
Institute for Software Integrated Systems
Vanderbilt University

Nashville, Tennessee, 37235

Efficient Simulation of Component-Based Hybrid

Models Represented as Hybrid Bond Graphs

Matthew Daigle, Indranil Roychoudhury,

Gautam Biswas, and Xenofon Koutsoukos

TECHNICAL REPORT

ISIS-06-712



Efficient Simulation of Component-Based Hybrid
Models Represented as Hybrid Bond Graphs

Matthew Daigle, Indranil Roychoudhury, Gautam Biswas, and
Xenofon Koutsoukos

Institute for Software Integrated Systems (ISIS)
Vanderbilt University, Nashville, TN 37235

matthew.j.daigle, indranil.roychoudhury, gautam.biswas,

xenofon.koutsoukos@vanderbilt.edu

Abstract. The complexity of modern embedded systems often requires
the use of simulations for systematic design, analysis, and verification
tasks. The nonlinear and hybrid nature of these systems make the build-
ing of accurate and computationally efficient simulation models very
challenging. In this work, we adopt the Hybrid Bond Graph (HBG) par-
adigm, a uniform, multi-domain physics-based modeling language with
local switching functions that enable the reconfiguration of energy flow
paths to model hybrid systems. The inherent causal structure in HBG
models is exploited to derive efficient hybrid simulation models as re-
configurable block diagram structures. We demonstrate our approach by
modeling and analyzing the behavior of an electrical power system.

1 Introduction

Modern engineering systems are complex and made up of a large number of in-
teracting components with nonlinear hybrid behaviors. This makes the building
of accurate and computationally efficient simulation models a very challeng-
ing task. Recently, researchers and practitioners have adopted component- [1]
and actor-oriented [2] frameworks for systematic construction of large models
of complex systems. Such frameworks consist of mathematical models for spec-
ifying individual component behavior and formal models of computation for
defining component interactions. Simulation models are derived by representing
the component behavior models as computational blocks, and the interaction
models define the syntax and semantics of the connections between the blocks.

We have adopted the Hybrid Bond Graph (HBG) paradigm [3], an extension
of the Bond Graph (BG) modeling language [4], for component-based modeling
of embedded systems. It is a domain-independent topological modeling language
that captures interactions among the different processes that make up the system
and can be very effective in parameterized component-based modeling of hybrid
systems. The challenge we face is in translating these models to computationally
efficient simulation models.

The causal structure inherent in BG models provides the basis for conversion
of BGs to efficient computational models. For HBGs, mode changes imply dy-
namic changes in the causal structure, and this alters the computational model



during execution. This paper develops a method for efficient simulation of HBG
models by converting them to block diagram models, extending the procedure
for BGs [4]. Run-time changes are handled by reconfiguring the data flow paths
within the blocks of the model. We demonstrate the technique by creating a
computational model of an electrical power system in Matlab Simulink [5].

Related Work In our approach, hybrid behavior is implemented through ide-
alized configuration changes, resulting in verifiable physically correct models [3].
Structurally, connections remain intact but the components’ internal computa-
tions change form and the interpretation of their inputs and outputs changes
in order to maintain a consistent computational structure. Other work in re-
configurable hybrid systems includes SHIFT [6] and R-Charon [7]. SHIFT can
simulate dynamic networks of hybrid automata by allowing dynamic creation and
destruction of components and their connections. R-Charon supports reconfigu-
ration as well, based on formal definitions of syntax and operational semantics
in Charon [8]. In contrast, our approach is based on the formal physical systems
modeling semantics of HBGs. Existing approaches to simulation (e.g., in Dy-
mola [9]) of switching behavior in BGs, such as [10, 11], do not perform on-line
reconfiguration, thus must know switching behavior a priori to pre-enumerate
possible modes, or do not exploit causality. Unlike these approaches, our ap-
proach does not assume any such a priori knowledge. We avoid pre-enumeration
of system modes because of the formal basis in energy-based physical systems
modeling, allowing for a systematic procedure to derive the computational struc-
ture of a new mode with knowledge of local switching behavior.

