCC effectively 

computes the time average of successive correlograms, the resulting shape (depending on 

the basic correlation curve) suffers a similar dilution of precision.  
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Figure 10. Comparing effects of sample rate mismatch on direct-correlation of two signals.  The 
black curve denotes the correlation of two discrete sequences generated by sampling a 20 Hz cosine 
wave at 500 Hz. The red curve denotes the same when one of the signals is sampled at 1000 Hz 
instead. Notice the apparent delay, the increase in spread and reduction in magnitude of the peak in 
the black curve 

Figure 11 illustrates this effect by superimposing two correlograms of signals 

(sampled at 2 MHz and 2.2MHz) and their mean. For clarity, the intermediate 

correlograms are ignored. The mean curve (shown in dashed black) exhibits a distinct 

deviation from its original location (shown in red), indicating a spurious delay. The 

clocks on the WASP units have been observed to vary as much as 350 Hz for a nominal 

operating frequency of 48 MHz. Since the sampling clock is obtained by dividing the 

system (48 MHz) clock by a factor of 24, the sampling frequencies differ by up to 15 Hz. 

For a template length of 500 ms, this was observed to degrade the delay estimate by 
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Figure 11. Estimating the cross-correlation spectrum of time companded signals using GCC. The 
Welch spectrum estimation method is applied to the samples of a (1 KHz – 5 KHz) band-limited 
pseudo random sequence, sampled at 2 MHz and 2.000020 Hz, i.e. for a difference of 20 Hz. The red 
curve (block #1) shows the estimated correlation curve for the first block in the time-series, while the 
blue curve shows the same for the very last block (block #25). The dashed black curve denotes the 
final estimate of the true correlation. Notice that effect of RTC for block 1 (red curve) is minimal 
while it has a significant delay for block 25 (blue curve). Also note the spread and apparent delay 
(few µs) in the final estimate (dashed black curve). 

approximately 700 ns. Thus TDOAs between different units exhibit inaccuracies of a few 

micro-seconds. While these errors are nearly an order of magnitude lesser than depicted 

in Figure 11 they significantly degrade the final geolocation accuracy. 
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 Ideally, resampling the signals to ensure a consistent sampling rate would 

eliminate the errors due to RTC. However, resampling is temporally and computationally 

expensive, and hence, an infeasible option for a resource constrained system. Instead we 

approximate the effects of the apparent delay in each correlogram by time shifts. 

Alternatively, one may attack the relative time scaling problem in the frequency domain 

using Doppler shifts. The following sections mathematically model these problems and 

develop the RTC compensation techniques. 

Let the template be represented by f(t) and the received signal by g(t). We shall 

analyze relative time companding in the continuous domain as it lends itself better to 

analysis. Since differences in the sampling frequency manifest appears as a time scaling, 

we may express the SOI within received signal as a dilated and shifted version of the 

template, i.e., 

 

))(()( τ−= tsftg   (28) 

Taking the fourier transform on both sides, we have, 

τωωω sjesFsG −−= )/()( 1  (29) 

let s = 1 – a, then 

τωωω )1())1/(()1/(1)( ajeaFaG −−−−=  (30) 

By the binomial theorem, we have,  

...
2
11)1(

1
1 21 +−+=−=
−

− aaa
a

 (31) 

since a << 1, we have a
a

+≈
−

1
1

1  and hence,  

τωωω )1())1(()1()( ajeaFaG −−++=  (32) 
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Figure 12. Approximating frequency scaling with Doppler shifts for small fractional bandwidth 
signals. The blue rectangle represents the spectrum of a narrow bandwidth pseudorandom sequence 
when sampled at the intended frequency, f0. As the sampling frequency is reduced, the width of the 
rectangle scales and its position shifts closer to the Nyquist frequency. The dashed red, solid black 
curves indicate the spectrum when the sampling frequency is reduced by approximately 17%, 44% 
respectively. Note that the shift is more pronounced than the change in the width of the spectrum, 
suggesting that the scaling may be approximated by merely shifting the original (blue) spectrum 

For narrow band signals, 
2

,0)( 0
bF ω

δωδωω >=+ where ω0 is the center or the 

rms radian frequency and ωb is the bandwidth of the signal. Hence the above expression 

for G(ω) may be approximated by 

τωωτωωω ajj eeaFaG −++≈ ))()1()( 0   (33) 
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noting that both a and τ are small, so that the second exponential maybe approximated to 

unity, we get,  

ωτωω jeaFawG −++≈ ))()1()( 0   (34) 

taking the inverse fourier transform, we obtain,  

 

)()()( τωτ −−−≈ tj detftg   (35) 

where ωd = aωo = (1-s) ωo. The above expression indicates that a Doppler shift results 

whenever the two signals are companded with respect to each other. Refer Figure 12 for 

an intuitive explanation.  

 

Compensating for Doppler effects due to relative time companding 

Observe that the form of the time scaled narrow band signal closely resembles the 

kernel of the cross-ambiguity function (CAF) [45]. For our case, s is the ratio of the 

sampling frequencies of the two signals. Fortunately, this is always known: the sampling 

frequency of the template is known a priori, and can be accurately controlled through 

correct construction. The instantaneous sampling frequency for the data obtained at a WU 

may be estimated using the PPS alignment algorithms. Also, the center frequency of the 

transmitted signal may be known a priori by construction. For arbitrary signals, it may 

also be estimated as the mean frequency as defined in [45] [46] by  

∫

∫
∞

∞−

∞

∞−=
ωω

ωωω
ω

dF

dF

)(

)(

0

  (36) 
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The effect of the differing sampling frequency may be modeled as a modulation 

with a complex exponential, as indicated above. To compute the time of arrival then, a 

generalized cross correlator may be used to correct for the frequency effects. As before, if 

f(t) represents the template and g(t) the received signal, then we create a new signal, f1(t) 

which is a “shifted” version of the template to compensate for the current operating 

frequency of the node. 

 

tj detftf ω−= )()(1   (37) 

signals f1(t) and g(t) are then fed through a generalized cross-correlator (GCC) to obtain 

an estimate for the time delay, τ.  

dutuguf )()(maxarg *
1

+= ∫
∞

∞−

τ   (38) 

i.e.,  

duetuguf tj dωτ )()(maxarg * += ∫
∞

∞−

  (39) 

The above expression may be viewed as a cross-ambiguity function evaluated at a 

given shift ωd. 

 

Implementation issues in Doppler based relative time companding 

As explained earlier, the effects of relative time companding may be ameliorated 

by modulating the template with a complex exponential. The angular frequency of this 

complex exponential ωd, is given by  

ωd = aωo = (1-s) ωo  (40) 
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Usually, the complex exponential may be computed using Euler’s expansion as 

shown below 

)sin()cos()exp( tjttj ddd ωωω +=   (41) 

For a discrete time system, the above evaluation must be performed for each sampling 

instant. Given a template of length N, this produces an N x 1 vector of samples of the 

modulating complex exponential 

)sin()cos( tte dd j ωω +=   (42) 

where, skk ω/][ =t is the vector of sampling instants, with Ζ∈≤≤ kNk ,0  and sampling 

frequency ωs. Computing the elements of this complex exponential in terms of 

trigonometric functions is both computationally and temporally intensive. Furthermore,  

once the vector has been computed, its application to the real template vector requires N 

complex multiplications. Examining the structure and nature of this calculation and 

applying a few engineering assumptions, we can significantly reduce this burden.  

 

For the present case, from the local oscillator crystal specifications [37], it is 

known that the maximum deviation of the oscillator from its nominal frequency is ±100 

ppm (upto ±200 ppm have been observed in lab-experiments). Thus the value of s is 

fairly close to 1, or equivalently, α is fairly small. Also, the time period over which the 

Doppler correction must be employed is limited a small fraction of a second (If it is large, 

then the time-bandwidth product condition for narrow band signals is violated, making 

the Doppler shift assumption invalid). Thus the product ωdt is fairly small (nominal value 

of 0.02). Using the basic trigonometric approximations for small radian angle θ, 

1)cos( ≈θ and 
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θθ ≈)sin(  

we can make the following approximation  

)(1)exp( tjtj dd ωω +=   (43) 

Expressing this vectorially, we have for the discrete case 

][1][ kjk d te ω+=   (44) 

This computation represents enormous savings in creating the correction vector, e. 

