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Abstract

Businesses today are moving their infrastructure to the cloud environment to reduce their
IT budgets and improve compliance to regulatory control. By using the cloud, industries
also aim to deploy and deliver new applications and services rapidly with the ability to
scale their applications horizontally and vertically to meet customer demands. Despite
these trends, reliance on old school IT management and administration has left a legacy
of poor manageability and inflexible infrastructure. In this realm, the DevOps community
has made available various tools for deployment, management, and orchestration of
complex, distributed cloud applications. Despite these modern trends, the continued
reliance on old school IT management and administration methods have left a majority of
developers lacking with the domain expertise to create, provision and manage complex
IT environments using abstracted, script-centric approaches provided by DevOps tools.
To address these challenges while emphasizing vendor-agnostic approaches for broader
applicability, we present a model-driven generative approach that is compliant with the
TOSCA specification where the users can model their business-relevant models, requiring
only little domain expertise. In this context, the paper describes the metamodel of the
domain-specific language that abstracts the business-relevant application requirements
to generate the corresponding fully deployable infrastructure-as-code solutions, which
can deploy, run, and manage the applications in the cloud environment. Our work is
focused on realizing a high-performance deployment and management platform for cloud
applications with an emphasis on extensibility, (re)usability, and scalability. We validate
our approach by a prototypical application model and present a user study to evaluate its
relevance.
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1 INTRODUCTION

Cloud Computing is revolutionizing the IT industries by accruing the benefits of agility,
scalability, flexibility and ubiquitous computing via a pay-as-you-go utility pricing model.
More and more organizations, as well as scientific research and academic communities, are
moving towards virtualized cloud environments to host their infrastructure at a low cost
with self-service capabilities. Platform-as-a-Service(PaaS) allows application developers to
deploy their applications or services on top of Infrastructure-as-a-Service(IaaS) provided
by cloud infrastructure providers [1]. PaaS, the cloud utility model, enables deployment
and provisioning for the applications in the homogeneous or heterogeneous cloud envi-
ronment, and enables the applications to elastically scale horizontally and vertically as
business requirements change with a pay-per-use cost structure as per the Service-level-
Agreement(SLA). It reduces the management complexities from the application developers
by abstracting the intriguing details of infrastructure management specifications [2].

Self-service application deployment and management platform is critical for modern
cloud-based applications to aid their developers in improved time-to-market. Nevertheless,
outages and delays caused by manual changes to configurations, release integration and
handoff issues pose significant challenges in this regard. Moreover, modern composite
applications depend on component-based modular architectures. The features of the busi-
ness application’s components is combined and orchestrated into a composite application
to provide a higher level of functionality. Components typically are connected to other
components, e.g., the Web server component runs on an operating system or an application
connects to a database and external services such as Apache Spark [3]. Each component
of such composite applications can be hosted on different cloud providers depending on
the services provided by that cloud provider and their cost. In such scenarios, the different
application components need to deployed and configured in a cloud platform-agnostic
way to provide elasticity, scalability, interoperability, and portability. Platform-as-a-
Service(PaaS), the cloud utility model, needs to guarantee that the applications will
elastically scale horizontally and vertically as business requirements change as per the
Service-level-Agreement(SLA) [4, 5, 6, 7].

Designing a full-blown deployment model for these composite applications is a time-
consuming and error-prone process, and requires the verification of the management plan
to justify its validity and reachability. Thus, self-service application provisioning requires
extensive planning to run smoothly. Presently, the DevOps community provides tools, such
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as Puppet1, Ansible2, Chef3, etc. to seamlessly automate the deployment and management
tasks for complex, distributed cloud applications. Despite the benefits accrued from these
technologies [8, 9], there remain two key unresolved challenges described below, and
addressing these problems is the focus of this paper.

Challenge 1: Complexities in Automated Deployment of Composite Ap-
plications in Cloud environment: Deployment and continuous delivery of multi-tier,
multi-service, and multi-node composite applications pose inherent challenges because
of their complexity. Although DevOps tools preclude the need to manually install the
individual software components on each machine, configure them and accelerate the
application delivery process, developers must possess domain expertise to use the tools.
Cloud application deployment and migration workflow includes setting up orchestration
tools and creating provisioning environments in a script-centric way to perform a series of
automation tasks. Existing provisioning and integration tools need complete topologies
by specifying all requirements and functionalities of the components, the order in which
the management operations of the component must be invoked, and the relationship
between the components. These tools can be prone to vendor lock-in if not configured
correctly by acquiring the details of services, functionalities and management features
offered by providers to be captured. Further, the pre-deployment validation to satisfy
all the end-user requirements and software dependencies is out of scope for these cloud
automation approaches. Exploiting pre-configured virtual machines images make the
deployment faster, but this method sacrifices the flexibility and agility of the application.

Challenge 2: Complexities in Automated Migration of Application Com-
ponents in Cloud environment: Application components should be able to migrate
between cloud providers to derive the benefit of best services along with optimal pric-
ing [10, 11]. Moreover, for continuous delivery, application components need to the added
or migrated between virtual machines or hosts. However, issues such as the application
drivers’ compatibility with the operating system and their versions, data formatting issues,
and inadequately addressed standardization of service definitions among multiple cloud
providers, make it tedious and error-prone for component migration, and can even lead to
application unavailability. Moreover, for the migration of components, the administrator
has to rewrite different plans for each different cloud providers, and for each deployment
of new applications, the plans must be written from scratch [12] because the components
are not reusable. Migration or addition of components in the DevOps-centric way requires

1https://puppet.com/
2https://www.ansible.com/
3https://www.chef.io/chef/
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domain expertise to define the configurations and to install, and uninstall specific software
packages. Finally, the DevOps-centric approach does not offer pre-migration validation.

Challenge 3: Need to Leverage Vendor-agnostic Standards: The OASIS
standardization body has released the Topology and Orchestration Specification for Cloud
Applications (TOSCA) [13] to enable the creation of portable and interoperable cloud
applications. TOSCA defines a XML-based modeling specification [14] that formalizes
the topology and management tasks of an application in the form of a plans-as-a-service
template and it separates the application from the cloud provider-specific API [7, 15].
Despite the existence of standards, such as TOSCA, there is a general lack of capabilities
to define the plan for generating TOSCA-compliant full-blown deployable models from
the business-relevant model, and launch the application automatically while addressing
the challenges mentioned above.

Solution Approach: To address these challenges, this paper describes a rapid provi-
sioning and scalable platform to deploy and manage cloud applications. We propose a
deployment and management framework that abstracts the application component specifi-
cations and cloud providers specifications into intuitive representations using the principles
of Model-Driven Engineering (MDE) [16]. Our CloudCAMP platform facilitates business
application developers to select application components from a wide range of choices
across hybrid cloud environments. We capture the application component specifications
and cloud specifications in a meta-model and develop a domain-specific modeling language
(DSML) that can transform the business-related design into infrastructure-as-code (in our
case it is Ansible specific). The main contributions of the paper are threefold:

1. Abstraction Layer for Cloud Provider’s specifications and Applications
specifications: We present an extensible meta-model that captures the common-
alities and variabilities in the application type specifications, as well as operating
systems, hardware and cloud providers endpoint specifications. We also capture the
dependencies and intrinsic relationships among application components. Finally,
the metamodel also captures the scaling and replication capabilities.

