
For submission and review: 1998 ASME 18th Computers in Engineering Conference

An Integrated Multi-Domain Analysis Environment
For High Consequence Systems

James Davis, Jason Scott, Janos Sztipanovits, Gabor Karsai
Measurement and Computing Systems Laboratory

Vanderbilt University
Nashville, TN 37235

Marcus Martinez
Electromechanical Engineering Department

Sandia National Laboratories
Albuquerque, NM 87185

Abstract

Modeling and analysis of high consequence, high
assurance systems requires special modeling
considerations. System safety and reliability
information must be captured in the models.
Previously, high consequence systems were modeled
using separate, disjoint models for safety, reliability,
and security. The MultiGraph Architecture facilitates
the implementation of a model-integrated system for
modeling and analysis of high assurance systems.
Among the tools used for analyzing safety and
reliability are a behavioral simulator and an automatic
fault tree generation and analysis tool. Symbolic
model checking techniques are used to efficiently
investigate the system models. A method for
converting finite state machine models to ordered
binary decision diagrams allows the application of
symbolic model checking routines to the system
models. This integrated approach to modeling and
analysis of high consequence systems ensures
consistency between the models and the different
analysis tools.

Introduction

Safe and reliable operation is a primary goal in the
design of high consequence systems. This category of
systems covers a wide range of systems, from nuclear
weapons to chemical plants, where system malfunctions
under normal, abnormal, and malevolent environments

may have catastrophic consequences. High
consequence systems typically have the following
characteristics:

� The systems are complex and heterogeneous.
Safety and reliability are system-level properties.

� The systems are reactive; they are in
continuous interaction with their environment.

� Dynamics is an essential characteristic of
system behavior.
Safety analysis methods originated in the early

ICBM-based weapon systems [1]. During this period
engineers first recognized that complex, system-level
interactions, and cascading effects are the primary
sources of safety hazards. The goal of safety analysis
is to answer the following question: Is there any
normal or abnormal system input or fault conditions
under which the system is able to produce behaviors
that are considered to be safety hazards? Safety
analysis focuses on abnormal behaviors that must be
avoided or prevented by safe design (inherently safe
systems) or active safety control mechanisms. A
frequently used technique in safety analysis is Failure
Modes and Effects Analysis (FMEA). The FMEA
analysis utilizes a fault propagation model with the
objective of investigating component failures.

Reliability analysis is a different, but strongly
related, aspect of system design. The primary question
to be answered by reliability analysis is the following:
What is the probability of losing a required function as
a result of component failures? Reliability analysis

typically uses physical component models
characterized by failure rate statistics. The goal of the
analysis is to calculate system-level failure rates for
selected functionalities. One of the important methods
in reliability analysis is based on fault tree models of
systems. Fault trees capture the relationship between a
’top event’ (a critical functional failure in the system
operation) and a combination of component faults.

Our previous experience in the development and
testing of real-time diagnostic and monitoring systems
for aerospace [2][3], electric utility [4] and chemical
process applications [5], and our current work in the
safety and reliability analysis of nuclear weapon system
surety components have shown that the selection of
suitable modeling paradigms plays a critical role in
obtaining practical, usable answers during analysis.
Traditionally, safety and reliability analysis tools use
different modeling approaches and different analysis
methods. Since the questions which need to be
addressed refer to the same underlying system, the
models cannot be independent. The consistency among
the models and consequently the analysis results is not
guaranteed due to the lack of any formal description of
relationships among the different models. Naturally,
this lack of consistency makes the objective evaluation
of design tradeoffs impossible.

This paper discusses a new approach for integrated
safety and reliability analysis using Model-Integrated
Computing principles and tools. The essence of the
approach is to perform system modeling using a
domain-specific, multiple-aspect modeling
environment that allows the integrated, consistent
representation of system models. This integrated model
is translated into the input languages of analysis tools,
thereby maintaining the consistency among the tool-
specific models.