The structure of each e[k] also enables a very efficient computation routine. The Doppler 

shifting of the template may be accomplished in a single pass, leading to an O(N) 

computation routine, as shown in Appendix A. 

 

Alternative time shift based correction 

While the Doppler correction has the advantage of offering a very intuitive and 

simple technique of compensating for the different sampling frequency between the 

nodes and the templates, it suffers from a computational perspective. The TI C67x DSPs 

used to provide the signal processing have a limited internal cache. When implementing 

computationally and temporally intensive operations such as a generalized cross 

correlation, it is imperative that the memory access requirements be as limited as possible 

to meet performance constraints. Ensuring that the data and result vectors fit in the fast 

internal memory is a proven and routinely employed means towards this end.  

Both the Doppler correction and approximation techniques suffer in this regard 

because they convert normally real data vectors into complex vectors via the Doppler 

frequency correction. This doubles the initial memory requirement and simultaneously 
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causes performance degradation which, accrued over several iterations, can mean the 

violation of a real-time constraint. Such a situation occurs in the computation of the cross 

spectral density (CSD) of the received signal with the template.  

To search for an alternative means of ameliorating the effects of relative 

companding due to incongruent sampling rates, let us examine the relative companding 

problem again. As before, let  

))(()( τ−= tsftg   (45) 

where, g(t), f(t) are, respectively, the received and template signals, s is the 

scaling factor and τ is the time delay introduced. As explained earlier, the presence and 

location of the template (FOI) in the input stream is estimated using a matched filter. The 

equation below recalls the matched filtering operation. The * denotes complex 

conjugation, which for real-signals is inconsequential. However, for the sake of 

generality, we shall assume complex data envelopes.  

dtutftguRgf )()()( * += ∫
∞

∞−

  (46) 

 

τ is estimated as  

dtutftg )()(maxarg * += ∫
∞

∞−

τ   (47) 

when s = 1, a value of t = τ maximizes Rgf. For the present case (s>0), the value of t that 

maximizes R is given by,  

dtutfsstftm )()(maxarg)( * +−= ∫
∞

∞−

ττ   (48) 

i.e. utm =)(τ   such that )()( tuts +=+τ   (49) 
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ττ ststm +−=∴ )1()(   (50) 

Notice that this delay τm(t) is not fixed as in the previous case, but is “smeared” in time.  

We wish to approximate this time varying delay τm(t) by a constant τd. We also 

wish to choose τd according to a least squared error criterion, i.e., the sum of the squared 

errors, ∈(τ), given by  

( dttdtte dmd ∫∫
∞

∞−

∞

∞−

−==∈ 22 )()()( τττ )

)

  (51) 

is minimized. For finite length sequences, the above may be rewritten as  

( dttdtte
T

T
dm
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T
d ∫∫ −==∈

2

1

2

1

22 )()()( τττ   (52) 

where T is the interval over which the two sequences are compared. This is typically the 

case when a data stream is processed in chunks or blocks of finite length. Proceeding in 

the usual manner, we search for a value of τd that minimizes the above error function. 

Using the Leibniz integral rule [50], we have 
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which vanishes for the optimal value, τdo. i.e. 
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Over a given interval T, the effects of relative companding between f(t) and g(t) 

may be minimized in the least squares sense by constructing a time-shifted version of f(t), 

denoted )(~ tf , as 

)
2

)1(()()(~ ττ sTstftftf o
d −−−=−=   (56) 

In the discrete domain, the above equation may be expressed as  

)
2

)1(2()2(~][~ τ
ω
π

ω
π sTsnfnfnf

ss

−−−== ,  (57) 

where ωs is the angular sampling frequency.  

 

For most DSP applications, the analog signal f(t) is usually not available to permit 

arbitrary time-shifting of the template signal. f~ would then need to be evaluated by 

interpolating at “arbitrary” time instants. While this is achievable, the interpolation in the 

time domain usually comes with a computationally expensive price tag.  

An easier alternative may be found by migrating to the frequency domain. Taking 

the fourier transform of the preceding equation, we obtain 

ωτωω djeFF −= )()(~   (58) 

where is the Fourier transform of f(t). Also note that we have 

dropped the superscript of τd in favor of brevity. The above expression is computationally 

more convenient because it allows for a pre-computed version of the Fourier transform of 

the template F(w) to be used. As in the Doppler correction, it can be argued that the 

nature of τd and ω allow the correction factor to be computed as an approximation  

dtetfF tjωω −
∞

∞−
∫= )()(

ωτ dje−

 48



ωτωτ
d

j je d −=− 1   (59) 

This time-shift based approach has the following notable advantages 

a) Smaller memory foot print for )(ωF computation and reduced memory latency: For 

real signals, the Fourier transform exhibits Hermitian symmetry. This may be exploited to 

reduce the number of computations required to compute the entire FFT. It also means that 

the input vector to the FFT routine is a real-vector, requiring half as much memory as its 

complex counterpart. As explained earlier, a smaller memory footprint facilitates the 

containment of the entire signal in the fast internal memory (64KB) of the DSP chip, 

reducing memory access times. 

b) Ability to precompute )(ωF : since the template is known by design, its frequency 

content )(ωF is also predetermined. )(ωF may be computed offline during the design, 

thus obviating its computation at run-time entirely. This can, needless to say, introduce 

huge savings in the number of computation cycles. 

c) Facility to efficiently implement correction in the frequency domain: As with the 

Doppler shift correction, we can utilize the nature of the correction to devise an efficient 

method of applying the correction in the frequency domain. This has the added advantage 

of allowing an in situ computation, bringing further reduction in memory access latencies 

and computation time. Appendix C lists the C functions that implement these corrections. 

 

Results 

The sample rate compensation techniques were implemented and tested in 

MATLAB. The delays estimated by the “standard” uncompensated GCC (UG) were 
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Comparing error in TOA estimates 

-200

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10

Nominal sampling frequency in MHz

er
ro

r i
n 

na
no

-s
ec

on
ds

Uncompensated GCC Doppler Shift
Doppler Approx Time-shift
Time-shift Approx

Figure 13 Comparing effects of different sampling frequencies on errors in predicted delays. A 
pseudorandom sequence was sampled at different nominal frequencies. Notice the decrease in the 
uncompensated GCC prediction errors as the sampling frequency is increased. 

compared against the delays reported by the Doppler shift (DS), Doppler shift 

approximation (DA), time-shift (TS) and time-shift approximation (TA) compensated 

GCC implementations. The following factors were recognized as important to the 

performance of the algorithm: 

• Nominal sampling frequency (FS) 

• Difference between sampling frequencies of the two signals being compared 

(DELTA) 

• Bandwidth of the SOI (BW) 
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Comparing errors for different compensation techniques
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Figure 14 Comparing effects of different sampling frequencies on the different compensation 
techniques. Notice that the errors in the Doppler shifting techniques reduce as the sampling 
frequency is increased.  

Table 5. Default parameters used for generating PR test sequences. Only one of these parameters was 
varied at a time to study its effect on the errors in delay estimation 

1.  Nominal sampling frequency (FS) 2 MHz 

2.  Difference between sampling frequencies of the two 
signals being compared (DELTA) 10 Hz 

3.  Inherent time lag between the two signals being 
compared (DELAY) 4000 ns 

4.  Bandwidth of the SOI (BW) 5 KHz (1 KHz – 6 KHz)

5.  Duration of the signals being compared 
(DURATION) 0.4 seconds 

6.  Number of sinusoids in PR sequence 42 
7.  Signal to noise ration (SNR) 20 dB 
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comparing predicted delay errors for increasing sampling frequency disparity 
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Figure 15 Comparing error in delay estimates when the relative companding between two sequences 
is increased. Note that the magnitude of the error in the uncompensated GCC version  increases 
almost linearly. Overall, the compensation techniques deliver atleat an order of magnitude better 
performance than the uncompensated technique 

Since the effects of these parameters are strongly coupled, the effects were best 

observed by varying the parameters in accordance with the “response surface” [51] 

testing technique. The tests were conducted using pseudo-random sequences generated a 

specified nominal sampling frequency (FS), bandwidth (BW) and duration 

(DURATION). The two generated sequences (y1 and y2) were identical except for the one 

controlled characteristic. The results for the different tests are shown in Figure 13 through 

Figure 20. The default values for the different parameters are listed in Table 5.  