2 Modeling Complex Embedded Systems

A system is a collection of connected components where each component is de-
fined by an internal behavior model and an interface through which the compo-
nent interacts with other components and the environment. In our work, com-
ponents are physical processes with hybrid behaviors. Component interfaces are
defined by (i) energy ports for energy transfer, and (ii) signal ports for non-energy
related information transfer. Component connections include energy and signal
links. We model components as HBG fragments that contain BG elements, mod-
ulating functions, and control specifications. We briefly describe these constructs
next. Details of the modeling paradigm are presented in [12].

BGs are domain-independent, topological, lumped-parameter models that
capture the energy exchange mechanisms in physical processes [4]. The nodes
of a bond graph are primitive elements that include energy storage (C and I),
energy dissipation (R), energy transformation (TF and GY), and input-output
elements (Se and Sf). The connecting edges called bonds are energy pathways
between the elements. Each bond is associated with two variables: effort and
flow. The product of effort and flow is power, i.e., the rate of energy transfer.
Connections in the system are modeled by two idealized elements: 0- (or parallel)
and 1- (or series) junctions. For a 0- (1-) junction, the efforts (flows) of all incident



(a) Circuit diagram. (b) Hybrid bond graph.

Fig. 1. Example system.

bonds are equal, and the sum of flows (efforts) is zero. Component parameters of
nonlinear models are algebraic functions of other system variables and external
input signals, called modulating functions.

HBGs extend continuous BG models by allowing discrete changes in sys-
tem configuration at explicit time points by turning junctions on and off [3].
A finite state machine implements the junction control specification (CSPEC).
Each state of the CSPEC maps to an on or off state of the junction, and the
CSPEC transition guards are expressed as boolean functions of system and in-
put variables. When a controlled junction is on, it behaves like a conventional
junction. In the off state, all bonds incident on a 0- (1-) junction are deactivated
by enforcing a zero effort (flow) at the junction. The system mode at any time
is determined by composing states of the individual switched junctions.

To illustrate the modeling paradigm, we use an electrical circuit, shown in
Fig. 1(a). The components of the circuit are a voltage source, v(t), two capacitors,
C1 and C2, two inductors, L1 and L2, two resistors, R1 and R2, and two switches,
SWA and SWB . Resistor R1 is modeled as a nonlinear resistance, where R1 is
a polynomial function g of the voltage drop across the inductor L1, i.e., R1 =
g(e3). Fig. 1(b) shows the HBG model for this circuit. The switching junctions
in the HBG, 1a and 1b, have associated CSPECs, denoted by CSa and CSb,
respectively.

3 Computational Semantics of Hybrid Bond Graphs

Our goal is to build efficient simulation models from HBG representations.
The block diagram (BD) formalism is a widely used graphical, computational
scheme for describing simulation models of continuous and hybrid systems (e.g.,
Ptolemy [13], Modelica [14], and Simulink [5], among others). We adopt the BD
modeling paradigm, and develop a methodology for transforming HBGs to BDs.
We encounter two primary challenges in generating simulation models from HBG
representations.

Challenge 1: Avoid pre-enumeration of model configurations. Con-
sider a HBG model with m components and assume that each component has
ni switching junctions, where i = 1, 2, . . . m. The HBG model, then, defines
2
∑m

i=1
ni different system modes (or model configurations). When

∑m
i=1 ni is

large, it is infeasible to pre-enumerate all the model configurations before run-



ning the simulation. Therefore, mode changes, and reconfiguration of the BD
model, have to be performed during run-time. Mode changes, implemented as
junction switching, produce changes in the HBG model topology, which implies
that the connections between blocks in the BD model may change dynamically
during the simulations.

Challenge 2: Avoid algebraic loops. In component-based modeling, the
underlying mathematical model is usually a set of differential-algebraic equa-
tions (DAEs) [9, 15]. The DAE models may include algebraic loops. A system of
equations with algebraic loops has a fixed point solution if the conditions for a
unique solution are satisfied [15]. However, generating the solution may become
computationally expensive if the fixed point method needs many iterations to
converge to a solution when algebraic loops are present. The order of equation
evaluation, then, becomes very important [16].