Background

Model-Integrated Computing

In Model-integrated computing, integrated,
multiple-view, domain-specific models capture
information relevant to the system under design. Models
explicitly represent the designer’s understanding of an
entire system, including the information-processing
architecture, physical architecture, and operating
environment. Integrated modeling explicitly represents
dependencies and constraints among various modeling
views.

The Multigraph Architecture (MGA) is an
infrastructure for model-integrated computing and is
described in detail elsewhere. [7] A typical model-

integrated tool configuration is shown in Figure 1.

GUI

VMB-CLIENT

CORBA

ODMG’93

DBIF

CONST. MAN.

CORE

SCHEMA

OODB

META-VMB

DATABASE
ACCESS

MANAGER

DBIF

TRANSLATOR

MODEL INTERP.

META-
PROGRAMMABLE
MODEL SERVER

ANALYSIS ALG.

GUIANALYSIS
TOOL

ANALYSIS
MODEL.

DBIF

TRANSLATOR

MODEL INTERP.

GUI

ANALYSIS ALG.

EXECUTABLE
MODEL.

SYNTHESIZED
APPLICATION

ANALYSIS ALG.

GUIANALYSIS
TOOL

ANALYSIS
MODEL.

DBIF

TRANSLATOR

MODEL INTERP.

Figure 1: Model-Integrated Tool Environment
in the MGA framework

The integrated environment includes Modeling
Tools, Integrated Model Database, Analysis Tools, and
Application Synthesis Tools. The Analysis Tools work
with tool-specific analysis models; the applications are
specified in terms of executable models. The modeling
paradigm of the analysis tools and the executable
models are domain independent. In a given domain, the
relevant information about the design artifact is
captured by a multiple-view, domain specific modeling
paradigm. In MGA, the modeling paradigm is
described by a meta-language. The meta-language
representation of the modeling paradigm is used to
generate components of a Metaprogrammable Model
Server, and a Metaprogrammable Visual Model
Builder (META-VMB). Key components of the model
server are the “Model Interpreters”. The role of the
Model Interpreters is to translate the domain specific
model into the analysis models for the tools and the
executable models of applications to be synthesized.
This architecture allows that the analysis and synthesis
tools to share design information that is common
without requiring that the tools use the same modeling
paradigm.

An integrated tool environment is built in the
following steps using the MGA infrastructure:
1. Systems and domain experts conduct domain

analysis and specify an integrated modeling
paradigm, which can capture key aspects of the
system. The modeling paradigm is comprised of
the concepts, relationships, model composition
principles and constraints that are specific to the
domain.

2. Using the formal representation of modeling
paradigms, systems and domain experts specify
and create a domain specific model building,
model analysis, and software/system synthesis

(model integrated program synthesis) environment.
The environment includes reusable domain
specific components, general building blocks,
domain specific model analysis tools, and software
synthesis tools. Completion of this step is
supported by MGA meta-tools.

3. Domain and application engineers build integrated
multiple view models of systems to be designed
and implemented. The multiple view models
typically include requirement and design models,
are based on formally specified semantics, and
support performance, safety and reliability analysis
processes.

4. Domain and application engineers analyze the
models according to the nature and needs of the
domain. The analysis is typically supported by
generic tools (e.g. performance analysis,
simulation, reliability analysis, safety analysis
etc.). The domain specific models are translated
into the input languages or input data structures of
the connected analysis tools. The model translation
is completed by MGA model interpreters that are
part of the modeling and model analysis
environments.

5. If necessary, the validated models are used for the
automatic synthesis of software applications.

Multi-Domain Modeling

High Consequence engineering design and
development is a complex process which often
incorporates diverse, often conflicting requirements,
new technologies, and involves many disciplines.
System engineers must identify objectives and
requirements and formulate metrics that can be used by
the design teams to assess the viability of the concepts in
satisfying the design and development objectives.

The model-integrated computing approach has the
ability to incorporate strengths from various modeling
and analytical techniques and employs methodology
fragments in a hybrid structure to solve complex design
problems. In the specific problem domains of safety and
reliability, the current technologies being applied in a
non-integrated fashion cannot solve the complex
predictive problems that will enable a designer to certify
a design solution. System certification is crucial in the
design of High Consequence systems. The approach
taken with model-integrated computing is to take the
strengths of a number of analytical techniques and
define/develop an approach which surpasses current
approaches and also provides a venue for inclusion of
new technologies which can be incorporated into the
MGA framework and tools.