2. Model-to-Infrastructure-as-code Transformation: We describe how this meta-
model is realized in a DSML to automate the synthesis of a full-blown deployment
model based on DevOps Ansible specifications. It also ensures the order in which
application components should be executed by checking the relationship among the
application elements of the business relevant model. It is integrated with known
constraint checking capabilities to verify the correctness of the model. It can also

Page 4 of 38



TECHNICAL REPORT CloudCAMP

parallelize the deployment and management process to reduce the maintenance time.

3. Concrete implementation and demonstration in WebGME: We implement
our approach in a cloud-based MDE environment called WebGME [17]. The
generative capabilities of our approach are applied as a WebGME plugin which
generates infrastructure code based on TOSCA specifications. These TOSCA-
compliant IAC solutions are executed by our plugin to deploy, (re)start, stop the
application components and manage the application in the cloud environment. The
deployment and management platform is extensible, reusable, and scalable. We
validate our approach in the context of a prototypical implementation and user
study.

Organisation of the paper: This paper is focused primarily on system configuration
design automation for deployment and management of composite applications in the
cloud environment. It assesses the state-of-the-art system configuration design automation
challenges and proposes a novel architecture to solve the configuration automation problem.
The rest of the paper is organized as follows: Section 2 provides an overview of the TOSCA
specification and the DevOps tools and their limitations; Section 3 presents a survey
of existing solutions in literature and compares to our solution; Section 4 describes
the problem formulation; Section 5 presents our approach to design and implement
CloudCAMP for automating TOSCA-compliant deployment plan generation using MDE
environment WebGME and IAC (Ansible) solution; Section 6 evaluates our metamodel
for a prototypical case study and present a user survey; and finally, Section 7 concludes
the paper alluding to future directions.

2 BACKGROUND

A collaborative study by Emerson Network Power and Ponemon Institute showed that
the average expense of data center outage across industries was $8,851 per minute, which
is a significant 57-percent rise from the $5,617 in 2010 [18]. To minimize the maintenance
cost speeding up deployment and management for cloud application is necessary. While
TOSCA leverage interoperability issues among cloud providers, DevOps is an attempt to
make cloud operations run as efficiently the. We now describe DevOps tools and TOSCA
briefly and will explain why the combination of DevOps and TOSCA helps to make
high-performance deployment and management automation tool.
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2.1 DevOps Tools: Significance and Limitations

Automation is the key to tighten the integration and efficient collaboration between
development and operations, and DevOps community is continuously delivering new
approaches, tools, and open-source artifacts to implement such automated processes.
To simplify provisioning, deployment, and management of applications in the cloud
environment, the script-centric DevOps (development & operations) community provides
proprietary toolchains, such as Chef [19], Cfengine [20], Puppet [21], Ansible4, Salt5 and
Juju 6. However, the infrastructure-as-a-code approach needs technical domain expertise
and manual construction of different configuration scripts, recipes (Chef), manifests
(Puppet), charms (Juju), playbooks (Ansible) or modules (Salt) is time-consuming and
not reusable. The burden of describing all the component specification and dependencies
among them is on the developers. Also, pre-deployment validation is not integrated to
check whether deployment will succeed or not and these bottlenecks can cause prolonged
maintenance and deployment issue.

To address these problems, we propose declarative, high-level and intuitive abstractions
on top of the script-centric approaches to save the developer from the complexity and
needed domain expertise. There are a few more criteria such as compatibility with different
clouds and different operating systems and their versions, support for both network and IT
resources, satisfy constraints, and the dependency of the application on software packages
need to be considered.

2.2 Significance and Basics of TOSCA Standardization

The OASIS Topology and Orchestration Specification for Cloud Applications (TOSCA)
[13] is a standardization to enable a portable and automated deployment and management
platform of composite and distributed applications in the cloud environment. TOSCA
modularizes the components of composite applications and their management as topology
templates and dependencies among the application components as relationships. Thus,
TOSCA provides abstract standardization of automated provisioning.

The Node Templates and Relationship Templates collectively define the Topology
Template of a distributed composite application in TOSCA. Node template represents the
application components, and the relationship template defines the relationship between
two nodes. Both nodes and relationships are typed and have a set of type specifications

4https://www.ansible.com/
5https://saltstack.com/
6https://jujucharms.com/
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to provide significance and variability to generic TOSCA elements. The Node type is the
building block of a service, and it defines the implementation artifacts and deployment
artifacts for different software components. Artifacts represent the content needed to
deploy and manage the defined application component [22]. Relationships comprise of
various semantics, such as node A is hosted on node B, or node A connects to node B, and
node A has to be started before node B, etc., that are defined as part of the relationship
type specification.

TOSCA aids application developers and operators to explicitly model management
best practices and recurring tasks into plans to reduce the manual effort. Plans automate
the creation, migration, and termination of the instance of a service. These plans include
several strategies for scaling, deployment, migration, and completion of an application.
TOSCA also enables interoperability and portability of management plans so that a
cloud service can quickly deploy and migrate between different cloud environments. The
plan/workflow combines the sequence of the management operations involving various
nodes and relationships between them. However, deploying and managing services require
extensive – mostly manual – efforts by the end-users. The attributes and parameters
of multiple software node stacks, which is contained with different node templates for
middleware and application layer components, hosted on different servers, need to be
defined and the dependency of the software stacks and the relationship among each other
need to be predefined in the TOSCA topology template.

In contrast to the presented approaches, we have captured the TOSCA specifications for
node and relationship types for the cloud applications in our WebGME based CloudCAMP
metamodel. The templates to model and the specific elements associated with the cloud
applications are handled by the DSL to automatically derive Ansible infrastructure-as-code
solution based on TOSCA standardization from the high-level business compatible models.
Our WebGME plugin then executes this Ansible code for deployment and management of
cloud applications. Our approach allows users to focus primarily on the business-relevant
application components, by simplifying the error-prone and time-consuming creation
process immensely and by minimizing the requisite expertise.

3 RELATED WORK

The problem of deployment and management abstraction has been explored in the area of
cloud automation and orchestration. In this section, we compare the existing efforts in
the literature with our work.
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The script-centric DevOps community provides toolchains for eliminating the discon-
nect between developers and operations providers [23]. However, we need declarative,
high-level modeling abstractions on top of the script-centric tools to provide a self-service
provisioning platform. Cloudify and Apache Brooklyn7 enable cloud application orches-
tration of topology templates according to the TOSCA specification. In this context,
Alien4Cloud [24] proposed a visual way to generate TOSCA topology model, which can be
orchestrated by Apache Brooklyn. However, building the proper topology even using such
an MDE approach combined with the TOSCA specification needs domain expertise. In our
approach, we abstracted all the application, and cloud-specific details in our metamodel
and our DSML converts the business model to TOSCA-compliant Ansible-specific code
using an extensible knowledge base of the application related dependencies.