3.1 Conversion of Continuous Bond Graphs to Block Diagrams

BG models imply a causal structure, and algorithms like the Sequential Causal
Assignment Procedure (SCAP) [4] applied to well-formed BG models assign causal
directions to all bonds in the model. The causal direction of a bond determines
the functional relation between the associated effort and flow variables. When a
BG model is in integral causality, which means that the constituent relations of
its energy storage elements are expressed in their integral form, and the causal
assignments of the bonds are unique, the derived BD model will have no algebraic
loops [4]. Causality fixes the evaluation order of BG constituent equations to
avoid the algebraic loops.

Fig. 2 shows the BD structure for each BG element [4]. The Sf, Se, C, and
I elements have a single unique BD representation because their incident bonds
have only one possible causal assignment. The R, TF and GY elements allow two
causal representations each, and each one produces a different BD representa-
tion. A junction with m incident bonds can have m possible BD configurations.
Mapping a junction structure to its BD is facilitated by the notion of the deter-
mining bond, which captures the causal structure for the junction.

Definition 1 (Determining Bond) The determining bond for a 0- (1-) junc-
tion is the bond that determines the effort (flow) value for that junction.

Fig. 2 shows the BD expansions for 0- and 1- junctions with bond 1 as the
determining bond. For a 0-junction (1-junction), all other bonds’ effort (flow)
values are equal to the determining bond’s effort (flow) value, and the flow
(effort) value of the bond is the algebraic sum of the flow (effort) values of the
other bonds that are connected to this 0- (1-) junction.

Fig. 3(b) shows the derived BD model for our example circuit with both
switches on. The first step assigns causality to all bonds using the SCAP algo-
rithm (Fig. 3(a)). The second step selects the BD model (from Fig. 2) for each
BG element taking into account the causality of the incident bonds. The BD



Fig. 2. Block Diagram expansion of bond graph elements.

(a) Hybrid bond graph. (b) Block diagram.

Fig. 3. Example system with both switches on.

fragments for each BG element are connected appropriately in step 3 to gener-
ate the BD model of the system.

As discussed, causal assignments define the data flow paths for variable values
between the blocks. Because they fix the evaluation order of the equations, they
minimize the occurrence of algebraic loops. There are three cases where the
model may contain algebraic loops in the BD structure: (i) the BG model does
not have a unique causal assignment, e.g., bonds 5, 7, 9, and 10 in Fig. 3(a) do not
have unique assignments, and the resulting BD model has an algebraic loop; (ii)
nonlinearities in the system, e.g.,the modulating function creates the algebraic
loop: e5 → e4 → e3 → g(e3)→ e5 (see Fig. 4(b)); and (iii) the CSPEC function
of hybrid models, e.g., if the state of a 1-junction is a function of its flow, the
guard condition of the CSPEC produces an algebraic loop.

3.2 Conversion of Hybrid Bond Graphs to Block Diagrams

BD models derived from HBGs must incorporate mechanisms that allow recon-
figuration when junctions switch state. When junctions switch on or off, the
determining bond for that (and possibly other junctions) can change, which, in
turn, causes changes in the implementations of blocks of the BD model. To avoid
pre-enumeration of BD models for all system modes, an efficient component-
based hybrid system simulation method must allow for on-line reconfiguration
of the BD model. A naive solution may recompute the causal assignment on all
bonds after the junction switching and derive a new BD model. But this may be
wasteful because only a portion of the original BD structure may have changed.
We implement an efficient BD reconfiguration scheme that recomputes the causal



(a) Hybrid bond graph. (b) Block diagram.

Fig. 4. Example system with junction 1a off.

assignments incrementally, starting from junctions that switch state, and prop-
agating determining bond changes till a new consistent assignment is derived.
Corresponding changes are made only to those blocks in the BD structure that
have changes in their determining bonds. This results in minimal changes to the
BD structure before the simulation progresses. We first describe our method for
incremental updating of determining bonds, and then present our procedure for
building reconfigurable BD models from HBGs.

