
Computation Platform for Automatic Analysis

of Embedded Software Systems Using Model

Based Approach

A. Dubey, X. Wu, H. Su, T. J. Koo

Embedded Computing Systems Laboratory
Institute for Software Integrated Systems

Department of Electrical Engineering and Computer Science
Vanderbilt University, Nashville, TN 37212

{abhishek.dubey, xianbin.wu, hang.su, john.koo}@vanderbilt.edu

Abstract. In this paper, we describe a computation platform called
ReachLab, which enables automatic analysis of embedded software sys-
tems that interact with continuous environment. Algorithms are used to
specify how the state space of the system model should be explored in
order to perform analysis. In ReachLab, both system models and analy-
sis algorithm models are specified in the same framework using Hybrid
System Analysis and Design Language (HADL), which is a meta-model
based language. The platform allows the models of algorithms to be con-
structed hierarchically and promotes their reuse in constructing more
complex algorithms. Moreover, the platform is designed in such a way
that the concerns of design and implementation of analysis algorithms
are separated. On one hand, the models of analysis algorithms are ab-
stract and therefore the design of algorithms can be made independent
of implementation details. On the other hand, translators are provided
to automatically generate implementations from the models for comput-
ing analysis results based on computation kernels. Multiple computation
kernels, which are based on specific computation tools such as d/dt and
the Level Set toolbox, are supported and can be chosen to enable hybrid
state space exploration. An example is provided to illustrate the design
and implementation process in ReachLab.

1 Introduction

Embedded software systems are becoming an integral and ubiquitous part of
modern society. They are often used in safety critical tasks such as in airplanes
and nuclear reactors. Typically, they consist of one or more discrete software
components performing computation on a real-time operating system (RTOS)
to control the continuous environment. Fig. 1 shows a typical embedded software
system, in which the continuous state of plant is controlled by software control
tasks. The control task and the plant exchange information of continuous state
x and input u via sensors and actuators. In a very simple case, the sensor can
be a periodic sampler, while the actuator can be a zero order hold.



Fig. 1. A typical embedded software system.

To ensure high confidence in these systems, rigorous analysis is required be-
fore deployment. However, it is often infeasible to perform analysis on the actual
system due to its scale and complexity. Model based approach has been ad-
vocated for design and analysis of these complex systems in order to produce
confidence in the design and reduce development costs. In this approach, repre-
sentative models of the system are judiciously used to predict its behavior and
analyze various properties. Hybrid automaton [1, 2, 13] has been used to model
and analyze embedded systems in which discrete and continuous components
are tightly coupled.

In order to automate the analysis of hybrid automata, algorithmic approach
has been developed. Algorithmic approach can be classified into two categories:
reductionist methods and symbolic methods [3]. The former reduces the infinite
hybrid (discrete and continuous) state space to an equivalent finite bisimula-
tion and then explores the resulting finite quotient space, while the latter per-
forms direct exploration of this infinite state space. Even though the reductionist
method based algorithms are guaranteed to terminate, the classes of systems to
which they can be applied are very limited. Therefore, symbolic method based
algorithms are generally used. Various computation tools with vastly different
implementations have been developed for symbolic method based analysis. For
example, d/dt [5] computes reachable sets by approximating reachable states
based on numerical integration and polyhedral approximation; whereas the Level
Set toolbox [4], which applies the level set methods [14], computes the evolu-
tion of a continuous set by solving the associated partial differential equation on
grid structure. Due to these implementation differences in computation method,
data structure as well as analysis purpose, designing new analysis algorithms by
using or modifying existing tools becomes infeasible or inefficient. Furthermore,
designing a common interchange format [8] for these tools is difficult.

In order to resolve the analysis problem, the computation platform called
ReachLab is designed to enable (i) separating the concern of algorithm design
for analysis of hybrid automaton model from any specific computation imple-



mentation; (ii) separating the design of algorithm from specific hybrid automa-
ton model so that the same algorithm can be reused for other system models.
ReachLab is developed based on the Model Integrated Computing (MIC) [6, 7]
approach.

MIC approach is based on models and automatic generation of useful arti-
facts. In this approach, models are used not only to design and represent the
system, but also to synthesize and implement the system using a modeling lan-
guage tailored to the needs of a particular domain. These modeling languages,
termed as Domain Specific Modeling Languages (DSML), have necessary con-
structs to allow the capture of useful information of a system as model particular
to that domain. One can perform system analysis on this model. When this mod-
eling capability is augmented with the capability of model transformation, even
automated synthesis of other design models, and generation of executable system

can be performed [7].

Fig. 2. Design of the ReachLab platform using the MIC multigraph architecture.