Cloud orchestration tools like Apache Scalr8, CloudFoundry9, Cloudify10 are excellent
toolchains to deploy and manage applications on any cloud providers. They provide
sophisticated techniques to monitor the health of the application and to migrate between
the cloud providers using standardized approaches. However, they all suffer from the
same limitations of defining the complete deployable model with all the functionalities
and features. The use of these toolchains adds the burden of configuring the application
components and integrating pre-deployment verification on application developers.

To that end, several pattern-based approaches are proposed to reduce the complexity
of designing the deployment of application service [25, 26, 27]. They differentiate between
business logic and the deployment on a platform in service-oriented architectures. Each
pattern offers a set of capabilities, and characteristics. Model-based patterns of proven
solutions in the functional and non-functional properties of application service deployment
in cloud infrastructures [28] is also proposed. MODAClouds (MOdel-Driven Approach
for the design and execution of applications on multiple Clouds) [29, 30] allows users to
design, develop and re-design application components to operate and manage in multi-cloud
environments using a Decision Support System (DSS). In Computation Independent Model
(CIM) design artifacts are semi-automatically translated to Cloud-Provider Independent
Model (CPIM) level, where full deployable abstract cloud model is generated by matching
the application patterns. The abstract deployment model is concretized to Cloud-Provider
Specific Model (CPSM) by domain-specific language. Similar to our approach, they also
support reuse and role-based iterative refinement in a component-based approach. However,

7https://brooklyn.apache.org/
8https://scalr-wiki.atlassian.net/wiki/display/docs/Apache
9https://www.cloudfoundry.org/
10http://getcloudify.org/
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their deployment plan generation lacks verification and extensibility. Unlike our approach,
they also did not consider distributing application components in a heterogeneous cloud
environment.

Several efforts come close to our vision of CloudCAMP. For instance, ConfigAssure [31]
is a requirement solver to synthesize infrastructure configuration in a declarative fashion.
All the requirements are expressed as constraints on the configuration by the developer and
a configuration database containing variables is predefined as a deployment model by the
provider. Kodkod [32] is a relational model finder which takes these arguments as a first-
order logic constraint in the finite domains. Similarly, Fischer et al. [33] proposed a system
called Engage to deploy and manage the complex application from a partial specification
using a constraint-based algorithm. Aeolus Blender [34] is a similar toolchain for automatic
deployment and configuration of applications in the cloud. The toolchain comprises the
configuration optimizer Zephyrus [35], the ad-hoc planner Metis [36] and the deployment
engine Arnomic 11. Zephyrus automatically generates an abstract configuration of the
desired system based on the partial description. It translates the model to MiniZinc,
which is a CSP solver to verify the generated model. Metis concretizes the deployable
model produced by Zephyrus. Arnomic takes the optimized deployable model and deploys
it on the cloud platform. They guarantee to satisfy all the end-user requirements software
dependencies and also provide the optimal solution for the number of active virtual
machines. Unlike our use of knowledge base, these efforts use a CSP solver to transform
the business model. CSP solvers can take significant time to execute, and defining
constraints on the configurations requires expert knowledge of the modeling system.

Hirmer et al. [37] focused on producing complete TOSCA-compliant topology from
users’ partial business relevant topology. The end-users have to specify the requirements
defined directly by the definitions of the corresponding node types or added manually by the
developer for refinement. Their completion engine compares this specification with target
models and adds the missing components to make it a fully deployable model. Finally, the
deployable model can be deployed in the cloud platform, and the service components can
be executed in the right order using OpenTOSCA toolchain [38]. CELAR [39] exercises the
combination of MDE and TOSCA specification to automate deployment cloud applications.
However, their approach to topology completion is fulfilled by requirement and capability
analysis on the node template, whereas our model transformation is based on querying
the knowledge base and idempotent infrastructure code generation.

11http://armonic.readthedocs.org/en/latest/index.html
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4 PROBLEM FORMULATION

In this section we use a real-world use case to motivate the key requirements of our solution
and the challenges incurred in meeting these needs that address the issues highlighted in
Section 1.

4.1 A Motivating Scenario

Our use case example describes a simple business application that is to be deployed on
a cloud platform. It illustrates a PHP-based website application that stores data in a
relational database. The application is hosted on two cloud provider platforms. Figure 1
shows the application topology consisting of a Web front-end and a MySQL database at
the backend. The application consists of two connected software stacks. The left stack
of the desired model hosts the business logic of the frontend. The PHP module is the
front-end, which needs to be hosted on Apache web server. The web server needs to be
deployed on Ubuntu 16.04 server12, which runs as a virtual machine(VM) server. This
Ubuntu VM needs to be managed using an OpenStack [40] cloud platform. The product
data are stored in a database, and the architecture is shown in the right stack of Figure 1.
The backend database runs on MySQL DBMS [41], which needs to be deployed on Ubuntu
14.04 server, which itself will run as a virtual machine(VM) server. This database VM
needs to be managed by AmazonEC2 [42] cloud platform [43].

4.2 Requirement 1: Automating the Completion of Infrastruc-
ture Design Provisioning

As depicted in Figure 1, to start PHP and MySQL-based website, first the virtual machine
should be spawned with Ubuntu operating Systems in the OpenStack and Amazon
AWS cloud platforms, respectively. The PHP module requires Apache httpd server as
a dependency, so Apache needs to be installed and configured along with PHP. On the
backend server, MySQL needs to be installed and configured also. In addition to that, the
web application needs to have PHP Database Connectivity to access the database, so the
required drivers need to be installed. In addition to this complexity, the database service
should start before the PHP application service to run the WebApp properly. Launching
this connection is application-specific because there is no standardized way to describing
how to set such a database endpoint information. Thus, domain knowledge is required to

12http://www.ubuntu.com/
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Figure 1: A full-blown PHP and MySQL based Application deployment workflow based on TOSCA-compliance

provision a simple web application correctly. The script-centric deployment plan creation
and managing all the services in proper order for complex distributed application is tedious
and error-prone and leads to delaying application deployment time.

This motivating scenario illustrates many different platform and technology depen-
dencies as well as the ordering in which application components must be connected and
started. An application developer is unlikely to possess the in-depth technical expertise
needed in deploying such application topologies across potentially a range of variable
platform choices. Thus, there is a need for application developers to be able to model
only the most important parts of the application structure and a tooling mechanism then
transforms an incomplete and abstract business-relevant model to a complete topology as
an infrastructure-as-a-code solution. A full, resulting topology is needed because otherwise
it cannot be fed into an automatic provisioning and orchestration engine because of the
missing components.