When a junction changes state, the choice of its determining bond may cause
corresponding changes in the determining bonds of its neighbors, and this change
can propagate. For example, in Fig. 3(a), if 1b is switches off, the determining
bond of its adjacent 0-junction does not change, and the rest of the BD structure
is unchanged. If 1a switches off, the determining bond at the adjacent 0-junction
does change, and this change propagates step by step to adjacent junctions.
In our example, to maintain integral causality, the I element’s bond cannot
switch causal direction, therefore, bond 4 becomes the determining bond. This
change propagates to the adjacent 1-junction, and further up to 1b, where the
R element’s bond switches its causal assignment and no further propagation is
needed. Fig. 4(b) shows the resulting block diagram after the mode switch.

At junctions where a unique choice for a new determining bond is not known,
an arbitrary choice may be made. But this choice may lead to an inconsistent
assignment when the propagation reaches a junction whose determining bond
is fixed by an incident source element or an energy-storage element. To pre-
vent such inconsistent assignments, which requires a computationally expensive
backtracking process, we identify active junctions that are in forced causality and
fixed causality and avoid update paths that require determining bond changes
for these junctions.

Definition 2 (Forced Causality) For a given mode of system operation, an
active junction is in forced causality if its determining bond is uniquely deter-
mined.

Definition 3 (Fixed Causality) An active junction is in fixed causality if,
for all modes of system operation, its determining bond does not change.

When a choice for determining bonds exists at a junction, we do not make a
choice that would affect the determining bond of an adjacent junction already in



Algorithm 1 Hybrid SCAP
UnassignedJunctionQueue = Set of switched junctions
while UnassignedJunctionQueue is not empty do

j = UnassignedJunctionQueue.pop()
if choice of determining bond for j is unique then

Update determining bond of j
juncList =PropagateEffect(j)
UnforcedQueue.push(juncList)

else
UnforcedQueue.push(j)

while UnforcedQueue is not empty do
j = UnforcedQueue.pop()
if Choice of determining bond for j is unique then

Update determining bond of j
juncList =PropagateEffect(j)
UnforcedQueue.push(juncList)

else
if there exists a bond to an unvisited, unforced, unfixed junction to assign as
determining bond then

Choose that bond
else

Choose bond to a forced junction as determining bond
Update determining bond of j
juncList =PropagateEffect(j)
UnforcedQueue.push(juncList)

fixed or forced causality. For example, in Fig. 3(a), the first two junctions are in
forced causality. The other junctions’ determining bonds depend on an arbitrary
choice of causality assignment to one of the R elements, so they are not in forced
causality. In Fig. 4(a), all active junctions are in forced causality and there is
only one consistent assignment of determining bonds for all active junctions.

We formalize this dynamic causality reassignment method as the Hybrid Se-
quential Causal Assignment Procedure (Hybrid SCAP) (see Algorithm 1). Fixed
and forced causality information is computed for the initial mode with Hybrid
SCAP and updated locally when mode changes occur. We assume that the new
states of all junctions are available before Hybrid SCAP is applied. With the
initial queue of switched junctions, Hybrid SCAP picks one junction off the
queue, and makes all forced changes, and propagates the forced effects using
PropagateEffect (Algorithm 2) up to junctions that are not forced or fixed.
These junctions are added to UnforcedQueue. When all junctions in the ini-
tial queue are exhausted, the algorithm picks elements off the UnforcedQueue,
assigns a determining bond and propagates its effects till it ends in a junction
where another arbitrary choice can be made. If there exists a consistent causal-
ity assignment for this mode, the UnforcedQueue eventually becomes empty.
Otherwise, the current mode either does not support the integral causality as-
sumption or its BG model is not well-formed.



Algorithm 2 PropagateEffect(j)
juncList = []
for all affected adjacent junction adjJunc of j do

if choice of determining bond of adjJunc is unique then
Update determining bond of adjJunc
juncList+ =PropagateEffect(adjJunc)

else
juncList+ = adjJunc

return juncList

Fig. 5. Block Diagram expansion of a hybrid junction.

