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Abstract. Fault diagnosis is crucial for ensuring the safe operation of
complex engineering systems. These systems are typically hybrid in na-
ture, therefore, model-based diagnosis requires hybrid system models.
Previous work in hybrid systems diagnosis, however, has focused either
on parametric or discrete faults. We present an integrated approach for
diagnosis of both parametric and discrete faults in hybrid systems that
encompasses a compact hybrid systems modeling approach and an effi-
cient qualitative fault isolation scheme. Experimental results from a case
study performed on a complex electrical power system demonstrate the
effectiveness of the approach.

1 Introduction

Fault diagnosis is crucial for ensuring the safe operation of complex engineering
systems. Faults and degradations need to be quickly identified so that corrective
actions can avoid catastrophic situations. Most real-world, embedded systems are
hybrid in nature. In such systems, a discrete abstraction may be adequate for
model-based diagnosis [1]. Purely discrete techniques, however, are inadequate
for systems that combine complex continuous and discrete behaviors [2]. Hybrid
models have to be employed for correct tracking and diagnosis.

The Advanced Diagnostics and Prognostics Testbed (ADAPT) [3], deployed
at NASA Ames Research Center, is functionally representative of a spacecraft’s
electrical power system. Over fifty relays and circuit breakers configure the sys-
tem into different modes of operation. Therefore, the system behavior is naturally
hybrid. Parametric faults, such as changes in resistance and inductance values,
can occur in the components. Discrete faults, such as relays becoming stuck,
may also occur. In such systems, it is important to address both types of faults
in a comprehensive, unified framework.

Very little previous work, however, has addressed a combined approach to
hybrid diagnosis. The approach of [4] is suitable only for simple hybrid automata
and a particular application. The approach of [5] uses the parity relations ap-
proach, which is difficult to apply to nonlinear systems with multiplicative faults.
Methods have addressed either discrete fault [1,6–11] or parametric fault diagno-
sis [12–14]. In discrete approaches, fault modes are added to the nominal system



model for each discrete fault. Diagnosability of hybrid systems has been investi-
gated in this framework in [15, 16]. This style of modeling typically reduces the
discrete diagnosis task to a mode estimation problem [6–9]. These approaches
use a combination of continuous state and mode observers [6, 7] or particle fil-
ters [8,9]. Others employ reasoners to guarantee that only modes consistent with
the observations are tracked using consistency-based approaches [10,11]. To han-
dle parametric faults under this scheme, a discrete abstraction can be generated
via quantization [17], but this results in large, nondeterministic models that do
not include fault transient information, which is critical to quick diagnosis of
parametric faults [18].

Parametric faults have also been addressed in hybrid systems. In [12], quali-
tative techniques produce parametric fault candidates assuming only controlled
mode changes. The approach of [13, 14] also performs qualitative isolation, but
includes reasoning to handle both controlled and autonomous mode changes that
occur after fault occurrence. Discrete faults can be captured at a very detailed
level as parameter changes, but this produces highly nonlinear, high order models
that are difficult to simulate and analyze efficiently.

In contrast, we present an integrated model-based approach to diagnosing
both parametric and discrete faults in hybrid systems. This extends our pre-
vious work in diagnosis of parametric faults in hybrid systems [13, 14, 18] by
including discrete faults, resulting in a unified hybrid diagnosis methodology.
We establish a compact, integrated hybrid modeling framework, using hybrid
bond graphs [19], that can represent both parametric and discrete faults. We
apply our approach using a case study on a real hybrid system, ADAPT, and
demonstrate our techniques with experiments performed on the actual testbed.

2 Modeling Hybrid Systems

2.1 Hybrid Bond Graphs

We develop component-based models of hybrid physical systems using hybrid
bond graphs (HBGs) [19]. HBGs extend bond graphs [20], which define an
energy-based, multi-domain, topological modeling scheme for dynamic systems.
They are particularly suitable for diagnosis because they incorporate causal and
temporal information required for deriving and analyzing fault transients. HBGs
can also be transformed to hybrid automata [13].