As an example of our idea, consider how a developer can only design the Web App as
shown in Figure 2 by specifying business needs and the underlying DSML will transform
it into Figure 1. Thus, the high-level model will simplify the modeling of business-relevant
logic and automatically take care of non-business centric deployment and management
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Figure 2: A WebApp business model

artifacts and relationship types. The key challenges in meeting this requirement are listed
below:

4.2.1 Capturing the Application and Cloud Specifications in the Metamodel

To transform the half-baked model to the full-blown model, we need to capture all the
application and cloud-specific endpoints in our metamodel. The deployment modeling
automation metamodel needs to be developed by harnessing a combination of (1) reverse
engineering, (2) dependency mapping across heterogeneous clouds, (3) dependency map-
ping across different operating systems and their versions, (4) semantic mapping, (5)
business policy, and (6) prototyping. Capturing this variability enriches the expressive
power, multi-cloud tool support and interoperability of the platform. Prototyping and
reverse Engineering can identify the different application, cloud and operating system
specific endpoints. The dependent software packages, their relationship mapping and
configuration templates can be recognized and realized in the metamodel. In this way,
the abstraction necessary to support the application deployment and management can
be determined and clarified. The set of available building blocks, requirements, policies,
SLAs, cost, and other information concerning the implementation of the services and all
other known constraints can be pre-defined in the high-level application metamodel.

4.2.2 Defining a Language for Model Transformation

The domain-specific modeling language must then transform the business model to an
infrastructure-as-a-code solution based on the metamodel and the pre-defined knowledge
base. The transformation should guarantee a semantically and syntactically correct model
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based on TOSCA specifications. It must be able to parallelize the processes to speed
up the entire deployment process. The resulting full-blown models should be usable as
input to an existing provisioning engine, which will execute the model and deploy the
desired application in the cloud environment, by installing all the required packages and
configuration. Finally, all the application services must be started in the right order,
based on the runtime dependencies of each service.

4.3 Requirement 2: Support for Continuous Integration, Mi-
gration, and Delivery

Now suppose that for the use case in Figure 1, the customer wants to execute a management
task to migrate the web front-end to Amazon’s IaaS offering Elastic Compute Cloud (EC2)
with the purpose of shrinking the number of cloud providers. This migration strategy
gives rise to a few issues, such as missing database drivers and missing configurations
of the database service. These problems compromise the application’s functionality and
need to be considered by experts possessing the knowledge to recognize the following
challenges in advance. To migrate the frontend, we have to perform the following steps:
(i) shut down the old virtual machine on OpenStack, (ii) create the new virtual machine
on Amazon EC2, (iii) then install the Apache HTTP server and the other dependencies,
(iv) deploy the PHP based frontend, and (v) set the database’s IP-address, username, and
password in the frontend’s configuration. Moreover, migration can be stateful also, so the
current state of the application needs to be actively replicated in a new VM and then the
old VM will be detached.

If the administrators have to accomplish this migration manually for a complex system,
sheer technical expertise about the different APIs and employed technologies is required.
Moreover, the existing application might be extended, such as adding one database server
or adding analytics tool with the application. Our platform should provide seamless
support for up-gradation and addition of the composite application. Thus, it motivates
the need for a fully automated standardized mechanism to generate perfect plans. So, the
management cost is always a player for IT, and that drives the scenario for model-driven
migration tool for cloud applications [44].

The extended scenario indicates that due to constant changes in business strategies,
the business model is always changing, and hence the platform should be integrated
with smart migration techniques to cope with the speed of business up-gradation and
speed of service delivery. Thus, for providing scaling, load-balancing, fault-tolerance,
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etc. developers might need to move the applications and related VMs from one server to
another server, and might have to add, upgrade resources based on requirements. The
migration path of the application stack from one cloud provider to another is also very
steep because of heterogeneity, proprietary APIs, non-standardized data formats and
different security mechanisms of various cloud providers. Nevertheless, the challenge here
also lies in capturing the application and cloud specifications in the metamodel and the
DSML. However, apart from that, there are few more problems, which are listed below:

4.3.1 Extensibility and Reusability of the Application Components

New application components need to be added at runtime to the existing application
by leveraging the platform. The specifications captured in the metamodel should be
modularized and loosely coupled with a particular application. DSMLs should do all the
binding after querying for the specification for particular application type in the knowledge
base, and then the DSML will generate concrete cloud-specific, operating-system specific
infrastructure-as-a-code solution. The IAC is idempotent, so it will not change the existing
deployment if configured correctly. The correctness of the added application components
can be validated using constraint checker at the model level.

4.3.2 Extensibility of the Platform

The platform can transform the business-relevant model to actionable infrastructure-as-a-
code, which produce application deployments in the cloud. However, the challenge is to
make the platform loosely coupled with any DevOps or orchestrating tool, so that later
different tools can be added if required. Moreover, adding new application requires reverse
engineering the application components, and capturing the application specifications in
the metamodel of our platform, and adding new cloud providers also requires a similar
approach. Defining commonality and variability points is critical to building a modularized
platform so that extensibility of platform will be relatively easy.

To summarize, the goals of our approach can be described along three different
dimensions as follows:

1. The complexity of infrastructure designing is abstracted to a business-relevant model.

2. The overall required manual effort and expertise for modeling is reduced.

3. The approach is TOSCA-complaint, all models are portable, vendor-neutral and
interoperable.
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5 DESIGN & IMPLEMENTATION of CloudCAMP

The CloudCAMP platform is intended to aid the application providers to deploy and
manage their applications with speed and agility using Model-driven Engineering (MDE)
approach. This section delves into the design and implementation of the CloudCAMP
platform showing how it addresses the challenges from Section 4. The complete workflow
of our approach is depicted in Figure. 3.

5.1 Modeling and Deployment Workflow

To better understand the design details of the our visual MDE framework called Cloud-
CAMP, we first briefly describe the user’s perspective and the steps they must take
as shown in the Figure. 3. In this regard, the business application developer models
the application in CloudCAMP. A business application is a compendium of different
application components, which the developer has to select. Moreover, they need to specify
on which type of hosts they want to deploy the application components. These modeling
features in CloudCAMP are dictated by CloudCAMP’s domain-specific modeling language
(DSML), which in turn has an underlying metamodel (which is akin to the grammar
of a programming language) that captures the abstract and concrete syntax of all the
artifacts of interest: cloud infrastructure specifications, application type specifications
and functionalities. A few user-defined specifications, which represent the variability
points for our model, need to be specified by the application developer. Thus, given an
abstract description of a cloud application model as an input, the MDE-based workflow is
responsible for transforming the business model to a deployable infrastructure-as-code
(IAC) solution. Our model transformation code realizes the operational mapping between
the application components, which are selected by the developer and the attributes they
specify. Then the IAC code generation algorithm, which we describe later in this section,
queries the knowledge base and finds all the required dependencies that are needed based
on the selected host type. Finally, CloudCAMP generates the workflow by abiding to
business rules to execute the IAC solutions in the proper order to deploy and run the
business application correctly across cloud providers. For our solution, we will elaborate
the approach to building our CloudCAMP platform on top of WebGME and Ansible.
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Figure 3: The complete workflow of the CloudCAMP approach

5.2 Metamodeling: Capturing the Application and Cloud Spec-
ifications

The CloudCAMP platform aims to ease the design by abstracting the design complexities
by isolating the application from deployment and infrastructure technologies according
to TOSCA specification as described in Requirement 4.2.1. In much the same way that
programming language grammar is specified in the Backus-Naur form, meta-rules for
modeling languages need to be defined. To that end, as the CloudCAMP language
designers, we decided to define the key elements in our language and their relationships.
We decided to offer different node types, which are application components such as
WebApplication, DatabaseApplication, DataAnalyticsApplication, etc., and different
cloud providers such as OpenStack, Amazon, etc. The goal then is to concretize the
abstract node type by matching the application developers’ desired specification with the
pre-defined functionalities captured in the CloudCAMP metamodel. Concretized node
templates will be bound to specific cloud provider types and their VMs and operating
system to create a dependency graph that has to be executed to deploy the application
on the desired target machine.