Based on MIC approach, the domain specific modeling language for analyzing
hybrid systems called Hybrid System Analysis and Design Language (HADL)
is introduced. Specified by meta-models, it provides a rich library comprising of
abstractions of entities and operations commonly found in the symbolic method
based computation tools, so that it enables effective design of symbolic method
based analysis algorithm for systems modeled as hybrid automata. Then, we will
focus more on ReachLab which utilizes this language to design system models
and corresponding analysis algorithms, and provides various model translators to
implement the models using the facilities provided by Generic Modeling Environ-
ment (GME) [9], which provides an end-end solution for building and deploying
MIC applications. By keeping the implementation of computation method of
computation tools, and enriching them with additional features such as support
for comprehensive data structures implemented by existing functions provided



in these tools, various computation kernels have been supported by ReachLab,
such as d/dt kernel and Level Set kernel. Model translators are used to auto-
matically generate model implementations for these computation kernels. Fig.2
shows how MIC approach is applied to encapsulate HADL and automate the
design and implementation process based on the MIC multigraph architecture
[10].

This architecture has three model development stages, namely meta-model,
domain specific models and the executable artifacts. The first level is the meta-
programming interface, which is used to define the meta-model of HADL. This
meta-model is based on abstract entities found in the symbolic method based
computation kernels and is later implemented as the domain specific modeling
language, HADL, using the meta-translation facility provided by GME. Model-
Integrated Program Synthesis (MIPS) environment [11] is the second level and
provides tools to build and modify system models and the analysis algorithms
using HADL in a graphical manner. This level also supports construction of
model translators. The last level is the different applications (implementations)
that can be generated by translators from these models. Environment evolution
refers to modification of HADL meta-model to update features. The models of
algorithms can also be refined to evolve the analysis application.

The remainder of this paper is organized as follows: Section 2 gives an in-
troduction to HADL. Section 3 presents the architecture of ReachLab and the
details about ReachLab construction, including the model translation process.
An example is provided to illustrate the design and implementation process in
ReachLab in Section 4. Finally, we conclude our work with the future goals for
this platform.

2 Introduction to HADL

HADL is a language that enables the design and analysis of hybrid automata.
For this design and analysis purpose, HADL is used to specify models of hybrid
automata and corresponding analysis algorithm models. In [13], the mathemati-
cal definition of a hybrid automaton is given as a collectionH = (Q,X, f, I, E,G)
where Q = {q1, . . . , qN} is a set of discrete modes; X ⊆ R

n is the continuous state
space; f : Q → (X → R

n) assigns each discrete mode a Lipschitz continuous
vector field on X; I : Q→ 2X assigns each q ∈ Q an invariant; E ⊆ Q×Q is a col-
lection of discrete transitions; G : E → 2X assigns each e = (q, q′) ∈ E a guard.
The analysis algorithm model specified in HADL is hierarchical in nature, and
complex algorithms can be composed from existing algorithms by using them
as subroutines. Data variables used in analysis algorithms are strong-typed, and
currently, only global scoping is supported. However, in the future, it will allow
local scoping as well.

HADL has been formalized as a five tuple of concrete syntax (C), abstract
syntax (A), semantic domain (S), semantic mapping (MS) and syntactic map-
ping (MC) [16]:

L =< C,A, S,MS ,MC > .



Concrete syntax (C) defines the graphical notation used to specify the models.
Abstract syntax (A) specifies all the syntactical elements of the language, as
well as the integrity constraints. Semantic domains (S) is defined by formalism
which provides meaning to a correct sentence in the language. The mapping
MS : A → S relates every element of abstract syntax to a specific meaning
in the semantic domain. Model translators are used for this semantic mapping.
The mapping MC : A → C assigns a notational construct to every elements of
abstract syntax.

Advocated by the MIC approach, HADL is formalized by meta-models. It is
designed to enable the use of multiple aspects [7, 9] to help decompose any anal-
ysis application designed in HADL into three separate components – data (data
aspect), the system model (system aspect) and algorithm model (programming
aspect). Hence, the abstract syntax of HADL can be written as a three tuple

A =< Ldata, Lsystem, Lprogram > .

The semantic domain S of HADL is any chosen supported computation ker-
nel. Model translators can be used to provide the semantic mapping Ms :
Ldata × Lsystem × Lprogram → S. Hence, a translator is required for each se-
mantic domain.

As part of the HADL’s abstract syntax, integrity constraints can be checked
by using Object Constraint Language (OCL) [18], which guarantees the correct-
ness of designed models. The other part of the abstract syntax, the syntactical
elements in these three aspects, provide basic notions and constructs to specify
hybrid automaton models, analysis algorithms as well as the data variables used
in these algorithms. To be specific, these elements are comprehensively listed in
Table 1.