Throughout the paper, we will illustrate the diagnosis methodology with a
circuit example. The schematic and HBG are shown in Figs. 1(a) and 1(b), re-
spectively. In bond graphs, vertices represent components, and bonds, drawn as
half arrows, represent ideal energy connections between them. Associated with
each bond are two variables: effort and flow, denoted by ei and fi, respectively,
where i is the bond number, and the product ei × fi defines the rate of energy
transfer through the bond. In the electrical domain, these variables map to volt-
age and current, respectively. 1-junctions represent series connections (where all
f are equal and

∑
e = 0), and 0-junctions represent parallel connections (where



(a) Schematic. (b) Hybrid bond graph.

Fig. 1. Switched circuit example.

all e are equal and
∑

f = 0). Other bond graph elements model energy dissipa-
tion as resistances (R, where e = Rf), energy storage as capacitances (C, where
ė = 1

C f) and inductances (I, where ḟ = 1
I e), and energy sources as sources of

flow (Sf , where f = u) and effort (Se, where e = u). The constituent equations
of the bond graph elements form a set of differential algebraic equations that
describe the continuous system behavior.

Hybrid bond graphs [19] extend bond graphs by introducing controlled junc-
tions, denoted in Fig. 1(b) by the dashed arrow. Controlled junctions act as ideal
switches, enabling a junction to be in either the on or off mode. Off 1-junctions
behave as sources of zero flow, so they impose f = 0 on all their bonds. Similarly,
off 0-junctions act as sources of zero effort. When on, controlled junctions behave
as normal junctions. In the circuit example, the controlled junction models the
switch. When the switch is closed, the junction is on, and when the switch is
open, the junction is off, forcing the current through R2 to be zero.

The switching behavior of a controlled junction is defined by a control spec-
ification (CSPEC), modeled as a finite automaton [14, 19]. A CSPEC defines a
finite number of states. The state transitions may be attributed to controlled
or autonomous events. The output of the CSPEC determines whether the junc-
tion is on or off. So, the system mode is defined implicitly by the individual
modes of all the controlled junctions, providing a concise representation of the
hybrid system model. A single mode change may correspond to multiple junc-
tions switching mode. Therefore, events may be shared over different CSPECs.
Given an event e and the current system mode q, the new system mode q′ is
given by q′ = δ(e, q), where the system mode transition function δ simply applies
e to all CSPECs, and obtains the new CSPEC output, i.e., the junction mode,
for each controlled junction.

Associated with each system mode q is a continuous bond graph. The compu-
tational model for each mode (e.g., state-space equations or signal flow graphs)
can be derived systematically [20]. The computational model for a new mode
can also be automatically generated from the previous mode efficiently [21]. This
type of modeling framework offers significant advantages for large hybrid systems
like ADAPT, because it avoids preenumeration of system modes.

Example CSPECs for the circuit are given in Fig. 2. Events are generated
when Boolean predicates derived from system variables evaluate to true. The



(a) Relay CSPEC. (b) Circuit breaker CSPEC.

Fig. 2. Circuit switch CSPECs.

CSPEC for a relay controlled by switching signal sw is shown in Fig. 2(a). For
a circuit breaker (Fig. 2(b)), the junction behavior is autonomous. It is initially
in s0, where the junction is on. When the current through the circuit breaker,
f5, exceeds the value 10, the CSPEC transitions to s1, where the junction is off.

2.2 Modeling Faults

We focus on the diagnosis of single, abrupt, persistent faults in hybrid systems.
We classify hybrid system faults into two categories, (i) parametric faults, and
(ii) discrete faults. Parametric faults cover partial failures or degradations in
system components. Discrete faults are associated with switching in components.

Definition 1 (Parametric Fault) A parametric fault is an unexpected change
in the value of a system parameter in the model.

System components appear as HBG model parameters, so can model faults
that affect system behavior. Abrupt parametric faults are defined as a step
change in a component parameter value. In the circuit example, parametric faults
may include increase and decrease in resistance (R1 or R2) and capacitance (C1)
values.

Definition 2 (Discrete Fault) A discrete fault is a discrepancy between the
actual and expected mode of a switching element in the model.

Discrete faults in the circuit include switch malfunctions. For example, the
switch may be commanded to close, but remain stuck open. Also, it may unex-
pectedly open or close without a command. In HBGs, mode changes are modeled
using controlled junctions, so discrete faults are captured as unexpected changes
in junction mode. Because the junction mode is determined using a CSPEC, we
introduce new unobservable fault events in the CSPEC and link discrete faults to
them. Mode changes in components may correspond to many junctions changing
mode, so these fault events may be shared among the different CSPECs of the
component. The linking of discrete faults to fault events in the CSPEC gives, as
with parametric faults, a one-to-one mapping between model entities and faults.
This leads to the following definition of the CSPEC to include discrete faults.