We used the WebGME (www.webgme.org) MDE framework to define the metamodels
for the CloudCAMP DSML. WebGME is a cloud-based framework that offers an environ-
ment for DSML developers to define their language and create model parsers that among
many other things can serve as generators of code artifacts, in our case Ansible scripts.
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The model parsers can also trigger additional actions, such as executing ansible to deploy
the application according to the model.

Metamodel for the Cloud Platforms: In creating the metamodel for cloud
platforms, we observed (i.e., reverse engineered) the process of hosting applications across
different cloud environments, and captured all the commonalities and variabilities in the
CloudCAMP metamodel. In our metamodel, the specifications for various cloud platforms
(OpenStack, Amazon EC2, and RackSpace) for provisioning virtual machines(VMs) with
different operating systems are captured as the variability. The developer can select
the pre-defined VM flavor, available networks, available images, which are obtained by
querying the specific cloud platform to populate our metamodel. They will be able to
choose their desired operating system images to spawn the VM. They have to specify their
environment file, key for the selected cloud host type, which are the endpoints to bind to
a particular cloud provider. They can also choose a pre-deployed machine by providing
the IP address and operating system and versions. The platform dependent specifications
are captured as shown in Figure 4.

(a) The predefined platform types and
their attributes

(b) The predefined cloud providers with cap-
tured platform specific attributes

Figure 4: The predefined specifications for Deployment Platform

All these specifications is captured in the metamodel as shown in the M1 and M2
level of Figure 5. The figure is defined based on Meta-Object Facility (MOF) standard
provided by Object Management Group (OMG)13.This implies that with this approach,
the application developer can configure the node in defined cloud platform or particular

13http://www.omg.org/
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target system without providing any deployment or implementation artifacts that contain
code or logic.

Figure 5: A part of Meta-Object Facility model of CloudCAMP Platform

Metamodel for Application Component Specifications: The metamodel of
CloudCAMP also captures each application type components. For instance, the 3-tier
application from Section 4, shows different application node types, e.g., web server,
database server. It also shows their attributes, e.g., an Apache web server or MySQL
database. The programming language is also specified, e.g., PHP. Once again, the different
application node types captured in our metamodel are the result of reverse engineering
typical applications that are hosted on the cloud these days. The metamodel has been
designed for extensibility so that in future we can add more application node types, e.g.,
stream processing operators that execute on systems such as Apache Spark or Edgent.

As an example, for deploying LAMP (Linux operating system, the Apache HTTP
Server, the MySQL RDBMS, and the PHP programming language) archetypal model of
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application stacks as shown in the M0 level of FigureFig:mof. We will walk through the
specifications needed to be captured for WebApplication and DBApplication component
types.

As shown in the M0 level of FigureFig:mof, the HTTP servers for the webEngines are
captured in WebApplication component type, and that is related to the node template for
a WebApplication. The development languages and frameworks (Node.js, PHP, Django,
etc.) of the webApplication is taken as attributes in the software property as depicted in
M1 level of Figure 5. Similarly, as shown the M0 level of FigureFig:mof, the software for
the database types are captured in DBApplication component type, and that is related
to the node template for the Database Application. The related features such as the
user id, password, specific binding port number of the Database application are stated as
attributes, which is captured in M1 level of the MOF.

With some existing application component node types defined in our metamodel, the
user can just select their desired node types for deploying the service template. Our
metamodel is extensible and reusable, so the component types can be added as required.

Defining the relationship among Components: There are four relationship
types that bind the node types in the CloudCAMP metamodel. A ‘hostedOn’ relationship
type means the source node type is required to be deployed after the destination node
type, e.g., Webserver is hosted on Ubuntu 16.04.

The ’ConnectsTo’ relationship type is used to relate the source node type’s endpoint
to the required target node type endpoint if they are dependent on each other, e.g., web
server connects to database server. The stack of node types linked by ‘connectsTo’ can be
configured in parallel, but the service at the source node needs to deploy after starting the
target node. The ‘deleteFrom’ connection type defines the source node type is required to
be removed from the end node type. Finally, the ‘migrateTo’ connection type defines the

Figure 6: Captured relationship specifications
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source node type that is to be migrated to the end node type. The ‘migrateTo’ relation
type cannot be defined without a ‘deleteFrom’ connection type to assure correctness of
the business model. The Figure 6 depicts types relationship specifications.

As shown in Figure 2, the DBApplication service should start before PHP based
WebApplication. We have captured these relationship types in our metamodel.

5.3 Creating the Domain Specific Modeling Language (DSML)

As per Requirement 4.2.2, CloudCAMP generates the full blown infrastructure-as-code
(IAC) solution from the abstract business model by incorporating the deployment and
infrastructure specification captured by reverse engineering. According to the TOSCA
specification, node types have associated operations that deliver the automation (e.g. in
the form of an IAC solution) for the application lifecycle operations and deployment of a
node.

For example, the node type has to be hosted on Ubuntu, and the implementation
artifacts for an Apache would associate scripts to TOSCA node operations like configure,
start, or stop to manage the state of Apache at runtime as shown in Figure 1. For
automating the deployment and management workflow, we transform our WebGME
metamodel to deployable Ansible specific IAC solutions.

Generation of Ansible specific Infrastructure-as-code Solution for De-
ployment: The CloudCAMP DSML in WebGME is built using JavaScript, NodeJS, and
a MySQL database. The developer specified the desired cloud specification, Operating
system and version specification, etc. for the host cloud platform type. The source path
of their application code (such as git repository path) and the other specifications based
on the application type needs to be defined.

Once the developer has modeled the application, they choose to execute the model
parser and generator, which is available in WebGME as a plugin. This plugin executes
code that implements Algorithm 1. The algorithm will spawn the VMs in the specified
cloud platforms because it is the destination of ‘HostedOn’ connection. Wherever possible,
CloudCAMP will ensure that scripts specific to VM spawning run in parallel to provide
faster deployment. Once the VMs are spawned, CloudCAMP queries a knowledge base
we have created, which is a MySQL RDBMS, where we created different tables to store
the software dependencies. Based on the operating system type, the packaging tool (apt
for Ubuntu, yum for RHEL) is needed to be selected to install the software.