 Integrated Safety and Reliability

Integrating safety and reliability addresses both
complex design and coupled modeling simulation. To
accomplish these objectives, formal languages [11]
representative of the problem and solution domains are
incorporated to specify all functions and relationships
for the specific domains (e.g. reliability, safety).

The objective of reliability modeling and analysis
is to represent the major functions of the design in terms
of expected and desired sub-system and component
behaviors. This process is referred to as modeling and
the usual result is a diagrammatic representation of the
interrelating component behaviors and a corresponding
set of "reliability mathematical equations". Assumptions
affect the accuracy of the mathematical equation and its
evaluation. Successful design functions require
successful operation of all events modeled. Some
operations are represented by single objects while others
have two or more objects - any of which can provide the
needed operation. These functional relationships lead to
a mathematical expression relating design failure
probability to component behavior failure probabilities.

Safety modeling and analysis must address
external and internal events which, when subjected to a
design, can lead to unsafe operation or conditions. Safe
design is directed toward minimizing non-engineered or
poorly engineered hazard controls. Safety modeling is
an extension of reliability modeling and includes an
assessment of how frequently an excursion from the
design results in a hazard. The analysis is extended to a
more formal manner to include consideration of event
sequences, which transform the hazard into an accident.

Integrating safety and reliability approaches under
the framework of the MGA requires safety and
reliability domain experts to possess and maintain in-
depth knowledge of individual sub-systems and
components used in the problem domain that affect the
solution domain. It is the responsibility of the domain
experts to formalize the design under a common formal
language. The use of a common formal language
suitable for integrated modeling and analysis allows the
synthesis of the multi-domain problem structure to be
synthesized into singular aspect domain model
structures. It is the singular aspect domain structures
that allow domain experts to perform specific analyses
in the area of concern. This methodology allows both
complexity and coupled model simulation issues to be
addressed.

Ordered Binary Decision Diagrams (OBDD)

Safety and reliability analyses use discrete
models and operations over finite domains. The most

general difficulty in all of the analysis techniques is the
size of the state space in large-scale systems.
Combinatorial explosion is the result of the exponential
increase in the number of discrete elements (states,
hypotheses, etc.) during operations, which sooner or
later makes access to the individual elements
unfeasible. By introducing a binary encoding for the
elements, the individual elements, and sets of elements,
the relations among them can be expressed as Boolean
functions. For example, the 2100 states of a finite state
automaton can be encoded with binary variables
{s(1),…,s(100)} forming a binary state vector s. The
Boolean functions

f1[s(1),…,s(100)]=s(1)’∧s(23)∧s(99) and
f2[s(1),…,s(100)]=s(1)∧s(22)∧s(89)

represent two subsets, S1 and S2, of the 2100 states
including 297 elements each. The set S3=S1∪S2 can
be derived symbolically as the disjunction of the two
Boolean functions:

f3[s(1),…,s(100)]= f1[s(1),…,s(100)]∨
f2[s(1),…,s(100)]= s(1)’∧ s(23) ∧ s(99)∨ s(1) ∧ s(22) ∧
s(89)

Without the need to enumerate and compare the
individual elements - which would be a formidable task
otherwise. In general, using Boolean function
representations, we can express operations and
algorithms in diagnosis and safety analysis in symbolic
form, by means of symbolic Boolean function
manipulations.

OBDDs provide a symbolic representation for
Boolean functions in the form of directed acyclic
graphs [6]. They are a restricted, canonical form
version of Binary Decision Diagrams (BDD) [8].
Bryant [9] described a set of algorithms that implement
operations on Boolean functions as graph algorithms on
OBDDs. Taking advantage of the efficient symbolic
manipulations, researchers have solved a wide range of
problems in hardware verification, testing, real-time
systems, and mathematical logic using OBDDs that
would have been otherwise impossible due to
combinatorial explosion. Symbolic model checking is
extensively used in hardware design (see, e.g., [10]),
and has shown to be efficient in state space sizes 10120

and beyond.