Definition 3 (Control Specification) A control specification is a tupleM =
(S, E, t, o, s0), where S is the finite set of states, E = Eo ∪ Eu is the set of



(a) Relay CSPEC. (b) Circuit breaker CSPEC.

Fig. 3. Circuit switch extended CSPECs.

observable and unobservable (fault) events, t : S × E → S is the transition
function, o : S → {on,off} is the output function, and s0 ∈ S is the initial state.

The extended example CSPECs for the circuit are given in Fig. 3. For the
relay CSPEC (Fig. 3(a)), we introduce fault events τ0 and τ1. When τ1 occurs,
the CSPEC moves to s2, where the junction is stuck on. If the junction was
previously off, then this fault manifests in the measurements immediately, i.e.,
the switch closes by itself. Otherwise, it will only manifest when sw becomes true,
i.e., the switch becomes stuck closed. The case is similar for the τ1 event. For the
circuit breaker CSPEC (Fig. 3(b)), only the stuck off fault, τ0, is appropriate,
and the behavior is similar. The circuit breaker may open due to the current
limit being exceeded, which is nominal behavior, or may open due to a fault,
i.e., it opens when the current limit has not yet been exceeded.

3 Hybrid Diagnosis Approach

3.1 Diagnosis Architecture

Our method for integrated diagnosis of parametric and discrete faults in hybrid
systems extends the Hybrid Transcend [14] approach for diagnosing single,
abrupt, parametric faults in hybrid systems (see Fig. 4). The diagnosis is based
on analysis of fault transients in the residual signal [18]. When faults occur,
they produce deviations in measurements from their expected values. Our diag-
nosis model expresses these deviations as fault signatures, which are matched
against observed deviations to isolate faults. A hybrid observer computes the ex-
pected behavior of the plant. The observer, a switched extended Kalman filter,
tracks the continuous behavior in individual modes of operation. An accompa-
nying automata scheme implements the CSPECs, and executes controlled and
autonomous mode changes [14].

The difference between observed outputs, y(t), and expected outputs, ŷ(t),
defines the residual, r(t). Faults will cause statistically significant differences



Fig. 4. Diagnosis architecture.

between the observed and expected outputs. A parametric fault increases or de-
creases a parameter value. A discrete fault results in a change in the system
mode. In either case, a difference will manifest between expected and observed
behavior. This triggers the fault detector, which determines if the observed dif-
ferences are statistically significant, indicating a fault. Due to sensor noise and
model imperfections, we employ a statistical significance test to robustly deter-
mine if the residual is nonzero using a sliding window technique [22].

Fault isolation begins when a fault is detected. Symbol generation symboli-
cally abstracts the residual signals of the deviating measurements into qualitative
features. Hypothesis generation produces the initial fault candidate set F0 from
the initial deviation. Progressive monitoring prunes the fault set as further de-
viations occur by dropping inconsistent candidates. The following subsections
describe these steps in more detail.

3.2 Qualitative Fault Isolation

Fault Signatures The fault transients caused by abrupt faults are represented
as symbolic predictions for qualitative fault isolation. Assuming that the system
output is continuous and continuously differentiable within a mode except at
the points of fault occurrence1, the transient response after fault occurrence can
be approximated by a Taylor series expansion. Measurement transients are de-
scribed using the magnitude and the derivative values of the residual signal [18].
This is the basis for establishing a signature for a fault transient. Transcend
abstracts these signatures using the qualitative values +, -, and 0, which imply
an increase, decrease, or no change from the nominal behavior, respectively.

A fault signature is defined as the qualitative value of zeroth- through kth-
order derivative changes on a measurement residual due to the occurrence of
a fault. Only magnitude and slope of a signal can be reliably measured, so we
condense higher order signatures to the magnitude change symbol and the first
nonzero derivative change, e.g., 000-+-+ becomes 0-, and +-+-+-+ becomes +-.
The first symbol represents the immediate direction of abrupt change (a discon-
tinuity) and the second symbol represents the slope. For +0 and -0, the 0 slope
symbol implies that the fault will cause a jump but no subsequent change in the
slope. This will occur for some discrete faults and some sensor faults (e.g. sensor

1 We assume that parametric faults do not occur at the same time as a mode change.



bias). We omit signatures of ++ and -- because they represent physically unsta-
ble systems. Qualitative arithmetic may result in ambiguities in the signatures,
denoted by *. Details may be found in [18].