We predefine the software dependencies in a relational table with a key-value pair,
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and we maintained normalized form with indexing to make the database easier to use and
maintain. The software packages needed for particular application type is also dependent
on operating system, and its version. We maintain primary key and the foreign key
relationship among tables to build robust maintenance structure. Further, based on
the user’s business model specifications, we fire the query in the database table, join
the related tables and fetch the result. Then, we fill the application specific predefined
templates and generate the whole Ansible specific infrastructure code.

Algorithm 1 Ansible Deployment Script Generating algorithm
1: procedure GenerateExecuteAnsible
2: cloudModel← js Objects to store cloud specs
3: appModel← js Objects to store app specs
4: top:
5: if ConectionType `HostedOn' then
6: cloudType← the destination node of connection
7: appType← the source node of connection
8: if cloudType `Desired Cloud Platform' then
9: loop:

10: Traverse the cloudModel
11: Fill `cloudType' speci�c API Template
12: Generate 'cloudType' speci�c ansible script
13: Execute 'cloudType' speci�c ansible script
14: end if
15: IPAddress(es)← IP Address of target machine
16: Create empty Ansible Tree Structure
17: Fill `hosts' with IPAddress(es) in context of Application Component Location
18: if appType `Desired Application Type' then
19: loop:
20: Traverse the appModel
21: Query the dataBase `WHERE appType = `...�
22: Fill `appType' speci�c API Templates to deploy
23: Create complete Ansible Tree Structure
24: end if
25: Check Connection Type among app components
26: Wait_for SSH to be enabled in target machine
27: loop:
28: if ConectionType `ConnectsTo' then
29: Find the source and destination application type
30: Execute the script of destination �rst
31: Execute the script of source after
32: elseRun all scripts in parallel
33: end if
34: end if
35: end procedure

Determining order of deployment and execution: The code execution plugin,
which is a NodeJS script builds the dependency tree for the application types defined
in the metamodel. We generate different Ansible roles for different component types,
and Ansible can dispatch tasks to multiple hosts in parallel. If there is a ‘connectsTo’
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relationship in the model, we add a ‘wait_for’ condition to let the dependent script be
completed first. All the ‘HostedOn’ dependent building blocks run in a linear fashion.
Thus, the Ansible script remotely connects to the deployment hosts and deploys the
application in proper order and runs it successfully. The business user can deploy a
predefined application using our tool without writing a single line of code and without
needing any significant domain expertise. Moreover, the components of the model are
reusable, and the business model can be extended with great ease, which is beneficial for
continuous delivery.

Algorithm 2 Ansible Migration Script Generating algorithm
1: procedure GenerateMigrateAnsible

2: cloudModel← js Objects to store cloud specs
3: appModel← js Objects to store app specs
4: top:
5: if ConectionType `deleteFrom' then
6: cloudType← the destination node of connection
7: appType← the source node of connection
8: loop:
9: Find IP address of the destination node

10: Traverse the appModel
11: Query the dataBase `WHERE appType = `...�
12: Fill `appType' speci�c API Templates for deletion
13: Generate `apptype' speci�c script for deletion
14:

15: end if
16: if ConectionType `migrateTo' then
17: ...//same as GenerateExecuteAnsible of Algo. 1 steps [6-26]
18: end if
19: if migrationType `stateless' then
20: Execute deletion and migration scripts in parallel
21: else if migrationType `stateful' then
22: Instantiate a manager node
23: Generate ansible script to deploy HAProxy on the node
24: Generate ansible script to deploy HAProxy on the node
25: Checkpoint the current state of the old machine
26: Redirect all the new connections to the migrated node
27: Restore checkpoint on the current machine
28: Execute deletion script on old machine
29: Remove HAProxy Loadbalancer
30: end if
31: end procedure

Generation of Ansible-specific Infrastructure-as-code Solution for Migra-
tion: The algorithm for generating the Ansible specific code is briefly portrayed in
Algorithm 2. The ‘deleteTo’ connection type specifies from where the user wants to
move the application components and attach a ‘migrateTo’ connection type to indicate
the destination. The migrationType (stateless or stateful) is also needed to be selected.
Although actions are taken for live migration, an application component from one VM
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to another depends on the application component type, which is a hard problem. For
example, live migration of DBApplication needs two-phase commit protocol, and consensus
algorithm to make it reliable. For the sake of simplicity, in the Algorithm 2 we generalize
our approach. Our future work will consider more complex scenarios of live migration
and application consistency and availability issues.

According to Algorithm 2, it will spawn a new VM with the new operating system for
the ‘migrateTo’ destination node. For Stateful migration, our platform creates a manager
node with a load balancer, and deploy the application on the current node. From that
point of time, load balancer redirects all the new request to the current node, and it
checkpoints the current state of the old node and restores it in the current node. Finally, it
detaches the load balancer node. Thus, it produces the full infrastructure-as-code solution
along with the related configuration files. All of these complete the Ansible layout tree
structure helps to migrate application components from one node to another node.

Constraints checking of Business Model: We also validate the business model
by checking the constraints of the model to ensure that the user specified models are
“correct-by-construction.” We determine the endpoints for application component types,
the relationship types, cloud-specific types, etc., and verify the business model as a whole
before generating any infrastructure code. The example of few constraints are shown
below:

• ∀ Applications ∈ WebApplication ∃! WebEngine

• ∀ Applications ∈ DBApplication ∃! DBEngine

• ∀ Platform ∈ Openstack ∃! imageName

• ∀ Applications ∈ DBApplication ∃! (user ∧ password ∧ port)

• ∀ Applications ∈ DataAnalyticsApp ∃ processEngine etc.

Thus, we validate the business model by satisfying the constraints and alert the user
if there are any discrepancies in their business model.

6 EXPERIMENTATION WITH CASE STUDIES

To synthesize the full blown architecture from the abstract business model, an application
topology by using the WebGME modeler needs to be designed. WebGME offers all
available node types in the left pane, and the user can define the properties as necessary
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in the right pane. Drag and Drop the desired node types in the editor pane, is all the
business developer have to do to design the infrastructure for their application. The
application components need to be linked to specify the order of execution. In this section,
we will discuss three case studies as follow: (1) A single-tier website deployment, (2) A
two-tier application deployment and (3) A data analytics application model deployment.
We will compare the time and effort incurred in deploying two application use-cases using
(a) manual efforts, where the operator must log into each machine and type the commands
to install packages and deploy the applications, (b) manually creating Ansible scripts to
deploy these applications, and (c) using CloudCAMP modeling.

6.1 Case Study 1: A single-tier website deployment

Figure 7 shows an application topology of simple website deployment use case. In the model
scenario, the web application will be deployed on OpenStack VM with the Ubuntu16.04
operating system, and these have a ‘hostedOn’ relationship. The user defined model,
which is a half-baked, i.e., incomplete model is shown in Fig. 7a. The source location of
the website source code (e.g. https://github.com/Anirban2404/simpleChatServer.git) needs
to be mentioned in the business model. The language of the of the source code( e.g.
NodeJS) has to be defined along with the web server software( e.g., NodeJS, Apache
Tomcat, etc.) as shown in Fig. 7b.