When the causal assignment of bonds change, the connected elements’ input-
output relationships change. Unlike BGs, where the causality assignment is fixed,
the BD model for HBGs must consider multiple BD expansions for each element
that can have variable causality. Moreover, the model needs mechanisms for
reconfiguring on-line to accommodate the changing causality assignments.

Fig. 5 shows the BD representation for a hybrid 1-junction in a HBG model.
Depending on its determining bond, the internal computation and the interpre-
tation of its input and output signals change. For example, if the first bond is
the determining bond, the corresponding input is flow, otherwise it is effort. The
internal computation changes accordingly within the hybrid junction element
block. R, TF, and GY elements are handled in a similar manner.

Using this reconfigurable BD allows us to exploit the advantages of causality
in HBGs. Because Hybrid SCAP locally propagates effects of junction switching,
the computation of the new causal structure is efficient. Since having a consistent
causal assignment for each mode allows us to exploit causality, we minimize the
number of algebraic loops in the computational model, and provide a fixed order
of equation evaluation to solving the HBG constituent equations. Since the block
diagram is reconfigurable, it also allows us to avoid pre-enumeration of all system
modes since the HBG model supports automatic derivation of system modes at
run-time.

4 Implementation

We now apply the HBG to BD transformation algorithms to derive a Simulink
model that can be executed in the Matlab environment. This derivation can



be applied to other simulation environments in a similar fashion. BD structure
reconfiguration attributed to junction switching in the HBG model is handled by
switching functions that change the relationship between the input and output
ports. This can be implemented in one of two ways.

Implicit Switching One implementation uses code in the form of condi-
tional statements to model the variable input-output relation for a block element
whose incident bond(s) can change causality. The switching of the data flow be-
tween blocks is implicit in the Simulink model. For R, TF, and GY elements, the
implicit function is straightforward and directly linked to the causality assign-
ment. For junctions, the input-output relations and the algebraic relations are
directly a function of the determining bond and can be represented concisely1.
Overall, the Simulink models generated by this approach are compact because all
possible BD configurations are not explicitly enumerated using switches. How-
ever, representing junction blocks as implicit functions produces algebraic loops
in the Simulink model, because the input-output directional structure is buried
in the junction block. As a result, Simulink invokes its fixed point solver to solve
for these algebraic loops during simulation. Though all of these structures pro-
duce a unique solution, there is computational overhead in invoking and applying
the solver, and this may result in less efficient simulation runs.

Explicit Switching The alternative implementation uses Simulink switch-
ing elements to enumerate the possible data flow paths and computational struc-
ture for each configuration. At run time, when determining bonds change, the
appropriate switches are triggered to activate the new effective block diagram
structure. Each R, TF, and GY element requires a switch to model their two pos-
sible configurations, and a controlled junction with m incident bonds can have
m + 1 possible configurations. Compared to the implicit switching method, the
Simulink model created by this approach has many more atomic blocks. Since
the data flow paths are made explicit for each configuration, no additional alge-
braic loops are created, but there is an overhead associated with zero-crossing
detection.

The simulation model is created by an automatic model transformation pro-
cedure (interpreter) that operates on HBG models constructed in the modeling
environment. The interpreter creates the simulation artifacts by first transform-
ing the HBG into a BD, and then into a Simulink model. The implicit switching
method uses Simulink S-functions implemented in C, and the explicit switching
method uses multi-port Simulink switching element blocks.

Generation of the Simulink model from the BD is straightforward. For every
component in the block diagram model, a corresponding Simulink subsystem
with ports and internal blocks is instantiated that corresponds to the block
diagram expansion of the element. These subsystems are connected exactly like
the block diagram model.

1 The determining bond’s input sets the non-determining bonds’ outputs, and the non-
determining bonds’ inputs, taking into account bond directions, sum to produce the
determining bond’s output.



For controlled junctions, the control specification is simplified to a two-state
machine, with one state corresponding to on and the other to off. We evaluate the
transition guards, and when enabled, the transition is taken to the new junction
state. In both implementations, a global S-function tracks junction switches and
calls the Hybrid SCAP implementation to compute the new determining bonds
when this occurs.