We augment fault signatures to include information directly indicating dis-
crete faults. Because discrete faults cause junctions to change mode, they cause
some variable values to go from nonzero to zero (for a junction turning off) or
go from zero to nonzero (for a junction turning on). For example, if the circuit
switch is expected to be on, but is off, then we will observe the current f6 through
R2 go to zero. If it is expected to be off, but is on, we will observe f6 go to a
nonzero value. Measuring variables affected in this manner provides additional
discriminatory information, because parametric faults are unlikely to cause this
behavior. If the expected switch state is correct and a fault in R2 occurs, then we
will not observe this behavior because a finite change in value cannot force zero
to nonzero or nonzero to zero behavior in f6. Therefore, we include additional
symbols N, Z, and X, implying zero to nonzero, nonzero to zero, or no discrete
change behavior in the measurement from the estimate.

Definition 4 (Fault Signature) A fault signature for a fault f and measure-
ment m is the qualitative effect of the occurrence of f on m, and is denoted by
σf,m = (s1s2, s3), where s1, s2 ∈ {+,0,-,*}, and s3 ∈ {N,X,Z,*}. We denote the
set of all fault signatures for fault f in mode q as Σf,q.

In symbol generation, we extract symbolic features from the measured change
in a residual that are matched to predicted fault signatures. When a significant
deviation is detected on a residual, these symbols are computed and associated
with the measurement, and this forms the observed fault signature. The symbols
are derived by computing the initial direction of change and the successive slope
of the change using a statistical significance test and a sliding window method
[22]. We compute the discrete change symbol using the same techniques. After a
fault is detected, we compute the means of the observation and the estimate over
a small window (e.g., 5 samples). We then determine whether each signal belongs
to a distribution with zero mean. If the estimate is nonzero and the measurement
is zero, we report Z, and if the estimate is zero and the measurement is nonzero,
we report N, otherwise, we report X.

Temporal Causal Graphs We compute predicted fault signatures using the
temporal causal graph (TCG), derived from the bond graph of a given mode of
the system [18]. The TCG captures the dynamics of the system, therefore can be
used to predict the qualitative effects of faults on the measurements. The vertices
of the TCG are the system variables. The labeled edges represent the qualitative
relationships between the variables, i.e., equality (=), direct (+1) or inverse
(−1) proportionality, integration (dt), and parametric relations (e.g. 1/R1). The
directionality of these edges is determined by causality, i.e., the input-output
relations of the bond graph elements. Causality determines whether effort or
flow is being imposed by a bond on an element and is derived automatically [20].



(a) TCG for the on mode. (b) TCG for the off mode.

Fig. 5. TCGs for the switched circuit.

We augment the TCG to capture the effect of discrete faults on the system
variables by creating a new vertex in the TCG for each discrete fault event.
We create new edge types linked to the appropriate junction variables. We also
introduce the junction mode variable mi for each controlled junction i, which
the discrete fault will also affect. The discrete fault event is added to the TCG
and edges made to the junction variables if it is possible from the last known
mode that the discrete fault could have occurred, given the logic of the junction’s
CSPEC. The new edge labels are Z, causing a variable value to go to zero, and
N , causing a variable value to go nonzero.

In the circuit example, consider the mode where the relay is closed. To cor-
rectly associate the fault event with the junction variables, we need to determine
which variables are immediately affected by the change in the junction mode.
The closed switch creates a configuration where a voltage is imposed on R2,
determining the current flow. An open switch, however, imposes zero current on
R2, therefore determining its voltage. This is directly derived by causal analysis
of the HBG. Each 1-junction (0-junction) that is on has a flow (effort) deter-
mining bond. When a junction turns off as the result of a fault, the determining
flow or effort will be immediately affected because it goes to zero. The other
variable of the bond will, if not tied to a source, also be immediately affected,
because a resistor element must absorb the causal change, and these variables
are algebraically related. Further, since the overall resistance of the components
connected to that bond is positive, the effort and flow always change in the same
direction. In the circuit, this relates to the current and voltage through R2. It is
necessary to relate this to the voltage, because otherwise the effect of the discrete
fault on that variable may not be correctly predicted. The TCG for this mode
is shown in Fig. 5(a). The τ0 fault will immediately affect e6, f6, and m1.