HADL has been provided with precise mathematical semantics, which are
generic and not dependent on implementation details. For example, the discrete
successor operation in HADL, denoted as Postd, is defined as Postd(qi) = {q ∈
Q | ∃e ∈ E s.t. e = (qi, q)}. This operation specifies the collection of reachable
discrete states of the hybrid automaton in a single discrete transition. Simi-
larly, the constraint continuous successor operation in a single step ∆t, notated
as cPostc∆t, is defined as cPostc∆t(qi, P,Xψ) = {x ∈ X | ∃t ∈ [0, ∆t], ∃y ∈
P s.t. x = φ(t, y) ∧ ∀z ∈ [0, t], φ(z, y) ∈ I(q) ∩ Xψ} where P is the initial con-
tinuous set, d

dt
φ(t, y) = f(qi, φ(t, y)), and Xψ = {x ∈ X | ψ(x) ≤ 0} defines the

constraint continuous set. This operation specifies the collection of reachable con-
tinuous state set of the hybrid automaton in a single time step ∆t. By using such
reachability operations and algorithmic approach, many properties of a hybrid
automaton can be revealed, such as safety or liveness. However, it is known that
computation of exact or even approximate continuous successor sets is a difficult
problem due to representing continuous sets and computing the evolution of the
sets. Existing computation kernels adopt different methods to approximate it.
For example, kernels like Level Set kernel and d/dt kernel are tailored to their
own analysis needs and computation capacities so that the implementations of
these reachable set operations as well as Boolean set operations (such as union



Table 1. HADL Language Syntactical Elements

Aspect Model of Syntactical Elements

Data Data Primitive data types: integer, float, Boolean;
Data structure: multi-dimensional list.

System Hybrid Discrete mode, associated with invariant;
automaton Discrete transition, associated with guard and reset;

Continuous set and initial continuous set;
Analysis set, as a specialization of continuous set;
Computation parameters.

Programming

Control Routine, hierarchical in nature;
flow Looping: “while” loop;

Branching: “if-then-else”;

Operators Primitive data operations: +,−, ∗;
Logical operations: equal, less than, and, or, not;
Multi-dimensional list operations: new, delete, append, ele-
ment;
Reachable set operations: discrete successor and predecessor,
(constraint) continuous successor and predecessor in a single
step (in bounded time), reset, projection, visualization;
Boolean set operations: intersection, union, complement.

and intersection) are quite different. HADL is defined based on the mathemati-
cal definitions of these operations and HADL is designed to ensure there exists
a correspondence between the semantics of these kernels and the semantics of
HADL. Therefore, one can use the semantics of HADL to anchor the semantics
of these kernels, which is referred to as semantic anchoring in [17]. Because of
this feature, we can design analysis algorithms by using the mathematical se-
mantics of these operations instead of considering the detailed implementation.
Furthermore, HADL enriches the functions of its computation kernels by pro-
viding constructs and operations more than these computation kernels, such as
multi-dimensional list and its corresponding operations. These constructs and
operations will be mapped to a collection of entities in the computation kernel
rather than a direct mapping.

The advantage of using this language is that (i) algorithms are designed in-
dependently from implementation and hence can be used with any supported
computation kernel; (ii) analysis algorithms can be reused for different systems;
(iii) more complex algorithms can be constructed by using other existing algo-
rithms.

3 Construction of ReachLab

In this section, the architecture of ReachLab is introduced and the construction
issues related to model traversal and semantic mapping are presented.



3.1 ReachLab Architecture

By utilizing the language defined by HADL, a computation platform called
ReachLab has been developed, and its architecture, as shown in Fig.3, is designed
to separate the concerns of algorithm design from implementation details. The
MIPS environment of ReachLab, facilitated by GME, provides support to build
graphical algorithm and system models. Different graphical model entities and
components are connected according to the rules specified by HADL meta-model.
Therefore, models can be designed in ReachLab graphically according to HADL
specification. Besides model design, the other key process is the use of translators
to automatically translate the models into executable artifacts. This translation
process requires mapping of the abstract entities into concrete implementations
for the target domain of a computation kernel. In [7], the translation process has
been summarized as a graph transformation: (i) Creation of “input graph” : The
models with different interconnected components are implicitly represented by
a graph structure. (ii) Model traversal and Semantic mapping : The translation
process requires creation of a “target graph” (data structure for the executable
artifact) from an “input graph”. This requires the translator to traverse various
objects in the “input graph”, recognize their patterns and calculate attributes
of output objects in the “target graph” using semantic mapping. The “target
graph” corresponds to the data structure required to represent the output form
of the executable artifacts.(iii) Printing the product : In this step, the translator
serializes the “target graph” to generate executable artifacts pertaining to the
related domain.