Modeling of High Assurance, High
Consequence Systems

Current high consequence, high assurance designs
have the safety, reliability, performance and security of
the system as disjoint, separate models and analyses.
Separate organizations are responsible for evaluating
and reporting the safety and reliability of the system.

These organizations are disjoint and do not report to one
another. Each organization has their preferred modeling
and analysis techniques and uses these techniques for
system verification and validation. Modifying the safety
model of a system will not affect the reliability model.
The different models are just different views of the same
system. Modifying the system model in one view should
affect the other views. [2]

An integrated model for high assurance, high
consequence systems is based on system models. Safety
and reliability views of the models can be abstracted
from the integrated model. Figure 2 shows the
integrated model and how the abstractions can be used
for viewing and modifying specific model traits. Using
an integrated approach, system level changes will show
up in the other system model views if the modification
affects the specific view.

A key element of integrated modeling involves the
interaction of different modeling aspects. Previously
these areas of overlap had to be dealt with manually. By
using an integrated approach, changing the model in one
aspect may affect many different views of the model.
The system can be modeled in a more natural format.
Instead of requiring safety and reliability models of a
system, the system can be modeled in a manner that is
more natural to system designers. This system model is
then augmented with safety and reliability features. For
example, the system may be modeled using a behavior
model. The safety and reliability information about the
system could then be attached to specific behavioral
traits of the system. When performing a safety or
reliability analysis, the necessary information can be
extracted from the augmented behavioral model.

Figure 2: Disjoint versus Integrated Modeling

Safety Aspect

Safety

System
Faults

Reliability

Fault AspectReliability Aspect

Integrated
System
Model

Safety and reliability are not separate, independent
traits of a system. Instead, both safety and reliability
are functions of a system’s components, how the
components are assembled, how the components can
fail, and the system’s environment.

Selection of Domain-Specific Modeling
Paradigm

Safety and reliability analysis algorithms work
with a “model” (a suitable representation) of the
system. The level of detail in the models is determined
by the required depth of the analyses.
1. Models for Safety Analysis. Safety analysis

requires the development of models that represent
the relationship between failure modes (or fault
events) of physical components and discrepancies
(or discrepancy events) in the high-level behavior
of the system. Taking into consideration of the
characteristics of the high impact system category
(complexity, dynamic behavior), we selected the
following model organization:
• The structure of the system is captured in two

independent hierarchies, forming the
Behavioral Model and the Physical Model.

• The Behavioral Model represents the system
behavior in the discrete state space in terms of
hierarchical, parallel state machines. The
Behavioral Model includes both functional
and fault behaviors by representing functional
and fault states, and transitions among these
states triggered by input, local, and fault
events. We have selected the StateChart
notation [11] for behavior modeling because
the StateChart models are expressive, scalable,
and support incremental modeling.

• The Behavioral Models are augmented with
Observation Models. The observation models
define the set of observable (instrumented)
events that can be used to perform system
diagnosis.

• The Physical Model captures the component
hierarchy of the system. The physical
components are modeled as component
assemblies and sub-assemblies. Each physical
component has a fault model view. The fault
model view lists the physically possible, and
functionally meaningful fault modes of the
components.

• The interdependencies between the Behavioral
Model and Physical Model are represented in
the form of references between these models.
The implemented-by references show the
relationship between system states and

physical components. Their role is to specify
the set of components that have impact on the
system behavior in each state. The caused-by
references link fault events in the state
transitions of the Behavioral Models to fault
modes of components. It is expected that all of
the fault modes of the components that are
referenced by the implemented-by references
of a state are accounted for in the outgoing
transients of the state machine.
Explicit representation of the

interdependencies between behavioral models and
physical models is a critical element of the
integrated modeling paradigm. It guides the model
builder to understand their relationship, and
enforces the systematic analysis of the effects of
the fault modes of components.