 From Figure 13 it is evident that the errors due to relative companding decrease 

as the nominal sampling frequency increases provided the difference in the two sampling 

frequencies remains constant. This is expected because with an increase in the nominal 
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Comparing errors in estimates for different compensation techniques
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Figure 16 Errors in compensation techniques due to frequency disparity. The Doppler shifting and 
its approximation deteriorate almost linearly with increasing frequency disparity. The time-shifting 
and time-shift approximation techniques also suffer a similar degradation in performance albeit at a 
much lower rate in the opposite direction.  

sampling frequency, the ratio of the two sampling frequencies, (the scale factor) s = 

fs2/fs1, is closer to unity and hence the optimal time delay, τd° in equation (55) is closer to 

the actual delay between the two signals. From another perspective, the signal streams 

must be longer for effects of the relative scaling to become pronounced. Notice that the 

errors due to the uncompensated GCC are nearly an order of magnitude greater than with 

any of the compensation techniques. Figure 14 compares the errors of just the 

compensation techniques. 

Figure 15 compares the errors in the estimated delay when the difference in the 

sampling frequencies (DELTA) increases. From the bar charts, it is evident that the 

performance of the uncompensated GCC degrades almost linearly with an increase in 

DELTA. This degradation is as per expectation because as DELTA increases, the effects 
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comparing errors in predicted delays for 
varying bandwidths
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Figure 17. Effect of bandwidth on delay estimation accuracy. The bandwidth of the generated PR 
sequence is varied, while the other parameters are held at their default values. Notice that 
uncompensated GCC error is nearly independent of signal bandwidth, indicating that the errors 
are more sensitive to the frequency disparity than the signal bandwidth. 

of RTC become more visible. The compensation techniques too demonstrate such a trend 

though with a much smaller magnitude. This effect examined better in Figure 16 

For the case of increasing bandwidths, it was observed that performance of the 

uncompensated GCC (UG) remained consistently poor (around 500 ns), while that for the 

Doppler shift (DS) and Doppler approximation (DA) techniques worsened slightly. This 

is not unexpected because as the bandwidth increases, the effects of frequency scaling 

become more dominant and the essential narrow bandwidth assumption is violated. The 

Doppler shift technique performs best when the signal is a single sinusoid. Figure 17 

illustrates this point. The performance of the TS and TA techniques on the other hand 
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comparing effect of bandwidth on compensation errors
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Figure 18 Effect of bandwidth on delay estimation accuracy of the compensation techniques. Notice 
that the Doppler compensation techniques suffer while the time-shifting techniques improve with 
increasing bandwidth. 

show a marginal improvement as the bandwidth of the SOI is increased, as shown in 

Figure 18. This may be explained by recognizing that due to the uncertainty principle, the 

individual correlograms (correlation of individual blocks) within the GCC become 

sharper and narrower as the BW is increased. Thus when compensated for RTC, they 

“align” better, producing a lower variance estimate of the true peak.   

Figure 19 compares the performance of the algorithms as the frequency for a 

single sinusoid with fixed delay is varied. The graph shows that the UG implementation 

produces a consistent error of around 500ns for a DELTA of 10 Hz. The TS and TA 

algorithms show reasonable performance in the 1 kHz – 30 KHz region and start to 

demonstrate a slow, but nearly linear deviation with increasing signal frequency. The DS 
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comparing errors in estimated delay 
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Figure 19. Comparing errors in delay estimation in the presence of RTC when the SOI is a simple 
sinusoid. Note that the Doppler compensation techniques outperform the others. This is a 
consequence of the SOI being a simple sinusoid, which in the frequency domain represents a delta 
function, i.e., a function with vanishing support. This case is the dual of the previous test in which 
the increasing bandwidth improved the performance of the time-shifting techniques 

and DA techniques however perform much better because the signal bandwidth is the 

narrowest possible. Figure 20 compares just the compensation techniques.  
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comparing errors in predicted delays for different techniques

-350
-300
-250
-200
-150
-100

-50
0

50
100

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

frequency of sinusoid in KHz

er
ro

r i
n 

na
no

-s
ec

on
ds

DS
DA
TS
TA

Figure 20. Comparing only the compensation techniques in the presence of RTC when the SOI is a simple sinusoid. Note that the Doppler correction (DS) 
and its approximation (DA) consistently outperform the time-shifting techniques. This is a consequence of the true narrow-band nature of the SOI. A single 
sinusoid represents a delta function in the frequency domain; a function with vanishing support. Hence the frequency shifting simply boils down to a 
heterodyning operation. The DA technique begins to suffer as the frequency of the sinusoid is increased because the approximation used for avoiding 
trigonometric computations for the complex exponential begins to deviate  
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CHAPTER V 

GPS JITTER COMPENSATION 

Since the WUs are by design spatially separate, they cannot have a common 

physical clock. A high degree of external synchronization [52] may be obtained by using 

the GPS clocks. The 24 satellites of the GPS constellation transmit a synchronization 

pulse every second. Since each of these satellites carries within it cesium atomic clocks, 

and are in external synchronization with each other, the pulse per second (PPS) signal 

provides a reliable mechanism for synchronization. However, as explained in the 

previous sections, the PPS signal as received from the GPS receivers on-board the WUs 

suffer from jitter, which must be eliminated to ensure reliable timing measurements 

between the different units.  

Figure 21 illustrates the GPS jitter between the PPS signals received by two GPS 

receivers. Figure 21 was generated by feeding the PPS of receiver 1 to the X channel, 

which served as the reference (yellow lines). The PPS from receiver two was fed to 

channel Y (blue lines) and plotted with persistence (i.e. the each newer plot was 

superimposed over the older ones). A jitter in the range of 250 ns (±150ns) was observed.  

 

Achieving global clock synchronization 

A commonly used technique for correcting timing jitter is the least mean squared 

(LMS) fit. A “history” of the time difference between consecutive PPS pulses is created 

using a 32-bit counter. Each WU has a high-resolution (hi-res) clock that operates at a 
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Figure 21. Screen capture of an oscilloscope showing the extent of the PPS jitter. PPS trains from 
independent GPS receivers were plotted against each other. The channel one (yellow) was used 
as the trigger, against which channel two (blue) was plotted with persistence, i.e., the plot 
updates were overlayed with the ones already displayed. The horizontal spread (~150 ns) of the 
blue plot gives an estimate of the maximal jitter possible  

nominal frequency of 48 MHz. This provides the triggering clock for the various on-

board electronics after necessary division and shaping. The counter counts the number of 

clock pulses between subsequent GPS synchronization pulses. The Figure 23 shows the 

schematic of the PPS correction operation.  

With a clock frequency of 48 MHz, the counter wraps around roughly every 89 

seconds. The wrap-around-corrected hi-res counts produce a monotonically increasing set 

of values. We perform a LMS straight-line fit to this data to compute the current 

operating frequency as well as compensate for the GPS jitter. The parameters for the 

straight line fit, viz. the operating frequency (Ct) and the initial counter value, or offset 

(C0) may be computed from the closed form solutions of the LMS fit. In the following 

sections, the equations for the LMS fit are derived and expressions are presented for the 

corrected PPS counts. Also, the solution for the last PPS pulse is treated as a random 

variable and an analysis of its variance is presented.  
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Figure 22. Time series data showing the variation in the interval between two consecutive PPS 
pulses 

Let Ci represent the high resolution count for the ith second, Ct be the actual 

operating frequency (high-resolution), and C0 the offset or the initial counter value when 

the first PPS pulse arrives. Ideally, 

 

ti iCCC += 0  (60) 

where i = 0, 1, 2, … , n. 