When a switch is expected to be off, a nonzero current can only be explained
by the switch turning on. In the HBG, if the junction is off, then its flows (for a 1-
junction) or efforts (for a 0-junction) will no longer be zero, so these variables will
be affected at the point of failure. The TCG in this mode is shown in Fig. 5(b).
The τ1 fault will immediately affect f5, f6, and m1.

3.3 Hypothesis Generation

Symbol generation produces a qualitative value for the initial measurement de-
viation. The goal of hypothesis generation is, given this initial deviation σm, and



Algorithm 1 F0 ← GenerateHypotheses(σm, q̂(td))
F0 ← ∅
Qtf ← RollBack(q̂(td))

for all q̂(t−f ) ∈ Qtf do

Fq ← PropagateBackward(σm, q̂(t−f ))
for all f ∈ Fq do

F0 ← F0 ∪ {(f, δ(ef , q(t−f ))) : f ∈ Fq}

the hypothesized system mode at the time of fault detection q̂(td), to produce a
consistent set of fault candidates. The procedure is shown as Algorithm 1.

At the time of fault occurrence, tf , the system is in some mode q(t−f ). For
parametric faults, q(t−f ) = q(t+f ), but for discrete faults, a mode change is in-
duced, i.e., q(t−f ) 6= q(t+f ). For a discrete fault event ef , q(t+f ) = δ(ef , q(t−f )). For
a parametric fault f , we take ef to be ∅. When the fault is detected at td ≥ tf ,
the system is in some mode q(td). Due to fault detector delays, it may be the
case that q(t+f ) 6= q(td), due to controlled or autonomous mode changes.

Therefore, we need to determine the possible modes of fault occurrence, Qtf
,

to generate consistent hypotheses. We assume that we can accurately track the
system mode under nominal conditions. Therefore, the following lemma holds2.

Lemma 1. The true mode of fault occurrence, q(t−f ), belongs to the estimated
mode history, and can be derived from the estimated system mode at the time of
fault detection, q̂(td).

Assuming that no more than n mode changes occurred between tf and td,
RollBack performs a backward mode search starting from q̂(td) to produce a set
of possible modes, Qtf

, in which the fault may have occurred [14]. Discontinuities
should be detected at the point of fault occurrence, so, if a discontinuity is
observed, Qtf

= {q̂(td)}. Since discrete faults explicitly set variables to zero or
set variables from zero, then if one of these variables is measured, a discontinuity
will be detected and roll back is not performed. Therefore, measuring these
variables will make roll back more efficient when discrete faults occur.

Given a hypothesized system mode after fault detection, q̂(t−f ) ∈ Qtf
, and

given a measurement deviation, σm, and using the TCG, PropagateBackward
starts from the observed measurement deviation and maps it back to possible
changes in variables and parameter values, creating a set of fault candidates,
Fq [18]. This includes the discrete fault events. For discrete faults, we do not
need to produce q̂(t+f ) to generate this set, because all we need to do is link back
to some change in a junction variable that can be affected by a change in junction
state. So, we can generate both parametric and discrete faults as candidates using
the TCG for q̂(t−f ), thus improving the efficiency of the approach.

For example, consider that a decrease in the current through R2, or f−6 , is
observed when the switch was expected to be closed. We denote this mode as
2 This is a revised form of Lemma 1 in [14].



Algorithm 2 Fi+1 ← RefineHypotheses(σm, Fi)
Fi+1 ← ∅
for all (f, q) ∈ Fi do

if σm ∈ Σf,q then
Fi+1 ← Fi+1 ∪ {(f, q)}

else
Q′ ← RollForward(q)
for all q′ ∈ Q′ do

GenerateSignatures(f, q′)
if σm ∈ Σf,q′ then

Fi+1 ← Fi+1 ∪ {(f, q′)}

q1 and the open mode as q0. Since there are no autonomous transitions that
may occur, the only possible q̂(t−f ) ∈ Qtf

is that where the switch is closed. The
TCG for this mode is shown in Fig. 5(a). The decrease in f6 can be explained by
the fault event τ0, given f6 is positive. It can also be explained by a fault in the
sensor of f6 (S−

f6
), R+

2 , or e−6 . Propagating backwards further can link the change
in e−6 to C−

1 and R−
1 . Thus F0 = {(τ0, q0), (S−

f6
, q1), (R+

2 , q1), (C−
1 , q1), (R−

1 , q1)}.