2. Models for Reliability Analysis. The analysis
environment includes a reliability analysis tool,
WinR [12], which requires modeling the systems
with a fault tree. The fault tree represents the
logical relationship between a top event and fault
modes in the form of an AND-OR tree. Utilizing
the fault tree models, and the failure rate
information of the components, the tool calculates
the expected rate for the occurrence of the selected
critical system state.

The models for reliability analysis have strong
overlap with the models for safety analysis and
fault analysis. The most important relationships
regarding reliability analysis are the following:
• The top event in reliability analysis

corresponds to a transition into a selected
critical system state, which is modeled as part
of the behavioral models.

• The fault events correspond to fault modes of
components that are contained in the physical
models.

• The fault tree can be derived from the set of
all possible state trajectories that lead to the
selected critical system state. These
trajectories are fully defined by the behavioral
models.

• The failure rate of the components,
subsystems, and systems used in reliability
analysis correspond to the expected rate of the
component fault modes introduced in the
physical models.

• The conclusion is that the behavioral and
physical models contain all the information
required for reliability analysis except failure
rate data for the component fault modes.
Therefore, by extending the component fault
models with probabilistic information, the

modeling paradigm will allow safety,
diagnosability and reliability analysis from the
same model set. It is important to note that the
relationship between the fault tree models
required by the reliability analysis tool and the
behavioral models is quite complicated. These
relationships exhibit tightly-coupled behavior.
Current system level analytical techniques do
not address tightly-coupled interactions, thus
making it practically impossible to expect that
independently built behavioral models and
fault tree models will be consistent with each
other even in trivially small size systems.

Formal Model for Integrated Analysis

The role of the formal model is to give a domain
independent, mathematical specification for the
models. We will focus on the Behavioral Model, since
it plays a central role in the analysis methods. The
Physical Model is primarily descriptive, and used in
information management. The selected domain-specific
form of the Behavioral Model is the StateChart
notation. While StateCharts are convenient for building
large-scale, parallel state machine specifications, the
analysis algorithms require a formal mathematical
model, which captures the precise semantics of the
hierarchical, parallel state machines. We use Discrete
Event System (DES) models for this purpose.

The DES model of a dynamic system (system
with memory) is shown on the left side of Figure 3.

The DES model is the (X,FY ,FS ,S,Γ,f,s0,Y,g)
finite state automata (see e.g. [CC93]), where:

 X is the input event set,

 FS ,FY are the sets of component faults and output
faults, both considered to be input events,

 S is the state set,

 Γ(s) is a set of feasible or enabled events, defined
for all s∈S with Γ (s)∈ X,

 f is a state transition function, f: X×FS×S→S’, defined
only for x∈Γ(s) when the state is s,

 s0 is the initial state,

 Y is the output set, and
 g is an output function, g: X×FY×S→Y, defined only
for x∈Γ(s) when the state is s.

Since the models need to support diagnosability
analysis, the model is divided into a System model and
an Observation model. In this approach, the component
faults are considered as additional inputs to the system.
It is also possible to model the abnormal (out of range)
inputs as elements of the X input set, creating a

‘normal’ and ‘faulty’ partition in X. In order to model
partial observations of the state trajectory
independently from the outputs of the dynamic system,
we use the h:Y×FI → Z observation model describing
the mapping between the Y outputs, FI instrumentation
faults, and the Z observations. The DES formalism also
allows the representation of non-deterministic state
machines, which is an important requirement for
modeling large-scale systems.

 FS FY FI

 X Y Z

 S S’ S Y Z

 FS FY FI f g h
 X

 DES Model: Relational Model:

(X,FY ,FS ,S,Γ ,f,s0,Y,g); system model f⊆ X× FS× S× S’; transition
model

f(x,fs,s,s’);
 g⊆ S× FY× X× Y; output

relation
 g(s,fy,x,y)