5 Case Study: Electrical Power System

We apply our modeling and simulation framework to the Advanced Diagnostics
and Prognostics Testbed (ADAPT) system at NASA Ames. ADAPT is function-
ally representative of an electrical power system on a crew exploration vehicle,
and serves as a testbed to study diagnostics and prognostics technologies. The
system consists of three subsystems, power generation, consisting of a solar panel
and battery chargers, power storage, consisting of three sets of lead-acid batter-
ies, and power distribution, consisting of a number of AC and DC loads and AC
to DC converters. Relays configure the system in different modes of operation,
e.g., charge and/or discharge mode of the batteries as well as different power
supply and load configurations. Therefore, the system behavior is naturally hy-
brid, with many possible modes. This makes it infeasible to pre-enumerate all
possible modes of operation. The battery models are highly nonlinear and have
different modes of operation corresponding to charging and discharging phases.
In this paper, we derive simulation models from HBG models of the battery and
load subsystems.

5.1 Component Models

Lead-acid Batteries An electrical equivalent circuit model (Fig. 6(a)) based on
those presented in [17, 18] is developed. The current flowing through the battery
is labeled as I. Part of the input current, Im, goes into discharging/charging the
battery. The rest of the current, Ip, is lost to parasitic reactions. During charge,
the currents I and Im flow opposite to the directions labeled.

The HBG model, shown in Fig. 6(b), is derived directly from the equivalent
circuit diagram. Junction B is hybrid and corresponds to the switch SWB in the
circuit. It switches on or off autonomously, depending on the direction of current
through the battery. When the battery is charging, i.e., current is negative,
junction B is on, otherwise it is off. Junctions C and D are also hybrid and
correspond to switch SWC−D. When charging, C is on and D is off, otherwise
D is on and C off. When charging, the parasitic resistance models the charge
acceptance of the battery (based on the model in [19]), and when discharging
the parasitic resistance is a large constant resistance, modeling the slow drain of
charge when the battery is not being charged. Loads connect in parallel to the
power port in the HBG. Because the HBG has 3 controlled junctions, it has 8
total modes.



(a) Battery equivalent circuit diagram (b) Battery component hybrid bond
graph

Fig. 6. Hybrid nonlinear battery model

Table 1. Nonlinear battery parameters

Parameter Equation

Em Em0 + Am(SOC)(273 + Kmθ)

R0 R00 + A0(SOC)(273 + K0θ)

R1 −R10 ln DOC

R2 R20
exp A21SOC

(1+exp(A22Im/I∗))
+ A23

Rpc V/(−I exp
Ap1

−I/I∗+Ap2
exp Ap3SOC)

A number of the HBG model parameters are modulated to represent its
nonlinear behavior, and are derived from parameter equations given in [17]. The
equations are listed in Table 1, and the constant values appear in Table 2. Many
of these parameter values depend on the state of charge, which is a function
of the extracted charge of the battery, Qe, and the battery capacity, C(Im, θ),
which itself is a function of temperature, θ [17].

Battery capacity is computed as a function of the discharge current and tem-
perature by C(Im, θ) = KcC

∗
0 (1+θ/θf )ε/(1+(Kc−1)(Im/I∗)δ), where θf is the

electrolyte freezing temperature (typically −35oC), and I∗ is a reference current.
The remaining parameters are design constants. Battery extracted charge, Qe,
is a function of the current flowing through the battery, i.e., Q̇e(t) = Im(t).

Battery state of charge (SOC) and depth of charge (DOC) are computed
based on Qe and battery capacity as SOC = 1 − Qe/C(0, θ), and DOC =
1−Qe/C(Im, θ). SOC represents the state of charge of the battery based on its
nominal capacity and DOC represents the state of charge of the battery based
on its capacity relative to the present discharge current.