3.4 Progressive Monitoring

Hypothesis generation produces the set of fault candidates consistent with the
initial measurement deviation. Progressive monitoring prunes this set as addi-
tional measurements deviate using a hypothesis refinement algorithm. When
controlled events occur, we update the fault hypotheses, i.e., for event e, (f, q)
is replaced in Fi with (f, δ(e, q)). For each candidate (f, q), we make predictions
about future measurement deviations in the form of fault signatures, Σf,q. Can-
didates whose predictions are consistent with an observed deviation are retained,
and inconsistent candidates are dropped. The hypothesis refinement procedure
is shown as Algorithm 2.

To track our fault candidates against new measurement deviations, we need
to first predict what these deviations will be in the form of fault signatures.
For hypothesized fault f in mode q, and using the TCG, GenerateSignatures
performs a forward propagation of the fault effects to the measured variables,
producing the fault signatures for all measurements of a fault, Σf,q [18]. Note
that Algorithm 1 applies the mode change induced by the fault. This is important
for discrete faults, because this is the correct mode in which to make predictions.
For the circuit, the TCGs for the fault-induced modes are given in Fig. 6(a) for
the τ0 fault and in Fig. 6(b) for the τ1 fault.

A parameter change propagates increase or decrease values along the edges,
and a discrete change of X to all variables. The increase or decrease propagation
for discrete faults depends on whether a junction turns on or off. If the fault
results in a junction turning off, then a decrease is propagated if the junction
variable was last known to be positive, otherwise an increase is propagated. We
propagate Z to the immediate variables. The estimated variable sign is needed



(a) TCG for the τ0 fault-induced mode. (b) TCG for the τ1 fault-induced mode.

Fig. 6. TCGs for the fault-induced modes.

for parametric faults as well, because an increase or decrease in a parameter
value will have a different effect if the immediately affected variable is positive
or negative. If the fault results in a junction turning on, then, in general, we
do not know whether the junction variables will become positive or negative.
PropagateBackward gives us this information. For example, consider the τ1 fault
for the circuit. Consider that we observe e+

2 . When we propagate backward
(Fig. 5(b)), we map e+

2 to f+
5 , which in turn implicates the τ1 fault. So in this

case, if τ1 is the actual fault, it will cause f+
5 . Since at a 1-junction the flows are

equal, the + change should be propagated forward to f6 (Fig. 6(b)). As discussed
in Section 3.2, f6 and e6 should change in the same direction, so we also know
what to propagate to e6. We propagate N to the junction flow (effort) for a
1-junction (0-junction), and also to the effort (flow) if it is equal to the flow
(effort) by a gain, as in Fig. 6(b). Propagation of Z or N only continues along
edges labeled with = or some parameter p. Otherwise, the change in the variable
will not exhibit this behavior, and X is propagated along the remaining edges.

For example, consider the τ0 fault in the circuit, where m1, f6, and e2 are
measured. The fault-induced mode, q̂(t+f ), is given by the TCG in Fig. 6(a).
Propagation begins at the fault event τ0. This results in an immediate change
in m1, resulting in a signature of (-0,Z), and an immediate decrease in f6,
assuming f6 was positive, resulting in (-*,Z)3. It will also cause a decrease
in f5, which will propagate to the rest of the system. The Z symbol is also
propagated to the immediate variables. This propagation stops at f5, because
f5 is the sum of f6 and f4. The residual for e2 will exhibit a first-order change,
due to the integration along the edge labeled with 1/C1dt, yielding (0-,X).

From our current set of candidates, Fi, we generate a new set, Fi+1, when a
new deviation is detected. Controlled mode changes may occur between ti and
ti+1, so the changes can be applied to produce the new nominal reference, and
generate a new set of associated fault signatures for the new mode. Because
autonomous mode changes may have also occurred, they must be accounted for
when generating Fi+1. For a given (f, q) ∈ Fi, we check if the new deviation is
consistent with the predicted fault signatures. If so, it is retained. If not, it is
dropped. The inconsistency, however, may be because autonomous mode changes

3 Even though the TCG does not predict the *, it is necessary to include. The slope
in the new mode does not change, but the slope in the estimated mode may change,
so the residual may have a nonzero slope.