Figure 3: DES and Relational Models for
Dynamic Systems

The right side of Figure 3 shows the equivalent
Relational Model of a dynamic system. In the relational
model, the f, g and h mappings are considered to be the
f⊆ X×FS×S×S’, g⊆ X×FY×S×Y and h⊆ Y×FI×Z
relations. The significance of the relational
representation is that the models can be re-written as
Boolean functions by introducing some binary
encoding for the sets X×FS×S×S’, X×FY×S×Y and
Y×FI×Z. The Boolean functions f(x,fS,s,s’), g(x,fY,s,y)
and h(y,fI,z) evaluate to true for those elements of the
sets X×FS×S×S’, X×FY×S×Y and Y×FI×Z (encoded by
the Boolean vectors (x,fS,s,s’), (x,fY,s,y) and (y,fI,z)),
that are related by the f, g and h relations. The Boolean
representation of the DES model can be directly
translated into an OBDD form, allowing the symbolic
evaluation of the analysis algorithms.

Although it is not the purpose of this discussion,
it is worthwhile to note that DES (or relational) models
preserve composability and can be constructed in a
modular fashion using either component oriented
modeling approach [13] or process-oriented modeling
approach [14].

Integrated Safety and Reliability Analysis
using OBDDs

The primary difficulty in safety and reliability
analysis is combinatorial explosion. For example, the
generation of a fault tree from the behavioral model
requires the exhaustive enumeration of all possible
state trajectories that may lead from an initial state (or a
set of possible initial states) to a critical state under all
fault conditions. By representing the Behavioral Model
symbolically as an OBDD, the required calculations
can be completed symbolically without explicitly
enumerating the exponential number of alternatives.

The application of OBDD-s for the analysis
requires the following steps:

1. Mapping the Behavioral Models into OBDD-s: This
step is completed automatically. In accordance to
the general framework of the Multigraph
Architecture (MGA) (Figure 1), the StateChart
models in the Model Database are traversed by a
Model Interpreter, which selects a binary encoding
for the sates and incrementally builds up the OBDD
representation for the relational model of the
corresponding DES.

2. Safety analysis: The safety analysis tool receives the
OBDD representation of the Behavioral Model and
performs forward reachability analysis on the state
machine. Given a set of initial states S0, reachability
analysis calculates the set of reachable states S*(S0)
under all possible combination of x∈ X input
events, fS∈ FS and fI∈ FI fault events. The goal of
the safety analysis is to show that selected critical
events are not elements of the reachability set. The
reachability set is calculated symbolically, therefore
the analysis is feasible even for very large state
spaces.

3. Reliability analysis: As it was mentioned above, the
reliability analysis tool, WinR, expects a fault tree
that represents all possible combinations of fault
events leading to a selected top event.
Unfortunately, simple backward reachability
analysis does not provide the logic function of fault
events that must expressed in a fault tree. Instead,
the analysis algorithm generates all of the state
trajectories leading to the top event using backward
propagation, and simultaneously builds up the logic
relationship between the fault events and the top
event.

Modeling and Analysis Tool Architecture

The Model-Integrated Safety and Reliability
Analysis tool architecture is an instance of the generic

architecture of Model-Integrated Computing
Environments discussed before. Components of the
tool architecture are shown in Figure 4. The domain
specific models are built by the Metaprogrammable
Visual Model Builder, and are stored in the Model
Server. The constraints defined in the meta-language
representation of the modeling paradigm. The capture
constraints are enforced by the Visual Model Builder
and allow the user to create only valid models.

9,68$/�02'(/
%8,'(5

&25%$

2'0*·��

'%,)

&2167��0$1�

&25(

6&+(0$

22'%

0(7$�90%

'7%$6(
$&&(66
0$1$*(5

'%,)

75$16/$725

02'(/�,17(53�

0(7$�
352*5$00$%/(
02'(/�6(59(5

1/<6,6�$/*�

*8,6$)(7<
722/

)60
02'(/��2%''�

'%,)

75$16/$725

02'(/�,17(53�

)$8/7�75((
*(1(5$725

)60
02'(/��2%''�

1/<6,6�$/*�

*8,',$*126$%,/,7<
722/

)60�2%6�
02'(/��2%''�

'%,)

75$16/$725

02'(/�,17(53�

:,15
5(/,$%,/,7<

1/<6,6�722/

Figure 4: Analysis tool configuration

There is a separate model interpreter for each
analysis tool. The model interpreters traverse the
domain specific models and collect/translate the
information into the required input data structures of
the tools. This solution enables the reuse of the tools
even if the domain specific modeling paradigm is
changing.