 

Let the observed Cis be perturbed from the ideal by independent identically distributed 

(iid) zero mean Gaussian jitter, iδ , with variance σ2, i.e., 

 

iti iCCC δ++= 0   (61) 
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Figure 23. Schematic of PPS jitter compensation infrastructure. The number of ticks of a 48 MHz 
clock are counted between each consecutive PPS pulse. This builds a history of the durations of each 
second in terms of the local oscillator frequency. A straight line is fitted to this history. The slope of 
the line provides an estimate of the local frequency, while the points along the line provide the de-
jittered estimates of the actual events. The final time of arrival is extrapolated from the last recorded, 
de-jittered PPS  

Assuming a history of N pervious hi-res counter counts, and n = N-1 with Ci is the his-res 

count for the ith second, we have the sum of squared errors, L is given by, 
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The least squared error estimators of Ct and Ci must satisfy  
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Simplifying these equations yields, the following normal equations [51]  

 

 61



∑∑
==

=+
n

i
i

n

i
t CiCCn

00
0

ˆˆ  (65) 

∑∑∑
===

=+
n

i
i

n

i
t

n

i

iCiCiC
00

2

0
0

ˆˆ  (66) 

Solving the above normal equations, we obtain the following estimators for the slope 

(current operating frequency) and offset 
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The fitted LS linear model is  

ti CiCC ˆˆˆ
0 +=  (69) 

In order to ascertain the adequacy of the model, we wish to investigate the 

statistical properties of the above estimators. Consider first the slope (operating 

frequency), . The expected value of is  tĈ tĈ
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Using the linearity of the expectation operator, we have, 
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We note that the expected value of each PPS count is  

titi iCCiCCECE +=++= 00 )()( δ  (72) 

which follows directly from our assumption 0)( =iE δ . Hence,  
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Thus (67) represents an unbiased estimator of the actual operating frequency 

under the given assumptions. Now consider the variance of . tĈ
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After some algebra, we get the result 
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Following a similar approach, we get  
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Note that the estimators and are not uncorrelated; their covariance is given by  tĈ 0Ĉ

)2)(1(
6)ˆ,ˆ(

2

0 ++
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nn
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Substituting nominal values of σ = 30 nano-sec and n = 22, we get  and 

 (nano-sec)2. The value of suggests that we can track the slope fairly 

accurately, while the standard deviation in the estimation of the offset is approximately 

12 ns. The values of Ct and C0 are used to estimate the actual time of occurrence of the 

latest GPS pulse.   

889.02 =
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Given a history of N PPS counts, the location of the Nth PPS pulse is estimated as  

tN CNCC ˆ)1(ˆˆ
0 −+=  (81) 

Since Ct and C0 are computed as a function of the observed PPS counts, which are 

themselves independent random variables, Cn is also a random variable. The mean and 

the variance of Cn may be computed as below. Since the observed PPS counts are 

assumed to be i.i.d. Gaussian random variables, the mean value of is given by  NĈ

( ) ( ) ( )[ ]tNC CNECECE
n

ˆ1ˆˆ
0ˆ −+==µ  (82) 

tCC N µµ )1(
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tCNC )1(0 −+=  (84) 

Thus, is an unbiased estimator. The “goodness” of the estimator may be judged by its 

variance,   

NĈ

2
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which is the same as the variance of the offset. A standard deviation of σ = 30 ns 

corresponds to a maximum deviation  of ± 90 ns (within a 99% confidence interval) in 

the uncompensated case. Substituting nominal values of σ = 30 nano-sec and n = 22 in 

(89), we obtain = 12.44 ns. Thus, the estimated value of the Nth PPS pulse would be 

within ± 37 ns of the true value, which represents a significant improvement over the 

uncompensated case.  

NĈσ

To visualize the effectiveness of the jitter compensation algorithm, the LMS 

correction can be viewed as an FIR filter and the variation in the “output” of the filter as a 

metric for comparison. Figure 24 shows variation of the filter output vs. the real, raw PPS 

variation for a history length of 64 seconds. Note the significant reduction in the variation 

of the filtered output.  
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Figure 24. Effect of PPS correction. The LMS fit may be viewed as an FIR filter. the past 64 values 
are used to predict the next value. The dotted line with x’s show the result of the “filtering” 
operation. Note that the maximum deviation is less than one hi-res clock count (~20 ns) 
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CHAPTER VI 

ACTUAL SYSTEM PERFORMANCE  

Field Experiments 

The mobile, distributed RF geolocation system described herein is still under 

development. A prototype, however, was used to conduct some preliminary field tests to 

ascertain the feasibility of the project. Up to 8 nodes were used in several tests at Percy 

Warner park (PWP), Bellevue, TN. The PWP site was selected because of the large area 

and low ambient FRS interference levels. It also offered an elevated area in the middle of 

the field where the target transmitter could be placed ensuring line-of-sight to all the test 

nodes dispersed in the field. Two sets of tests were conducted: simple linear range 

estimation, and distributed geolocation.  

 

Linear range estimation 

To test the basic functionality of the system, 6 nodes were placed at increasing 

distances from the transmitter. The transmitter was positioned at the highest point in the 

field to ensure LOS to each node. This set up is depicted in Figure 25. A number of initial 

transmissions were made to enable a calibration of the system, so that the biases inherent 

to a radio-node combination could be measured and removed from the final reading. As 

depicted in Figure 25, the measured TOAs at each node bear a nearly linear relationship 

to the distance of the node from the transmitter, in accordance with theory.  
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Figure 25. Linear range measurement at PWP field. The nodes (indicated by different colored dots) 
were placed at intervals of 100 m from the transmitter (red circle labeled ‘T’). Node 6, positioned in 
the top right corner of the picture was placed about 1.2 Km away from the transmitter. The SOI was 
transmitted and the TOAs at each node were recorded and relayed back to the base-station. As shown 
in the adjoining graph, the measured TOAs show a nearly linear relationship with distance. 

Distributed geolocation 

For this test, the nodes were spread around the field in a non-collinear 

configuration, close to ground level. The transmitter was initially fixed at one location, 

where several calibration measurements were made. Once the system was calibrated, the 

transmitter was moved to 3 different locations within the convex hull of the node 

locations. The transmitter was raised several feet about the ground level to prevent 

ground effects. Though the nodes were actually immobile, changes in the node 

configuration were effected by changing the locations of the transmitter. These 
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Target emitter  

Figure 26 WASP GUI showing the calibration node configuration. The location of the units used in 
the test is indicated by small colored dots. The key on the right of the aerial photograph lists the 
latitude, longitude and elevation of the color-coded WUs. 

experiments were performed to simulate the changing configuration of the nodes in 

response to the transmitter motion 

.Figure 26 shows a snap shot of the WASP user interface (GUI) during the 

calibration phase. The node locations are marked by colored dots while the position of 

the transmitter is indicated by a number (the number indicates the transmission or test 

number for which the target was located). The circles around the estimated position 

 69



Target emitter  

Figure 27 Geolocation in a low lying area. As before, the node locations are coded by the colors given 
on the right of the aerial photograph. The estimated transmitter locations are given by the numbers 
(black over yellow) at the center of the CEP circles. Notice the large errors in estimation due to non-
line of sight position of the transmitter. Also notice the larger radii of the CEPs indicating low 
confidence in the estimates.  

signify circular error probability (CEP) or the level of confidence in the estimate: the 

smaller the circle, the greater the confidence.  

The confidence levels are obtained as a byproduct of the location estimation using 

the Taylor series approximation of the hyperbolic location equations [20]. Note that 
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Target emitter  

Figure 28. Geolocation at location 3 

estimated positions vary quite a bit due to the inherent receiver/node biases. The actual 

target position is indicated by the arrowhead.  

Figure 27 shows the results when the transmitter was located in a low lying area 

in the field. The curvature of the ground shaded the transmitter from the nodes closer to 

the left edge of the field. Consequently, most of the location estimates had a poor 
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confidence level, as evinced by the larger diameters of the CEP circles. Figure 28 shows 

the results when the transmitter was moved to a higher elevation. Note the improvement 

in the results as shown by the greater number of “concentric” circles with smaller radii. 

 

Error contribution of compensation techniques 

Since the objective of this thesis is to develop techniques to enable accurate TOA 

estimation for the mobile nodes, it is instructive to examine the effect of the corrections 

relative to the other error sources and estimate the potential performance of the system. 