(a) The Sample website deployment
model (b) Attributes, which needs to be defined

Figure 7: The Sample Website Deployment model Design

We have captured the WebApplication and OpenStack dependency in the CloudCAMP.
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Given, all the specifications in the business model, our CloudCAMP DSML first spawns a
VM in the OpenStack because it is the end node of the ‘hostedOn’ connection. Then, the
DSML generates the SQL script, and it fetches all the defined software dependencies from
the knowledge base for the web server application type and the language, based on its os
and version. A sample of the SQL script is shown below:

SELECT pkg.pkg_name FROM packages pkg,

swdependency dep

WHERE pkg.app_id = dep.id

AND pkg.apptype = <<LANGUAGE>>

AND pkg.sw_id IN (SELECT app_sw_id

FROM os_dependency WHERE os_id IN

(SELECT id FROM os_pkg_mgr

WHERE Concat(os_type, os_version) =

<<OS>>,<<VERSION>>))

Then, the WebGME plugin generates the Ansible-playbook with all the provisioned
tasks by filling the templates based on the application component type. Moreover, in the
manual effort, we need to configure the files, create the handlers to specify the deployment
order in the desired host, which is also handled by CloudCAMP DSL. Our, NodeJS based
DSL also execute the playbook and deploy the code in proper order for perfect deployment.
Thus, we generate Ansible script, for deployment and configuration of software lifecycle
operations on the target node(s) from the half-baked user model.

6.2 Case Study 2: A two-tier application deployment

Our use case involves a prototypical three-tier Linux, Apache, MySQL, and PHP (LAMP)-
based application deployment. Figure 8 shows an application topology illustrating the
modeling effort in CloudCAMP,14 where the PHP-based web application needs to be
’HostedOn’ on an OpenStack platform on a Ubuntu 16.04 VM, and the database application
needs to be deployed on another OpenStack platform on a Ubuntu 14.04 VM, and these
two tiers must have a ’ConnectsTo’ relationship between them.

As described in section 5.2, we have captured the all the endpoints of applications in
our metamodel and all endpoints of cloud providers in the CloudCAMP metamodel. All
the attributes of define the functionalities of the node type.

14The relationships between the model elements are from the metamodel and are shown on the arcs
joining the elements.
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Figure 8: Sample LAMP Application Model

In addition to the structural model as shown, a use must also supply appropriate
parameters to the different model elements. For instance, for the WebApplication node
type, the language of the source code (e.g., PHP) has to be specified as shown in
Figure 9a along with the web server software to be used (e.g., Apache). Likewise, for
the DBApplication node type, attributes such as database name, location, port, user,
password, etc. need to be specified as shown in Figure 9b along with the database system
used (e.g., MySQL). The WebApplication component type connects to DBApplication
component type, which is a MySQL database as a backend server.

Since we reverse engineer the applications, all endpoints (e.g., IP addresses) and all
the constraints are predefined and specified in the model.

6.2.1 Qualitative Evaluation

The “correct-by-construction” and automation benefits of CloudCAMP are achieved as
follows. Modeling errors are resolved at modeling time via constraint checking. Once the
model is completely specified in CloudCAMP, it then generates Ansible scripts to deploy
and trigger the execution of the application according to the steps outlined in Algorithm 1.
For this case study, first, the VMs will be spawned in the specified OpenStack platforms
based on the user-defined environment variables. The installation and execution ordering
is dictated by the ’hostedOn’ connection.

Once the VMs are spawned, CloudCAMP queries the knowledge base used by the model
transformation logic. The SQL script fetches all the defined software dependencies from the
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(a) (b)

Figure 9: (a) shows the specifications related to WebApplication type and (b) shows the specifications related to DBApplication
type

knowledge base for the web server application type and the specified language based on its
OS and version. Similarly, the SQL query fetches all the software dependencies for database
application type specific to MySQL RDBMS. Then, the model transformation algorithm
reads the template files specific to the functionalities of the application component types
and generates the complete TOSCA-compliant deployable IAC solutions based on Ansible
specification, called Ansible-playbooks. Then, the IP address of the newly spawned VM
is acquired from the destination node type OpenStack platforms and binds it to Ansible
’hosts’ files for the ’HostedOn’ source application type.

The WebApplication component type connects to the DBApplication component type
based on the ’connectsTo’ relationship in the business model. Moreover, CloudCAMP
automatically infers from this relationship that the webserver must wait for the database
server to start first. For those cases that are not constrained by the ’ConnectsTo’ relation-
ship, CloudCAMP ensures that deployment can be executed with maximal parallelism by
leveraging the underlying generated Ansible scripts.

In contrast to CloudCAMP, in a fully manual effort, the user will need to configure
the files, create the handlers to specify the deployment order in the desired host, log
into each host where the application components are deployed and manually install the
packages, configure the software packages and finally start the different components in
the correct order. In the manually created Ansible script case, the user will first incur a
significant learning curve for Ansible and must manually create the different playbooks.
Thereafter we expect that despite improving automation via Ansible, the user will still
incur trial-and-error, which is likely to be amplified for complex deployment scenarios.
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In addition to the advantages of CloudCAMP highlighted above, assume the case
of continuous delivery where a website application provider later wants to attach more
Database servers. For CloudCAMP, it is just a matter of extending the existing business
model with additional DBApplication node type and ’connectsTo’ relationships from
webserver to the database server. CloudCAMP will generate Ansible-specific IAC for
the newly added component and executes it to deploy newly added component without
hampering availability of the existing business application. Thus, CloudCAMP provides
seamless integration of new application component types, which only needs to be linked
to the present application component type. Since Ansible is idempotent, it always sets
the same configuration in the target environment regardless of their current state.

6.2.2 Quantitative Evaluation based on a User Study

We also conducted a user study for case study 1 involving sixteen teams of three students
each for an ongoing Cloud Computing course we are teaching. At the time of writing this
paper, we were only able to measure both the time taken and efforts for a fully manual
effort in deploying the scenario. At the time of the survey, students were being introduced
to Ansible and they realize its strengths, and moreover, the working of CloudCAMP was
also demonstrated in class although they have not yet used the tool.15 The following
questionnaire was created to conduct the survey. For each question, the students were
asked to evaluate on a scale of 1–10 where 1 is easiest and 10 is hardest:

Table 1: Survey Questionnaire: For Q1–Q3, rate on a scale of (1-10), where 1 is easiest, 10 is hardest.

Num Question
Q1 How easy is it to deploy PHPMySQL application manually?
Q2 How easy is it to deploy PHPMySQL using DevOps tool like Ansible?
Q3 How easy is it to deploy PHPMySQL using CloudCAMP?
Q4 How much time and effort did you require to deploy the application manually (in minutes)?
Q5 How much time and effort is required in deploying the application using DevOps tool like Ansible (in

minutes)?
Q6 How much time and effort is required deploying the application using CloudCAMP (in minutes)?
Q7 How likely are you to use the CloudCAMP platform to deploy applications in future?