Fig. 3. The three-layer ReachLab architecture.

In ReachLab, the traversal process uses the data structures provided by GME
to store the “input graph” along with necessary information. These data struc-
tures are very generic and remain the same for different translators. However,
the data structures used to store the “target graph” vary due to implementation
differences among different computation kernels.



In the next subsection, we will explain in detail how model traversal is done
to fulfill model translation process.

3.2 Model Traversal

Translators need to perform the traversal of all three aspects in order to under-
stand the patterns and collect all useful information. This traversal process is
based on graph search techniques such as depth first search [12]. The complete
process can be broken down into four sub-tasks reviewed below.

Traversal of Data Aspect: All the data are defined in one single data
folder as a list. Translator traverses this list in a linear fashion to collect all
useful information about the data elements.

Traversal of System Aspect: The hybrid automaton model specified in
the system aspect can be understood as a graph, in which the discrete modes
are vertices and the discrete transitions of hybrid automaton are the edges. The
translators traverse this graph by using depth first search starting from the initial
discrete state to collect all useful information.

Traversal of Control Flow of Algorithms:

(a)
(b)

Fig. 4. (a) The components of a routine are interconnected as a DAG. Routines may
be hierarchical leading to a hierarchical graph; (b) The decision enclosure is sub-graph
starting from a decision block and ending at its corresponding joint-node.

The traversal of programming aspect is more complex. Every algorithm has
a root routine which is the entry point to the algorithm. Routines can be hier-
archical and may contain other sub-routines as shown in Fig.4(a). The control
flow inside each routine routes from a “start” to an “end” . However, there
might be other exit routes from a routine through “break-exit”, which is used
in the same way as the break in many programming languages. For example,
the constraint continuous successor set operation in bounded time T , denoted
as cPostcT , can be implemented by iterating T/∆t times by calling cPostc∆t,
which is previously defined. Therefore, the routine to implement cPostcT can use



the routine of cPostc∆t as its sub-routine. The language also provides a special-
ization of routine called while routine for implementation of looping constructs
such as do-while which is traversed in the same manner as a routine. The control
flow inside a routine is sequential, however it can have multiple branches due to
decision blocks. Cycles in the control flow are disallowed to demote the use of
sudden jumps such as “goto”. Therefore, the control flow inside each routine is
a directed acyclic graph (DAG) [12] with its directed edges depicting the route
of control flow and each node depicting a block of algorithm. Since routines can
contain other routines, the overall control flow of the complete algorithm is a
hierarchical DAG. The translators traverse the graph structure of algorithms in

Table 2. Decision-Enclosure Algorithm

Input:

DecisionBlock = the starting node of the enclosure
Initialization:

InitPath := DecisionBlock

Paths := {InitPath}
Start:

While true do
For each path in Paths do

Fringe := the tail of path

Succ := successor nodes of Fringe

If Succ 6= φ then
Add Succ[0] to the fringe of path

Succ := Succ − Succ[0]
For each s in Succ do

path′ := path

Add s to the fringe of path′

Add path′ to Paths

End For
If ∃s ∈ Succ s.t. ∀p ∈ Paths, s ∈ p then

Return s as the joint-node
End If

End If
End For

End While

a depth-first search manner to extract information. In each routine, the traversal
starts from “start” block and follows the directed edges. If any of the traversed
entity is hierarchical, translators will traverse its subcomponents in a depth-first
manner. Decision blocks are used inside routines to design a logical branching
in the control flow sequence. For each of these blocks, the branching starts from
itself, and finally merges at a joint-node. The sub-graph enclosed by the deci-

sion block and the joint-node in the DAG is called a decision-enclosure. This is
illustrated by Fig. 4(b). The traversal algorithm has to recognize the “if true”



and “if false” part of each decision block so that they can be mapped to the cor-
responding decision logic in the implementation. This requires knowledge of its
decision-enclosure. Table 2 gives an algorithm based on breadth first search tech-
nique for determining decision-enclosure of each decision block. This algorithm
has a complexity of O(n2), where n is the number of blocks in the DAG.

The key of this algorithm is to find the joint-node, and since a joint-node is
where all branches from the decision block merge, by using breath-first search
and keeping all branching paths from the decision block, the first block that
belongs to every recorded branching paths is the joint-node.