While there exist multiple sources of error, the significant sources are sample rate 

drift, time-base jitter (GPS), and the various errors in the radio reception (analog receiver 

front-end phase error, A/D conversion effects, and demodulation errors).  Since the radio 

reception effects are highly complex and handset-specific, we lump these together and 

defer to the measured values rather than an analytical calculation. The field experiments 

also suggest that other factors such as varying RF channel characteristics and radio-

stability can be significant contributors to the final error. Table 6 summarizes the 

contributions of this thesis in terms of an error-budget.  

 

 Table 6: Contribution of various error sources with and without compensation 

Sources of error Error magnitude before 
compensation 

Error magnitude after 
compensation 

Drifting sample rates +/- 400 ns +/- 45 ns 
GPS Jitter +/- 125 ns +/- 40 ns 
Radio variances (measured) +/- 100 – 1000 ns +/- 100-1000 ns 
Total +/- 625-1525 ns +/- 185-1085 ns 
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As is evident from the table, the corrections contribute significantly to the 

accuracy of the system. It should be noted that the improvements in the radio variances 

are brought about by careful design of the receiver and demodulation sections. With a 

high quality demodulation, the compensation techniques developed here can reduce error 

from a barely-usable 625 ns to a promising 185 ns resolution. 
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CHAPTER VII 

CONCLUSIONS AND FUTURE WORK 

Conclusions 

The distributed mobile radio-geolocation proposed by the WASP project was 

demonstrated to be feasible. Estimating the TOA at each node incorporates several 

challenges, which were identified and techniques were proposed to address them. Firstly, 

a multi-resolution approach for discriminating between signals of interest and spurious 

transmissions was presented. It was shown that, depending on the downsample factor, 

this technique reduces the computational costs involved in the discrimination operation 

by at least two orders of magnitude.  

Secondly, the problem of drifting sample rate clocks on different units was posed 

as a time-scaling problem. To avoid the computational costs associated with resampling, 

the Doppler frequency shifting solution and a related time-based shifting technique was 

developed. The duality between the two approximation techniques was highlighted. It 

was also shown that the time-shifting techniques had a smaller memory footprint, and 

afforded approximations that made them computationally superior to the Doppler shifting 

techniques.  Finally, the problems of estimating a node’s operating frequency and GPS 

jitter problem are posed together as a linear regression problem.  

The computed error budget shows that the algorithms developed here can reduce 

TOA errors by approximately 500 ns for a typical set of system parameters (e.g. those of 

the WASP system), greatly improving the geolocation accuracy. 
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Future work 

Though the WASP system is feasible, several developments need to be made, 

both in the signal processing software and hardware, for it to be a robust, deployable 

system. The field experiments have shown that many assumptions, such as lack of multi-

path or common-band interference, high SNR, deterministic radio/transmission channel 

transfer functions etc., required for an amenable theoretical solution are frequently 

violated. Consequently, the system design must evolve to address these concerns. The 

following problems and potential solutions have been recognized. 

 

Multi-path interference 

Multipath interference is a significant error contributor even when there exists a 

LOS path between the transmitter and the receiver. The cross-correlation detector is 

particularly sensitive to the “amplitude” of the received signals. If the delayed signals 

incident on the radio antenna have amplitude greater than the original, the results of the 

cross-correlation detector will be biased towards the bigger signal, i.e. the multi-path 

signal biases the delay estimates. Though the effects of multi-path may be reduced by 

using higher frequency and higher bandwidth signals, the inherent channel capacity and 

the characteristics of the FRS radios make these enhancements impractical. Super-

resolution techniques such as TLS - ESPIRIT (Total Least Squares version of Estimation 

of Signal Parameters via Rotational Invariance Technique) [53] and Root-MUSIC 
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(Multiple Signal Classification) may be employed to determine and counteract the effects 

of multi-path [54]. 

Radio / RF environment characterization 

Laboratory and field experiments indicate that the radios tend to introduce 

arbitrary phase distortions on the received signals, which distort the TOA estimates by 

several micro-seconds. While on-line calibration and averaging of results tends to reduce 

the influence of these errors, the non-deterministic nature of these distortions makes for a 

challenging problem. Also, the radios seem to perform better for certain audio-

frequencies than for others. Thus a template designed to target the “favored” frequency 

ranges can provide performance improvements. However, the transfer functions of the 

radios are unknown and can be determined only empirically. Furthermore, the RF 

environment itself may change, e.g. when the transmitter or the nodes reposition 

themselves, leading to a different configuration of multi-path and channel noise 

characteristics. Knowing the channel and radio transfer functions, we may employ 

homomorphic and blind-deconvolution processing to mitigate the related errors [55]. 

 

Target radio 

To make the system more usable, the target transmitter may be changed to a 

commercial GSM cell phone, implying a change in not only the frequencies of operation, 

but also the template. Alternatively, GSM being a digital communication system, we 

could completely eliminate the need for a template and instead use the symbol transitions 

endemic to the GMSK (Gaussian minimum shift keying) digital bitstream as features of 
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interest. In this scheme, each node would estimate the “global” time (TOA) of each 

symbol transition (a ‘0’ changing to a ‘1’ or vice versa) and relay the sequence of TOAs 

to the base-station. The base-station would then use these timing sequences to compute 

the “phase differences” or equivalently the time differences for each pair of nodes. The 

system would also need to accommodate the frequency and power-level hopping nature 

of the GSM system. 
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APPENDIX A 

System Architecture: UAV Hardware Platform And Signal Processing Framework 

A schematic of the resulting architecture is presented in Figure 29. As explained 

in the previous chapter, the target emitter is assumed to be an FRS radio transmitting 

frequency modulated audio-frequency data. Consequently, a commodity FRS band radio 

is used as a receiver. 

FRS
Radio

32 MB
Memory

9600
BPS

Radio
DSP

A/D
2 MB/S 9.6 KB/S

GPS
Receiver 1 PPS

GPS
Position

Local Oscillator

  Sample

Figure 29. Schematic of a WASP unit processing hardware 
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Figure 30. Different views of assembled WASP unit processing payload. The final system 
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Initial experiments showed that the demodulated base-band output of these radios 

demonstrated poor phase-response characteristics and, hence, resulted in poor TDOA 

estimates. Further analysis revealed the analog demodulation stages of the FRS receivers 

as the largest contributors to these errors. Consequently, the WASP nodes bypass the 

analog demodulation circuitry of the radios and perform the demodulation in software. 

The receiver front-end, however, is still used to select the correct channel and down-mix 

the FM data from the FR y (IF) at 450 KHz. The 

FM data are gathered by sampling the IF using a 12-bit A/D at a nominal sampling 

frequency of 2 MHz. Gathering the data at the IF stage gives the system the flexibility of 

tracking any of the 14 channels in the FRS band while circumventing the error prone 

additional analog demodulation stages of the receivers.  
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A Trimble Lassen SQ GPS module provides both location and timing 

information. The module also provides a 1 pulse-per-second (PPS) signal accurate to 

±100 nano-seconds (ns) [36]. A Texas Instruments TMS320C67 family DSP with 32 MB 

of RAM serves as the main processing element (PE). An 37 SG-531 series crystal 

oscillator provides a nominal 48 MHz clock that drives the PE and the peripheral 

hardware [37].  

The 48MHz clock is divided by a factor of 24 and provides a 2 MHz clock that

drives the 12-bit Analog to digital (A/D) hardware. A 100K transistor Altera FPGA 

im

 

 

M  

th as 

shown in Figure 30 and measures approximately 4”x5”x6” and weighs less than 1 lb 

(excluding the battery). The ope  other relevant meta-data (e.g. 

templa

plements a watchdog timer and handles the communication protocols for the PE. A

icroHard Compact-RF provides a 9600 baud data-link between the remote WUs and

e base-station. The entire hardware payload can be packaged in a metallic chassis 

rational code along with

te parameters, threshold values to accept or reject received data, node ID etc.) is 

stored in the non-volatile EEPROM.  A compressed version of the target or template is 

also stored in the EEPROM, which on first boot up is uncompressed and later used to 

compare against received signals to detect the SOI. Figure 31 depicts the functional 

organization of a WU. 