Fig. 7. Electrical circuit equivalent for the battery system.

(which can no longer be correctly predicted) have occurred, so the mode q is not
correct. Assuming no more than n autonomous mode changes have occurred,
RollForward performs a forward mode search to produce a set of new modes
Q′ from q that may be the correct mode [14]. For each (f, q′), where q′ ∈ Q′,
we generate signatures for f in mode q′, and retain (f, q′) if the prediction is
consistent or drop it if not.

Progressive monitoring performs the qualitative fault isolation. Backward
and forward propagation are polynomial in the size of the TCG [18]. The roll
back and roll forward algorithms are polynomial in the maximum number of
expected mode changes during diagnosis, n [14]. Adding discrete faults only
introduces more fault candidates, so it does not change the worst-case time or
space complexity of the diagnosis algorithms. The discrete change symbol will
often help to distinguish between discrete and parametric faults, but if multiple
discrete and parametric fault candidates remain after progressive monitoring,
then a quantitative fault identification algorithm can be used to resolve the
ambiguity and determine the true system fault and its magnitude [14].

4 Case Study

4.1 Experimental Setup

We illustrate our integrated approach to parametric and discrete fault diagno-
sis on ADAPT [3] deployed at NASA Ames Research Center. The testbed is
functionally representative of a spacecraft’s electrical power generation, storage,
and distribution subsystems. It has a large number of modes, over 100 sensors,
and over 170 possible faults. For our diagnosis experiments, we consider a sub-
set of ADAPT that involves a battery discharging to two parallel DC loads as
shown in Fig. 7. The selected sensors measure the battery voltage, VB(t), the cur-
rents through the loads, IL1(t) and IL2(t), and the mode of the circuit breaker,
MCB(t). A sampling rate of 2 Hz is used in all the experiments.



Fault VB(t) IL1(t) IL2(t) MCB(t)

C−
0 (+*,X) (+*,X) (+*,X) (00,X)

R+
1 (0-,X) (0-,X) (0-,X) (00,X)

R+
L1 (0*,X) (-*,X) (0*,X) (00,X)

R−
L1 (0*,X) (+*,X) (0*,X) (00,X)

R+
L2A (0*,X) (0*,X) (-*,X) (00,X)

R−
L2A (0*,X) (0*,X) (+*,X) (00,X)

Sw1.off (0*,X) (-*,Z) (0*,X) (00,X)

Sw2.off (0*,X) (0*,X) (-*,Z) (00,X)

I+
L1 (00,X) (+0,*) (00,X) (00,X)

I−L1 (00,X) (-0,*) (00,X) (00,X)

Table 1. Fault Signatures for the Battery System with Both Loads Online

4.2 Modeling Faults

The battery is modeled by an electric circuit equivalent [23]. The battery capac-
itance is modeled using a large capacitance, C0. Other parameters model non-
linear, dissipative behaviors. Battery faults include loss of charge represented by
a capacitance decrease, C−

0 , and internal resistance increase, R+
1 . In the loads,

faults affect the resistance values RL1 and RL2A which can increase or decrease.
In the sensors, we consider bias faults which cause abrupt changes in the mea-
sured values. Sensor faults are labeled by the measured quantity they represent,
e.g., V +

B represents a bias fault in the battery voltage sensor. For discrete faults,
we consider faults in the relays, Sw1 and Sw2, and the circuit breaker, CB.

Selected fault signatures for the system mode with both loads online are
given in Table 1. The nonlinearities in the battery introduce ambiguity in the
qualitative signatures, denoted by the * symbol. Also note that since the sen-
sors do not feed back into the system, sensor faults affect only the measurement
provided by the sensor. The other measurements are not affected, and the corre-
sponding signature is denoted by 00, indicating no change in the measurement
from expected behavior. Sensor faults are allowed to produce discrete changes,
therefore their discrete change symbol is given by *.