Battery temperature, θ, is described by a capacitance-resistance model. It is
a function of the heating power generated by the battery, Ph, and ambient tem-
perature, θa given by θ̇(t) = 1/Cθ (Ph + (θ − θa)/Rθ). The equations describing



Table 2. Battery model constant values

Capacity parameters I∗ = 5, Kc = 1.33e0, C∗
0 = 2.71e5, θf = −35, ε = 6.42e− 1,

δ = 6.10e− 1

Main branch parameters Em0 = 2.14e1, Am = 1.14e− 2, Km = 7.59
R00 = 2.30e− 3, A0 = 1.12e− 4, K0 = −1.37e− 1,
C0 = 5.00e1, R10 = 2.15e− 2, C1 = 5.00e3
R20 = 1/37e− 6, A21 = 1.83e1, A22 = 7.83e− 1,
A23 = 1.96e− 2, C2 = 2.72e3

Parasitic branch parameters Rpd = 5.00e2, Ap1 = −9.35e1, Ap2 = 1.89e1, Ap3 = 4.22e0

Temperature parameters Rθ = 1.00e− 2, Cθ = 2.44e6

Fig. 7. Battery and DC loads configuration FACT model

extracted charge and temperature can also be represented as HBG model frag-
ments, but are omitted from Fig. 6(b) for clarity.

Relay The relay HBG model consists of a single controlled 1-junction with
two power ports. The junction models the relay’s switching behavior, by turn-
ing on or off depending on some external control signal. Since the HBG has 1
controlled junction, it has 2 total modes.

Resistive Load The resistive load HBG model consists of a single power
port, a 1-junction, and a R element. The R element parameter value is constant.

5.2 Simulation Results

We present the simulation results for the battery supplying power to two DC
loads in parallel. Relays in the circuit enable the loads to be switched online or
offline. The configuration, created in our modeling environment [12], is shown
in Fig. 7. As previously described, the battery has three controlled junctions,
and each relay has one, resulting in a possibility of 32 modes. Even with a few
number of components, the advantage of our approach is clear. Enumerating all
32 modes is wasteful, especially since in this particular configuration, only a few
of these modes will occur.

Fig. 8 shows the results of the simulation. The Simulink model was run for
7, 000 seconds of simulation time with the battery discharging through different
load conditions. The battery is initially fully charged. At 500 seconds, Load1 is



0 2000 4000 6000
22

23

24

25
Battery Voltage

Time (s)

V
ol

ta
ge

 (
V

)
0 2000 4000 6000

0

10

20

30
Battery Current

Time (s)

C
ur

re
nt

 (
A

)

0 2000 4000 6000
0.4

0.5

0.6

0.7

0.8
Battery State of Charge

Time (s)

S
ta

te
 o

f C
ha

rg
e

0 2000 4000 6000
0

10

20

30
Load Currents

Time (s)

C
ur

re
nt

 (
A

)

 

 

Load1
Load2

Fig. 8. Simulation results

attached, causing a sharp drop in the battery voltage and a sharp rise in the
current. The battery state of charge begins to decrease as current flows through
the load, causing a gradual drop in battery voltage. At 2, 000 seconds, Load2
is brought online. Because the loads are in parallel, the effective resistance of
the load on the battery decreases, causing an increase in the current drawn,
and a decrease in the voltage. At 3, 500 seconds, Load2 is disconnected and the
current falls and the voltage rises. At 6, 000 seconds Load1 is disconnected, and
the battery then goes back to its no load voltage output. This voltage is lower
than the initial no load voltage because of the decrease of charge in the battery.

For the configuration tested, the explicit switching implementation executed
about 20% faster than the implicit switching implementation. We have run a
number of other configurations with Simulink, and the run-time differences be-
tween the implicit and explicit switching is about the same as reported above.
Both implementations exploit causality, and even though the implicit switching
implementation introduced unnecessary algebraic loops, the use of causality in
these functions allowed the algebraic loop solver to converge quickly, which is
why the efficiency difference was not very substantial.

6 Conclusions

We presented a modeling and simulation framework for systems design that is
closely tied to the semantics of physical system principles. Subsystem compo-
nents can be composed to generate the overall system model, just as designers
assemble subsystems to form the complete system. Moreover, HBGs being do-
main independent, this framework will be useful for engineers in a variety of
domains. When the switching behavior of the model is not known in advance (as
is true in general), then the only way to avoid pre-enumeration of all the system
modes is to do on-line reconfiguration. The main contribution of this approach
is the on-line reconfiguration of the BD model which fully exploits causality in
HBGs by incorporating dynamic causality reassignment. We also demonstrated
the usefulness of the approach in modeling a complex system of practical value.
As part of future work, we intend to apply this approach to more complex con-
figurations of ADAPT, such as one involving DC-AC converters and AC loads,
as well as other large real-world systems.