Responses to Q1 and Q3: Ease of use: As seen from Figure 10, the “ease of use”
rating for the CloudCAMP platform is much higher compared to manual effort. Although
the students have not yet deployed the application via CloudCAMP, they have seen the
in-class demonstration of the tool. The median difficulty in manual effort is rated as 70%,
while the median difficulty rating for CloudCAMP use is 30%. The visual drag and drop

15We expect to complete this user study during the semester and the full set of results will be available
before the camera ready deadline.
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environment helps the users to quickly design and deploy various scenarios of the business
application topology in distributed systems.

Figure 10: Comparing the difficulties to deploy the application in different approach in percentage scale

Responses to Q4 and Q6: Time to complete the whole deployment: The
LAMP stack webservice deployment with the provided source code comprises installing
and configuring PHP, Apache HTTP server, and MySQL RDBMS. The average time
the students took to manually complete the entire deployment process is 171 minutes,
whereas our rough estimates for students using the CloudCAMP-based topology creation
and deployment will be only 15-20 minutes for the first time users.

Response to Q7: As shown in the Figure 11, 57.1% of the respondents agreed to use
CloudCAMP tool to deploy cloud applications in future, whereas 35.7% are still unsure
about using it. We expect the numbers for CloudCAMP to improve once the students
actually use it in their class assignment.

Responses to Q2 and Q5: For these questions, we are still gathering data about
the usability of the DevOps Ansible usability, which is the experiment the students are
currently conducting as part of their second assignment.

Initial results from our user study strengthens our belief that the CloudCAMP platform
that is designed to develop a business model without domain expertise will be a very
resourceful tool for business application developers. It helps the application developer
to build and deploy their application rapidly across multiple cloud providers. In future,
more studies on more complicated scenarios are necessary to substantiate our claims.
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Figure 11: Likeliness of using CloudCAMP for future cloud application deployment

6.2.3 Extended Case Study 2: Application Components Migration for LAMP-
based Web Service

CloudCAMP platform also supports application component migration with ease for
which we have two connection types ’deleteFrom’ and ’migrateTo’. As described in
scenario 4.3, suppose the developer wants to migrate the database application component
from one machine to another machine which resides on different OpenStack platform.
Using the ’deleteTo’ connection type, the business application developer can specify
from where (s)he wants to move the application components and attach a ’migrateTo’
connection type to indicate the destination. The migrationType (stateless or stateful) is
also needed to be selected. CloudCAMP generates a new Ansible tree structure based on
the changed user specifications as described in the Algorithm 2. Accordingly, it will spawn
a new VM with the new operating system and deploy the application with the required
software dependencies, which are fetched from our knowledge base. Then, depending
on the ’migrationType’ specified it will set the migration strategy and thus move the
DBApplication component.

Although we have not conducted a user study for this use case, the benefits of the
automation accrued using CloudCAMP can easily be understood for this use case too
since it is similar to adding a new component, however, in this case we use different
relationships and constraints.
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6.3 Case Study 3: An DataAnalytics Application model deploy-
ment

Figure 12 shows application topology of a simple DataAnalytics application based on big
data processing engine. Here, for the case study scenario, we select scikit-learn machine
learning library16 as our engine. The DataAnalytics App contains scikit-learn in the
nodes, and the users have to mention the source code of the application. The components
of DataAnalyticsApp can communicate between each other as application demands. For
example, one node can run all the data fetching and preprocessing steps and other node
can run all the machine learning algorithms to make sense of the data. The user only
has to drag and drop the predefined element to deploy their topology on a target system
without writing a single line of code.

Figure 12: Sample DataAnalytics Topology Model and Generated sample Ansible Code

As described before, the DSML generates the Ansible playbook which has all the defined
software dependencies. The sample topology is then deployed on the source location as
mentioned by the user, after installing all the dependencies. Now, for visualization of the
analysis result, if the user wants to add Jupyter Notebook later, (s)he can do it just by
connecting the Jupyter node with DataAnalyticsApp. The DSML will then install all the
dependencies for Jupyter17 Notebook and configure the node. Then, the user can access
the Jupyter web application, which allows users to manipulate the code and visualizations
for better analysis of data. Moreover, our tool is extensible, so adding new libraries with
current metamodel is a feasible option, because of our modularized approach.

16http://scikit-learn.org/stable/
17https://jupyter.org/
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As described with the case-studies, the users can create the business models using
our metamodel, and the defined DSML can convert the half-baked user model to a full-
blown Ansible model and deploy it on the desired machine without requiring detailed
domain knowledge. The automation makes the deployment faster and error-free. It
will not only save the time to write hundreds of lines of code, but it will also select
proper software packages, proper package manager and proper configuration files for the
application components. Since WebGME has based a web-based design environment, our
CloudCAMP platform also supports collaboration and model versioning.

7 CONCLUSION

In this paper, we presented a model-based approach for an automated, deployment and
management platform for cloud applications. It aids the business user to model their
application at a higher level of abstraction closer to their domain, and deploy their code
without requiring specific domain expertise and without writing a single line of code. It
helps to save an enormous amount of time in configuring the system and running the
actual business model. CloudCAMP can easily be integrated with existing cloud provider
APIs.

Based on our literature survey, we find some gaps that need to be filled for automatic
transformation of the business-relevant model to IAC solution. First, we need to define
a metamodel for the business user, who can make the model without the need to be a
domain expert. Then, the DSML will then transform the user model to TOSCA-compliant
deployable model in an efficient and will also guarantee the correctness of the model based
on defined constraints found by reverse engineering. The MODACLOUD and Aeolus
project approach is a good solution to reach this goal, but in contrast to our approach
of querying knowledge base, they use CSP solver to transform the business model. On
the other hand, OpenTOSCA approach is TOSCA-compliant, and it fulfilled the node
template by requirement and capability analysis, but it lacks validation of the model and
robustness. We built the metamodel for the CloudCAMP using WebGME, which is a
cloud-based toolkit for creating DSMLs. Through metamodels, we specified the modeling
language for the cloud application domain. In defining the modeling language, we included
all the syntactic and semantic information regarding the application and cloud domain,
which needs to be realized to construct instruction-as-a-code deployable model.

By virtue of using WebGME to develop the CloudCAMP framework, its metamodel(s)
and knowledge base is decoupled from the generative aspects. Thus, although we have
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demonstrated only Ansible-specific code generation from the business model, code genera-
tion for other tools such as Chef or Puppet requires plugging in a tool-specific model parser
and generator. Likewise, both the metamodel(s) and the knowledge base are extensible.
Our future work will involve improving the soundness and robustness of the models using
CSP solvers. We will also add reflection features to our framework so that the dynamic
changes happening at the system level will be reflected back into the design view level
and incremental deployment artifacts can be generated and system changes effected.

CloudCAMP source code is available at https://doc-vu.github.io/DeploymentAutomation.
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