Challenges imposed by hardware design 

While the system and hardware designs satisfy the some of the constraints 

presented earlier, they spawn a set of secondary, yet significant, challenges, which are 

enumerated below: 
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Low quality radio units 

Analog processing of the radio signal impedes high precision measurement.  

Circuit inconsistencies between different radio units, temperature drift, interference, 

varying stray capacitance and inductance etc. all affect phase performance. Since the FRS 

radios were designed primarily as a cost-effective enabler for human-to-human voice 

interactions, their inherent performance metrics while satisfactory for normal voice 

communication are far below the necessary limits for an accurate geolocation system. In 

particular, the radio base-band output contains spurious harmonics, which for normal 

operation are either rejected by the final transduction elements (such as the output 

amplifier and the speaker diaphragm) or simply ignored by the human psycho-auditory 

Figure 32. Effect of errors in measuring time of arrivals from different satellites. The figure on 
the left indicates the "ideal" case when there is no noise in the TOA measurements. The 
receiver's position is computed accurately, as shown by the unique intersection. The figure on 
the right depicts the situation in the presence of timing jitters. The estimate locations are 

or the least means squared fit of the individual intersections. Figure adapted from [DIAMLER]
“spread” around the actual location. The true location must thus be estimated as the centroid 
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system. The radios also exh on application, poor phase 

linearit

ibit, for the current geolocati

y, inadequate base-band performance and inconsistent near-field effects.  

 

Drifting sample rate clocks 

 Each WU has an independent clock, accurate to ±100 PPM [37]. The frequencies 

and/or phases of the clocks on different nodes will generally not align. Also, varying 

environ

rithms must correct for frequency and phase drift when estimating 

the tim f ar

n there are no timing 

errors i e re

d hence the self-positioning accurately computes 

its location. In the adjacent figure, the perceived TOAs are different from the actual times 

of flight, leading to incorrect position estimates as indicated by the misplaced circle. 

Similar effects are observed when trying to triangulate the location of the target emitter 

form the TOA estimates from the different WU locations (remote-positioning).  

 

mental and operating conditions, such as ambient temperature, operating voltage, 

age etc., will influence the operating frequency and contribute to phase and frequency 

drifts. The TOA algo

e o rival. Figure 32 illustrate the effects of timing errors for a GPS receiver 

(self-positioning). The left half of Figure 32 depicts the case whe

n th ceiver. The TOAs or, equivalently, the times of flight from the different 

space vehicles are measured correctly an
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Lack of common global clock 

To ensure usability, the TOA estimates from each unit must be referenced against 

a common time. Since the WUs are geographically separated and cannot synchronize 

frequently or effectively using the RF network, they are coerced to use a local clock 

correction algorithm. The only available “global clock” is the GPS 1-PPS, specified 

accurate to ±100 ns. The GPS based synchronization achieves several aims concurrently:  

1. Being a passive method of synchronization, the number of messages 

between participating nodes is reduced thus providing greater stealth and savings in 

transmission power.  

2. In most cases, it also improves the area coverage as the nodes needn’t be 

in line of sight (LOS) and within each other’s transmission radius.  

3. The spread spectrum encoding of the GPS signal also affords some level 

of security against malicious jamming.  
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However, PPS signals received by WASP units (WUs) in geographically distinct 

areas may contain jitters. These timing jitters may arise due to several factors including 

atmospheric effects (such as varying ionospheric charged particle densities) or echoes or 

obstructions in the GPS signal path. Moreover, the GPS devices themselves possess some 

tolerances that may introduce significant errors. Also, some GPS devices create time 

glitches when they switch between satellite clusters. Some are unable to keep a time lock 

with fewer then three satellites i

inter-pulse durations (

n view. Some consider their serial output a “low priority” 

Figure 33 Comparing the jitter) in PPS pulse trains from two different GPS 
Notice the visual non-conformity of the two pulse trains. The two nodes were situated withinunits.  5 

feet of each other and were allowed to build a PPS pulse history for 60 seconds. To build the history, 
es, 

 
nd, 

each node counts the number of high-resolution clock ticks (48 MHz) between consecutive PPS puls
i.e. it counts the length each inter-pulse interval (IPI) in terms of clock ticks. The first order difference
of these inter-pulse intervals provides a measure of the deviation in the observed duration of a seco
and is plotted above for each node. 

 85



One PPS clock train

Reference Edge
Observed Edges Zone of Uncertainity

Figure 34. Schematic of PPS jitter. The actual edge occurs within an interval of uncertainty around 
the expected time. Since the length of a second is measured by the "distance" between two 
consecutive low-to-high edges, the duration of a second appears to change between consecutive 
measurements. The jitter correction algorithm aims to reduce the effects of these timing artifacts 
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task and can delay time code outputs by randomly varying amounts if they are busy 

computing. Figure 33 illustrates the jitter in the PPS trains of two co-located GPS 

devices. Note the mismatch between the crests and troughs for the two devices.  

nce the 

WASP

e the randomness of the 

edge is caused by a variety of reasons, the central limit theorem may be invoked to model 

the overall distribution of the clock jitter as Gaussian. Figure 35 shows experimental data 

corroborating this assumption.  

While most COTS GPS devices, such as the Trimble Lassen SQ, have tolerances 

of few 100s of nano-seconds, for the current application these are prohibitive. Si

 units use radio signals that travel at the speed of light (~ 3 x 108 m/s) every nano-

second of error in the TOA estimate corresponds to roughly a foot of uncertainty in the 

position estimate of the source. Consequently, the device tolerance may add potentially 

250 feet (~80m) of uncertainty in the final position estimate. Figure 34 shows the effect 

of clock jitter: the actual clock edge happens not at the expected instant in time, but 

within some region of uncertainty around the expected edge. Sinc
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Figure 35. Histogram of differences between consecutive IPIs measured in high-resolution (48 MHz) 
clock ticks. A Gaussian curve (solid line) is superimposed over the histogram data to highlight the 
similarity of the two distributions. The above data suggests that the PPS variation is ±150 ns 

 

Moreover, the local clocks at different nodes generally start at different times and 

thus have an inherent of rifts, leading to varying 

operati

 

fset. They also suffer from thermal d

ng frequencies depending on environmental conditions. While there are methods 

for reducing thermal drifts (e.g. by using a temperature controlled environment for the 

crystal oscillator) and GPS jitters (better GPS receivers and antennas, differential GPS 

etc.) the SWPC constraints preclude the use of any such means.   
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LMS 1 PPS
atorEstim
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Radio IF

Average

Phase Locked
Loop (Demod)

Gross Signal
Location

Sample Rate
Correction

Generalized Cross-
correlator

Xcorr Peak detector Global Clock
correction TOA Est.

Corrected GPS

Figure 36. Block diagram of the signal processing architecture on a WASP unit. The design is 
motivated by physical/ operational constraints and the challenges imposed by the hardware platform. 
The GPS one pulse-per-second history is used to account for long-term drifts in the node sampling 
clocks, while the short term stability of the clocks is used to correct GPS jitters and refine the final 
TOA estimates. Demodulation in software eliminates errors introduced by the analog demodulation 
circuitry of the radio.  

 

Signal processing system architecture 

Figure 36 shows the schematic of the signal processing architecture designed for 

addressing the challenges recognized in the foregoing text. Digital processing removes 

many of the variables that impact radio phase performance. Ideally, a fully digital radio 

could be employed, but the size, weight, power and cost (SWPC) parameters prohibit this 

approach. Instead, we compromise and sample the intermediate frequency of the FRS 

radios.  The IF is a 450 KHz FM signal, with a 25 KHz channel bandwidth, sampled at 2 
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MHz. A narrowband filter is applied to the IF. Demodulation is performed using a 

software based phase-locked loop.   

 

Template Freq /Time dilation correction

Oscillator/ Clock

Divide by 24

Filtering + Sampling Block correlate

Threshold

GCC

FRS receiver

Discard / Process

P(n) f (t)

S(n)

τ

1

48 MHz ± δ

48 MHz ± δ

2 MHz ± δ/24

D = 128

S

n̂τD = 128

P1(n)
1(n)

Gross Signal Location

constitute the GSL block. Both the received signal and the template are filtered using a poly-phase 

in a signal stream sampled at approximately 15 KHz. If the output of the GSL block is greater than a 
heuristically chosen threshold, then the subsequent blocks are activated, else, the results are 
discarded and the node continues the radio-channel monitoring operation.  