The WinR reliability analysis tool is an ’external’
component in the tool architecture. WinR is interfaced
to the integrated modeling environment through the
Fault Tree Generator module. The output of the Fault
Tree Generator is the fault tree file required by the
WinR. It is important to note that the WinR tool has a
separate model building interface, therefore the tool
can be used independently from the integrated
environment. The advantage of using WinR in the
configuration above is that the overlapping modeling
views are kept consistent by the integrated modeling
environment.

Example

The techniques described above will be
demonstrated in a simple system (Figure 5) including a
tank, a pump, and a valve. The pump is used to fill the
tank, while the valve is used to empty the tank. The

actual system behavior is modeled; it is assumed a
controller exists for controlling the operation of the
valve and the pump. The example assumes the pump
and the valve have the same flow rates and that the tank
is instrumented sufficiently to determine the level of
material in the tank. The controller ensures the tank is
never full or empty.

The finite state machine model for the system is
shown in part A of Figure 5. Each piece of hardware
has its behavior modeled as a separate state machine.
When the system is analyzed, these state machines are
analyzed as if they are parallel components of the same
FSM.

Tank failure ranges correspond to the tank
becoming full or empty. Only when the pump is stuck
on and the valve is stuck closed can the tank become
full. Otherwise, the controller will either open the
valve or turn off the pump to keep the tank in nominal
operating ranges. Likewise, only if the pump is stuck
off and the valve is stuck open can the tank completely
empty its contents.

The event tree shown in Figure 5B is generated
from the FSM models of Figure 5A. This tree shows
all possible trajectories through the state space that
could lead to the critical error state from the default
system state. Both safety and reliability fault trees can
be generated, depending on whether the critical error
state corresponds to a safety violation or a reliability
concern. This tree represents the Boolean expression
relating events (and event combinations) to the selected
failure state. Symbolic techniques are used to derive
this expression automatically from the OBDD
representation of the system models. This tree
structure is not normally realized due to its size. All of
this information is also contained in the OBDD
representing the trajectories. Realizing the tree
requires enumerating the trajectories represented by the
corresponding OBDD.

Figure 5C shows the simplified fault tree. This
tree only contains Boolean AND, Boolean OR, and the
Boolean encodings for the failure events. This tree is
generated automatically through simplification of the
event tree. Again, an OBDD is used to capture this
failure expression. The fault tree is then translated to
WinR’s fault tree format.

For our example, the number of failure
trajectories is quite large compared to the size of the
system’s Behavioral models. However, the Behavioral
models actually represent a state space of 32 discrete
states. Even for this limited example, the number of
failure trajectories would be difficult to discover
manually.

Summary

Integrated safety and reliability analysis is a
difficult problem for two primary reasons. First, the
models to be used in these analyses are not independent
from each other. Therefore guaranteeing the
consistency of the analysis results is a major concern.
Second, the generally used discrete, finite state
modeling techniques require analysis methods that are
plagued by combinatorial explosion of the state and
event sets derived during the analysis. The described
model-integrated modeling and analysis environment
and the described analysis methods address both
problems. The introduction of an integrated modeling
paradigm allows the construction of models that are
domain specific, and consistent for each analysis task.
The problem of combinatorial explosion is mitigated
by the use of relational models and OBDD
representations. Although symbolic manipulations offer
tremendous advantages in the analysis of large-scale
systems, scalability remains an important issue in
analyzing these systems. The size of OBDD data
structures is sensitive to the ordering of the Boolean
variables, which indicates the need for the
development of good heuristics while mapping the
models into OBDD representations. Our experience
with the analysis of a variety of systems has shown the
feasibility of the approach.