Acknowledgments This work was supported in part by grants NSF CNS-
0347440 and NSF CNS-0615214, and a NASA USRA grant from Ames Research
Center. We gratefully acknowledge the help from Scott Poll and Ann Patterson-
Hine in building the ADAPT system models.

References

1. Liu, J., Lee, E.A.: A component-based approach to modeling and simulating mixed-
signal and hybrid systems. ACM Trans. Model. Comput. Simul. 12(4) (2002)
343–368

2. Lee, E.A., Neuendorffer, S., Wirthlin, M.J.: Actor-oriented design of embedded
hardware and software systems. Journal of Circuits, Systems, and Computers
12(3) (2003) 231–260

3. Mosterman, P.J., Biswas, G.: A theory of discontinuities in physical system models.
J Franklin Institute 335B(3) (1998) 401–439

4. Karnopp, D.C., Margolis, D.L., Rosenberg, R.C.: Systems Dynamics: Modeling
and Simulation of Mechatronic Systems. Third edn. John Wiley & Sons, Inc., New
York (2000)

5. MATLAB/Simulink: (http://www.mathworks.com/products/simulink/)

6. Deshpande, A., Gollu, A., Semenzato, L.: The SHIFT programming language for
dynamic networks of hybrid automata. IEEE Transactions on Automatic Control
43(4) (1998) 584–587

7. Kratz, F., Sokolsky, O., Pappas, G.J., Lee, I.: R-Charon, a Modeling Language for
Reconfigurable Hybrid Systems. In: Hybrid Systems: Computation and Control.
Volume 3927 of LNCS. Springer (2006) 392–406

8. Alur, R., Grosu, R., Hur, Y., Kumar, V., Lee, I.: Modular specification of hybrid
systems in Charon. In: Hybrid Systems: Computation and Control. Volume 1790
of LNCS. Springer-Verlag (2000) 6–19

9. Dymola: (http://www.dynasim.com/dymola.html)

10. Cellier, F.E., Otter, M., Elmqvist, H.: Bond graph modeling of variable structure
systems. In: Proc. ICBGM. (1995)

11. Edstrom, K., Stromberg, J.E., Soderman, U., Top, J.L.: Modelling and simulation
of a switched power converter. In: Proc. ICBGM. (1997)

12. Manders, E.J., Biswas, G., Mahadevan, N., Karsai, G.: Component-oriented mod-
eling of hybrid dynamic systems using the Generic Modeling Environment. In: Proc
of the 4th Workshop on Model-Based Development of Computer Based Systems,
Potsdam, Germany, IEEE CS Press (2006)

13. Buck, J., Ha, S., Lee, E.A., Messerschmitt, D.G.: Ptolemy: a framework for sim-
ulating and prototyping heterogeneous systems. Readings in hardware/software
co-design (2002) 527–543

14. Modelica: (http://www.modelica.org/)

15. Griepentrog, E., Mārz, R.: Differential-algebraic equations and their numerical
treatment. Teubner (1986)

16. Pinto, A., Carloni, L.P., Passerone, R., Sangiovanni-Vincentelli, A.: Interchange
Format for Hybrid Systems: Abstract Semantics. In: Hybrid Systems: Computation
and Control. Volume 3927 of LNCS. Springer (2006) 491–506

17. Ceraolo, M.: New dynamical models of lead-acid batteries. IEEE Transactions on
Power Systems 15(4) (2000) 1184–1190



18. Barsali, S., Ceraolo, M.: Dynamical models of lead-acid batteries: Implementation
issues. IEEE Transactions on Energy Conversion 17(1) (2002) 16–23

19. Guasch, D., Silvestre, S.: Dynamic battery model for photovoltaic applications.
Progress in Photovoltaics: Research and Applications 11(3) (2003) 193–206