 

Once the IF data has been demodulated, it is subjected to a multi-resolution 

search. Decimated, low resolution versions of the sampled signal and the template (SOI) 

block. A search for the SOI using a frame based correlator is performed at this lower 

resolution. The ef

 

Figure 37. Filtering and downsampling in the GSL block. The elements enclosed by the dashed lines 

filter to prevent aliasing. The filtered signals are then down-sampled by a factor (D) of 128, resulting 

are created using an anti-aliasing polyphase filter in the Gross Signal Location (GSL) 

fective sampling rate at this juncture is approximately 15 KHz. The 

signal decimation reduces the number of samples that must be processed to detect the 

occurrence of the SOI, effectively decreasing the computational effort and time required 

to search for the SOI. This is beneficial in terms of throughput and power-consumption. 
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Figure 37 highlights the operation of the GSL block and shows its interaction with 

subsequent stages. A detailed discussion of the multi-resolution approach is presented in 

chapter III.  

The frame or block correlator essentially factors the signal stream to be searched 

into multiple overlapping blocks. Each block is correlated with the template and the 

maximum for the correlation function is compared against a heuristically selected 

threshold. If the value of the maximum is above the threshold, the template is said to have 

been detected and the following processing blocks are enabled. Figure 38 illustrates the 

block correlation operation.  

After the SOI has been detected at the lowest resolution, the estimate is refined by 

a high-resolution cross correlation operation in the generalized cross correlation (GCC) 

When using a block or frame based approach, the SOI may be spread over two 

adjacent blocks, leading to “partial matches” with the template. For low SNRs or high 

rejection thresholds, it is possible that one or more occurrences of the SOI may be 

missed. The simplest technique for avoiding this is to over-lap a significant section of the 

subsequent blocks. This automatically brings up a trade-off between accuracy and 

computational efficiency: the greater the over-lap, the better the chances of not missing a 

feature, at a greater computational cost. The extent of the over-lap is chosen heuristically; 

it is generally between a quarter to 3 quarters of the window length. For the low-

resolution search, an over-lap of one half the window length was found to be adequate, 

while for the high resolution GCC operation, the overlap was set at three-fourths the 

window length.   
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block. The GCC block estimates the cross-correlation of the detected section against a 

version of the template sampled at a higher resolution (2 MHz). The peak detector 

determines the location of the cross-correlation maxima and interpolates the cross 

correlation curve, using a quadratic polynomial fit, to determine precise location of the 

maximum. Using the knowledge of the current time (as provided by the GPS receiver) 

and current operating frequency the refined peak location is translated into a time of 

arrival (TOA) estimate. These estimates may be communicated immediately to the 

remote base-station or stored on board until requested.  

 

As explained earlier, the Lassen SQ GPS receiver provides a 1 Hz 

synchronization sequence called the pulse-per-second or the PPS. A free running 32-bit 

counter counts the number of system clock ticks (48 MHz) between each subsequent low 

to high transition of the PPS train. At each low-to-high transition of the PPS, the counter 

value is appended to a history list of counter counts. Since the counter length is finite, it 

w  

history of counter counts is subject to an LMS regression analysis to eliminate the effects 

of GPS

raps around approximately every 80 seconds. Once corrected for wrap-arounds, the

 jitter. The LMS fit produces a jitter compensated estimate of the actual time of 

arrival of the last PPS pulse. The current operating frequency of the node is also obtained 

as a by-product of the LMS fit. The PPS correction technique is developed and analyzed 

in greater detail in chapter III. 
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The software radio functions of filtering and demodulation are standard DSP 

operations and will not be discussed further here.  We concentrate instead on the 

processing and implementation of t

Generalized Cross Correlation (GCC) [38], and Sample Rate Corrections (SRC) blocks.  

 

he PPS correction, Gross Signal Location (GSL), 

x

x

x

x

x

x

x

sampled signal

xcorr

SOI detected

SOI detected

templateoverlapping blocks

Figure 38. Schematic of block correlation algorithm. The downsampled signal stream is divided 

magnitude of the cross-correlation peak is 
into overlapping blocks. Each block is then cross-correlated with the downsampled template. If the 

greater than a specified threshold, the SOI is considered 
found  
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Generalized Cross Correlation (GCC) 

Cross-correlation or matched filtering is widely accepted as the best method for 

detecting the p ence

correla matically expressed as  

res  of a signal stream corrupted by additive Gaussian noise. The cross 

tion of a signal x(t) with another signal y(t) is mathe

∫
∞

∞−

τ  

r equivalently in the causal form as  

+= * ττ  (1) = dttytxyxRxy )()()()(

o

∫
∞

∞−

where the * indicates complex conjugation. For causal discrete time sequences of 

length N, the correlation may be expressed as  

12

0

N

n

 when x(t) = y(t)) [39], [40] 

 (4) 

where N denotes the lengths of the two sequences. For discrete, finite length 

signals, the correlation may be computed efficiently in the frequency domain using FFTs:  

• Zero pad each signal to the correct length (2N-1)  

−= dttytxRxy )()()( * ττ  (2) 

∑ −= * ][][][xy nymnxmR  (3) 

When y(t) is a scaled and delayed version of x(t) corrupted by additive Gaussian 

noise, the correlation function is maximum when the argument τ is equal to the delay. 

The cross correlation may also be computed in the frequency domain via the cross-

correlation property of the Fourier transform (also known as the Wiener-Khinchin 

−

=

theorem

∑
−

=

=
12

0

/2* ][][][
N

k

Nknj
xy ekYkXnR π
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• Compute forward transforms of each signal using the FFT in 

O(NlogN) steps 

• Evaluate the conjugate product, also called as the cross-spectral 

density (CSD), of the two sequences in O(N) steps 

• Inverse transform the CSD to produce the desired correlation 

sequence in O(NlogN) steps 

 

While this is very convenient for record lengths of up to 214, for longer records 

computing the FFT on embedded resource constrained systems is currently expensive. 

The template on each WU at the highest resolution is roughly 400,000 (~219) samples 

long. Since each sample is represented by a 32-bit floating point value, processing such a 

long record entails processing over mega-bytes of data. Moreover, the added record 

leng est 

obv or 

the each record, we may simply use the estimate the spectrum computed for a convenient 

length [49]. Welch’s [41] method of modified periodograms offers an efficient solution.  

 

th only affords greater resolution in frequency; the narrow bandwidths of inter

iate the need for this extra resolution. Instead of evaluating the spectrum directly f
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Consider the signal stream presented in Figure 39. Similar to the block correlation 

method, Welch’s method of modified periodograms splits each N-sample long data 

stream into overlapping blocks of size L. The cross spectral densities for each of these 

blocks are computed and the final estimate is obtained by averaging the individual CSDs. 

Consequently, the CSD of the two N sample long sequences is estimated using just 

2*N/L complex FFT computations. The inverse Fourier transform the CSD then 

estimates the cross-correlation of the two sequences, as per the Wiener-Khinchin theorem 

[40].  
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Figure 39. Cross-correlation via Welch’s method of spectrum estimation. The two high-
resolution signal streams to be cross-correlated are factored into pairs of overlapping blocks 
of equal length. The cross spectral density (CSD) for corresponding blocks is computed in 

), and the true cross-correlation is estimated as the 
average of the individual CSDs  
the frequency domain (using FFTs
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Choosing the right window for estimating the PSD using Welch’s method 

A finite length fourier transform of a discrete time signal may be viewed as the 

least squares projection of that signal vector on to the space spanned a group of complex 

exponentials. If the signal vector has a length N, i.e. it has N discrete samples for a given 

period of time, T, then the Fourier transform is the LMS projection on to a space spanned 

by N complex exponentials. For real-world signals, this may be reduced to a space of N/2 

complex exponentials. If the signal contains finite singularities, the fourier transform 

converges to the mean of the function.  