POn POff

Pstuck On Pstuck Off

Opened Closed

StuckOpen StuckClosed

PUMP VALVE

SYSTEM

OFF

ON

FAIL_ON
FAIL_OFF

OPEN

CLOSE

FAIL_CLOSE
 FAIL_OPEN

TANK

TOK TError

[PStuck_On & StuckClosed]

[PStuck_Off & Stuck_Open]

A. Finite State Machine Model

B. Generated State Space Trajectory Tree

Automatic Generation

C. Simplified Fault Tree

Symbolic Simplification

Figure 5: Example System Model and Analysis

Future work must address analyzing systems with
regard to unintended consequences. The modeled
system must be exercised to determine possible state
combinations not included in the models. Additionally,
the scalability of these techniques must be examined.
When adding a new type of analysis to the desired

analysis packages, the modeling environment can
change. How this affects the desired analyses is
unknown.

Acknowledgements

Support for this project comes from Sandia
National Laboratories and DARPA. Sandia has supplied
all of the example systems used for tool evaluation.
DARPA’s support has been through the Evolutionary
Design of Complex Systems (EDCS) project.

Sandia is a multiprogram laboratory operated by
Sandia Corporation, a Lockheed Martin Company, for
the United States Department of Energy under Contract
De-AC04-94AL000.

References

[1] Leveson, N. : Safeware: System Safety and Computers,
Addison Wesley, New York, 1995.

[2] Misra, A., Sztipanovits, J., Underbrink, A., Carnes, R.,
Purves, B., “Diagnosability of Dynamical Systems,” Proc.
of the Third International Workshop on Principles of
Diagnosis, pp. 239-244, Rosario, WA 1992.

[3] Misra, A., Sztipanovits, J., Carnes, R., “Robust Diagnostic
System: Structural Redundancy Approach,” Proc. Of the
SPIE International Symposium on Knowledge-Based
Artificiaal Intelligent Systems in Aerospace Systems,
Orlando Florida, April 5-6, 1994.

[4] Padalkar, S., Karsai, G., Biegl, C., Sztipanovits, J., Okuda,
K., Miyasaka, N., “Real-Time Fault Diagnostics,” IEEE
Expert, pp. 75-85, June, 1991.

 [5] Karsai, G., Padalkar, S., Franke, H., Sztipanovits, J., “A
Practical Method for Creating Plant Diagnostic
Applications,” Integrated Computer-Aided Engineering to
be published in 1996.

[6] Bryant, R. E., “Graph-based algorithms for Boolean
function manipulation,” IEEE Transactions on Computers,
C-35(8), 1986.

[7] Sztipanovits, et al., “MULTIGRAPH: An Architecture for
Model-Integrated Computing” Proc. of the IEEE
ICECCS’95 Ft. Lauderdale, Florida, Nov. 6-10. 1995.

[8] Lee, C. Y., “Representation of Switching Circuits by
Binary Decision Programs,” Bell System technical Journal
pp. 985-999, 1959.

[9] Bryant, R. E., “Symbolic Boolean Manipulation with
Ordered Binary Decision Diagrams”, Technical Report
CMU-CS-92-160, School of Computer Science, Carnegie
Mellon University, June 1992.

[10] Burch, J. R., Clarke, E.M., Long, D. E., “Symbolic Model
Checking for Sequential Circuit Verification,” Technical
Report, CMU-CS-93-211, Carnegie Mellon University, July
15, 1993.

[11] Harel, D., “StateCharts: A Visual Formalism For Complex
Systems”, Science of Computer Programming 8, pp. 231-
278, 1987.

[12] Sandia National Laboratories, WinR Reliability Analysis
Software, Systems Reliability Department.

[13] Sampath, M. et al., “Failure Diagnosis Using Discrete-
Event Models,” IEEE Transactions on Control Systems
Technology. Vol. 4, No. 2, pp. 105-124, March, 1996.

[14] Sztipanovits, J., Carnes, R., Misra, A., “Finite-State
Temporal Automata Modeling for Fault Diagnosis,” Proc. Of
the 9th AIAA Conference on Computing in Aerospace, San
Diego, CA, October, 1993.