4.3 Experimental Results

We investigate the diagnosis of software-injected discrete faults and a manually-
injected load fault in the actual system. We will denote the system mode by qijk

where i is the mode of Sw1, j is the mode of Sw2, and k is the mode of CB.
We first investigate an unexpected switch fault. At 375.5 s, Sw1 opens with-

out a command. The measured and estimated outputs are shown in Fig. 8. As
a result, IL1(t) goes immediately to zero, and VB(t) increases as a result of less
current being drawn. The fault is detected at 376.0 s, and the symbol genera-
tor reports a decrease in IL1(t). The only possible mode of fault occurrence is
q111, so F0 = {(I−L1, q111), (R+

1 , q111)), (R+
L1, q111)), (R+

L2A, q111)), (R−
L2A, q111)),
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Fig. 8. Sw1 opens.
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Fig. 9. Sw1 gets stuck closed.

(Sw1.off, , q011)}. At 376.5 s, the symbol generator reports an increase in VB(t),
thus eliminating the sensor fault as a candidate from F1. Because MCB does not
change, and we assume single faults, the autonomous mode change of the circuit
breaker could not have occurred. At 378.5 s, the symbol generator reports IL1

Z because ÎL1(t) is nonzero, but IL1(t) is zero. Since parametric faults cannot
cause this behavior, Sw1.off is correctly identified as the fault.

We now investigate a stuck switch fault. At 414.0 s, Sw1 is commanded off
but remains closed. The measured and estimated outputs are shown in Fig. 9.
Therefore, the estimated system mode is q011 but the actual system mode is
q111, and ÎL1(t) goes to zero, while IL1(t) remains nonzero. The fault is detected
at 416.0 s, and the symbol generator reports that IL1(t) has increased. Because
the expected mode is q011, the only reason for the current to deviate is due
to a discrete fault or a sensor fault, i.e., F0 = {(I−L1, q011), (Sw1.on, q111)}. At
418.5 s, the symbol generator reports IL1(t) N, because the measurement went
nonzero with respect to the estimate. Because sensor faults are also allowed to
cause discrete behavior, both faults are retained in F1. At 419.5 s, we observe
a decrease in VB(t), and since I−L1 cannot cause this, Sw1.on is isolated as the
true fault. Again, no autonomous mode changes need to be considered.

We now investigate a parametric fault in Load 1. A 33% decrease in the Load
1 resistance, R−

L1, is injected at 417.0 s. The measured and estimated outputs
are shown in Fig. 10. The decrease in resistance increases IL1 abruptly, and is
detected at 417.0 s, resulting in F0 = {(I+

L1, q111), (Sw2.off, q101), (C−
0 , q111),

(R−
L1, q111), (R+

L2A, q111), (R−
L2A, q111)}. The first order change due to the fault is
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Fig. 10. R−
L1 fault with magnitude of 33%.

compensated by the battery, and at 422.0 s, the slope of the change in IL1 is de-
termined to be zero, reducing the candidate set to F1 = {(I+

L1, q111), (C−
0 , q111),

(R−
L1, q111)} because now the immediate change is known to be a discontinuity.

Again, the lack of change in MCB rules out an autonomous transition of CB.
At 433.0 s, the symbols generator reports a decrease in VB(t). Since I+

L1 cannot
produce a deviation in this measurement, it is dropped, and since C−

0 would
have caused an increase, it is also dropped, and R−

L1 is correctly isolated.
Other faults were injected in the hardware or in simulation. We have per-

formed many additional experiments, and have found that qualitative fault iso-
lation typically reduces the candidate set to a single candidate within a few
measurement deviations. In some cases, especially those involving sensor faults,
multiple candidates remained after qualitative fault isolation, and a quantitative
fault identification module would be necessary to resolve the ambiguities.

5 Conclusions

We presented an integrated parametric and discrete fault diagnosis approach
for hybrid systems. Deviations in expected behavior are abstracted to perform
qualitative fault isolation. Both parametric and discrete faults are included in
the diagnosis model so that their effects can be predicted using our qualitative
algorithms. Our methodology for predicting the effects of discrete faults can
also be applied to predicting the effects of autonomous mode changes, which
can be used within a larger mode estimation scheme to generate only consistent
mode branchings from the current mode. We presented a case study for hybrid
diagnosis on the ADAPT system, with experimental results that demonstrate the
effectiveness of the approach to a real, complex hybrid system. Future work will
incorporate a fault identification module to handle both parametric and discrete
faults, and formally incorporate the use of discrete mode sensors for switching
elements to more efficiently handle the roll back and roll forward processes.
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