Because complex exponentials have infinite support and are periodic, the discrete 

Fourier transform is also periodic. The Fourier coefficients may thus also be viewed as 

Fourier series coefficients of a periodic signals constructed by repeating the N samples of 

the given discrete signal [39], [55]. 

Typically the extremities of a finite-support real-world signal are dissimilar. This 

is more so for a finite window from a discrete time signal stream. Since the Fourier 

transform tries to represent discontinuities with a large number of higher frequency 

components, the discontinuity due to windowing adds higher-frequency components to 

the original signal. These spurious higher-frequency components are not part of the 

original signal and may be viewed as windowing artifacts. If a shaping window, such as a 

hanning window, is used, these artifacts may be reduced. The DCT is widely used in the 

field of image compaction for similar reasons. Its application, however, to the current 

problem is rather cumbersome. Hence we employ a shaping window such as the Hanning 
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window to estimate the power spec o, experimental results have shown 

that the use of a Hanning window in spectral estimation produces acceptable results [49] 

tral density. Als
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APPENDIX B 

Justific tion for compensating demodulated base-bana d data instead of original FM signal 

Let the continuous time base-band modulating signal be represented by m(t). The 

frequency modulated carrier wave is then given by  

ktAts θω

where A is the carrier amplitude, ωc is the carrier angular frequency, θ is the 

default carrier phase, kf is the modulation index (between 0 and 1). Since the FM signal is 

heterodyned prior to demodulation, the carrier may

intermediate frequency wit

2 respectively. i.e. for i =1,2, we have 

 knTAns θω  (2) 

 (3) 

emodulating FM signal sampled at fs1. 

Suppose we have a method to reliably demodulate s1[n] at fs1 to recover M[n], 

where 

 ))( dm ττ  (1) cos()(
0
∫++=
t

fc

 be assumed to be at the heterodyned 

hout loss of generality.  

 

Let s(t) be sampled independently to generate two sampled sequences s1[n], s2[n] 

sampled at fs1 = 1/Ts1, fs2 = 1/Ts

 

))( dm ττcos(][
1

0
11 ∫++=

snT

fsc

))(cos(][
2

0
22 ∫++=

snT

fsc dmknTAns ττθω 

D
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  (4) 

from which, m[n] can be recovered as  

 

∫=
1
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snT

f dmknM ττ
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nnm −−
=  (5) 
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hich is just m(t) sampled with a sampling period of Ts1. 

 

e now want to apply the same modulation technique to 

 s2[n] in terms of s1[n].  

 

 

w

W s2[n]. To do so, we must 

express

))(cos(][ 22 nTsAns φ=  (8) 

where 
0

2 )()( fsc dmknTnTs ττθωφ . Now to express phi in terms of nTs1, 

we denote ∆= Ts2 – Ts1, which gives 

 (9) 
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Changing the variable of integration in the above equation to u, such that, when 

τ=nTs , u = nTs , and when τ=0, u = 0. Thus 
2s

s
Τ
Τ du

Ts
Ts

1
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Thus,  

  (14) 

and ( eqn no for m[n]), this on passing through our demodulation technique will 

generate the output,  
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ω
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Which is clearly the original base-band data sampled at Fs2 scaled by α and DC-level-

shifted by 
fk
cωα )1( − .  Thus the effects of RTC due to disparate sampling frequencies 

ecause this permits the correction to be affected by shifting only a small number of 

may be compensating by treating the base-band data directly. This is advantageous 

b

frequency components in the Fourier domain for the base-band data. 
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APPENDIX C 

C Function implementation of Doppler shift approximation.  

e complex sinusoid to effect a 
equen e variable fOut. The fairly 

 be easily exploited by a VLIW 

oid * fOut, FLOAT_TYPE *fX, 
T_TYPE fSamplingFreq) 

ndex; 

or(n < nSize; ++nIndex, 
Thet

 

C Function implementation of the time-shift approximation. 

The input data vector is modulated with the appropriat
ata is returned in thfr cy shift. The output complex d

decoupled nat
ompile

ure of the correction technique can
c r.   
 
v ApplyDoppler(FLOAT_TYPE

fWd, int nSize, FLOAFLOAT_TYPE 
{ 
 int n

FLOAT_TYPE fTheta = 0; 
I

 
f Index = fTheta = 0; nIndex 

a+=fWd/fSamplingFreq) f
 { 

  fOut[2*nIndex] = fX[nIndex],  
  fOut[2*nIndex+1] = -(fX[nIndex] * fTheta);

}  
} 
 

 

ep 

 //The 

the nth-

//fFreqTemplate : sampling frequency of the template 
mpling frequency of the signal 

Glob s: 
turned in this 

lock 
//working_buf : scratch pad area. Allocated and initialized during WASP 

t start-up initialization 
//fft_return_buf: scratch pad area where results of large_fft are stored 

 //LOW_BIN_OF_INTEREST: FFT bin corresponding to smallest significant 
frequency in base-band data 

The input to the function is the current data block being processed, x,  the current st
number, nStep,  the sampling frequency of the data, fFreqSignal, and the sampling 
frequency of the template, fFreqTemplate. 
 

//Parameters: 
 //x : the current block of the radio data to be operated on. 
template (target) is loaded from EEPROM 
 //nStep : the current step number through the input stream. (
step) 
 
 //fFreqSignal : sa
 
// al

he frequency corrected CSD for the nth Step is re //Gxy: t
lobal memory bg
 
niu
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 //HIGH_BIN_OF_INTEREST: FFT bin corresponding to largest significant 
frequency in base-band data 
 //TargetFftBins : matrix of precomputed FFT blocks of the template 
  
 
void gcc_step_template(float *x, int nStep, float fFreqTemplate, float 

 

 int nLengthStep = FFT_SIZE;  
Imag; 

  
(float));    

t_bins) 

 
 
 

 

 T;  
  

    

 mag = -2.0 * M_PI * i/(float)FFT_SIZE * fFreqSignal * 
fTd ; 

Targ
 ectionImag + 
TargetFftBins[nStep][2*i + 1]; //(aw + b) 

 ltiplying... the 
conjugation is on the signal (x) as desired: KG 

( fft_return_buf[2*i]*fCorrectionReal + 
ctionImag);  

    
 
 if(nStep == 0) { 

 

 

fFreqSignal) 
{ 

int i; 
 float fDELTA_T, fScale, fTd; 
 float ; //these need values from some place 

 float fCorrectionReal, fCorrection

 memcpy(working_buf,x,FFT_SIZE*sizeof
    large_fft(working_buf, hanning_window, FFT_SIZE); // Take complex FFT 
 //max = NUM_TARG_BLOCKS; 
 if(nStep >= num_target_ff
 { 
  return; 

} 
 

 fScale = fFreqTemplate / fFreqSignal;  
 fDELTA_T = (1/fFreqTemplate - 1/fFreqSignal); 

 //td = (s*i + 0.5) * BLOCK_SIZE * DELTA_T;     
   //matlab equivalent 

fTd = (fScale * (float)nStep + 0.5) * nLengthStep * fDELTA_

 
 for(i=LOW_BIN_OF_INTEREST; i < HIGH_BIN_OF_INTEREST; i++) 

{ 
  //computing Xy2 = Yy.*conj(Xx); 
  fCorrectionReal = 1; 

 fCorrectionI

 
  //(a + ib) * (1 + iw) = (a-bw) + i(aw + b) 
  //fCorectionReal = (a-bw) ; fCorrectionImag = (aw + b) 
  fCorrectionReal = TargetFftBins[nStep][2*i] - fCorrectionImag * 

etFftBins[nStep][2*i+1]; //(a - bw) 
 fCorrectionImag = TargetFftBins[nStep][2*i] * fCorr

 
 //conjugate is taken into account when mu

  Gxy[2*i]   += 
fft_return_buf[2*i+1]*fCorre
  Gxy[2*i+1] += ( fft_return_buf[2*i]*fCorrectionImag - 
fft_return_buf[2*i+1]*fCorrectionReal); 

} 

  memcpy(gcc_x_Debug, x, FFT_SIZE*sizeof(float));  
  memcpy(GxyDebug, Gxy, FFT_SIZE*2*sizeof(float));  

} 
 
} 
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