Traversal of Operators: Operators are used for data manipulation. Ev-
ery assignment expression forms a tree structure, with the left-hand-side data
variable as the root of the tree. All data variables on the right-hand-size of the
expression correspond to the leaves of this tree, and operators on the right-hand-
side correspond to the internal nodes of the tree. The expression itself can be
restored to reverse-polish notation by post-order traverse.

The operators have different semantic meanings depending on the input data
types. And since HADL is “strong-typed”, the data types of the tree leaves,
which are predefined, will finally determine the input data type of the operator
connected to the root data. Therefore, it is important to propagate the data
type information from leaves to the root in a post-order manner [12].

3.3 Semantic Mapping

Since the semantics of a computation kernel are anchored to the semantics of
HADL, we can find a corresponding implementation for HADL constructs in the
computation kernel. These constructs include sequential programming features,
boolean operations on state sets, as well as the reachable set operations. However,
in some cases, the operations, such as data structure manipulation operations,
are not directly supported by the computation kernel and have to be specifically
added to the computation kernel as new functions. The process of associating
the HADL constructs to its implementation in computation kernel is akin to
providing a meaning to them and is therefore referred to as semantic mapping.

We will illustrate some of the aspects of the semantic mapping process by
using the example of Level Set kernel. Level Set kernel has been implemented
as Matlab functions. It supports all the basic data types in HADL except the
multi-dimensional list structure, which we have to specifically implement along
with the relevant operations in Matlab. The hybrid system specific data types
such as discrete mode and continuous set are mapped to Matlab struct and mesh

on analysis space, respectively. This mesh is an internal structure used by Level
Set kernel. The control flow inside a routine is mapped to the sequential flow of
logical commands inside a function. We use “if-else-end” statement in Matlab to
implement branching and “while-end” statement in Matlab to implement loop-
ing. Boolean operations on state sets and reachable set operations are mapped to
their corresponding implementation in Level Set kernel. However, for some of the
operations defined in HADL, there are no straight-forward mappings, therefore



we have to write specialized functions for them by using operations provided by
the kernel.

4 Design and Implementation Process in ReachLab

In this section, we will illustrate the design and implementation process for
analysis algorithms in ReachLab by designing a forward reachability analysis
algorithm for the embedded software system shown in Fig.5(a).

(a) (b)

Fig. 5. (a) An embedded software system. The plant on the bottom has four running
modes with different continuous dynamics, controlled by the software control task
J1; (b) Hybrid automaton model for the control task and plant. It has four discrete
modes corresponding to the four running modes of the plant, and one continuous state
x = [x1, x2]

T ∈ R
2.

Depending on the current state of the plant, it determines input u ∈ {σ1, σ2}.
By considering the direct interaction between the control task and the plant, we
can model the system as a hybrid automaton as shown in Fig.5(b). Multiple
tasks which share common resource with the control task, the scheduler and the
interface elements such as sampler and the zero order hold can be modeled by a
more complex hybrid automaton.

It has been shown in [15] that this system is stable in the sense of Lyapunov.
Starting from anywhere in the continuous state space, the continuous state of the
automaton moves toward the origin in a flower-like trajectory. For this system, we
are interested in computing forward reachable set using symbolic methods based
algorithms, in order to verify that starting from certain initial state, whether or
not the system can eventually enter some desired set.



Table 3. Algorithm for computing forward reachable set

Input:

HA, QS, XS, QF , XF , XB , where
QS is list of initial discrete modes, XS is list of initial continuous sets, QF is
list of final discrete modes, XF is list of final continuous sets, and XB is bad set.

Constant:

T as time limit for cPostT c, M as search depth limit
Initialization:

Reach = XS , List = {}, Successors = {}, R = φ, Queue = QS

Depth = 1, i = 0, j = 0
Start:

While ¬Empty(Queue) do
List = PopAll Queue

For i = 1 : Size(List) do
R = cPostcT (List(i), Reach(i))
Successors = Postd(List(i))
For j = 1 : (Size(Successors) do

If R ∩ GuardList(i),Successors(j) 6= φ Then
Push Successors(j) → Queue

Append R ∩ GuardList(i),Successors(j) → Reach

End If
End For

End For
Depth = Depth + 1
If Depth > M Then

Stop
End If
Pop first Size(List) elements of Reach

End While

Table 3 gives the specification of a generic forward reachability algorithm for
hybrid automaton. It uses the concepts of both discrete and continuous successor
set and finds the reachable set starting from a given initial set. This algorithm
unfolds the hybrid automaton into a tree like structure and explores it by using
breadth first search. Termination of this algorithm is guaranteed because of the
limit M on the depth of this tree. The data structure Reach is used to store
the reachable set. It can be noted that this specification does not delve into the
actual implementation method of reachable set operations. However, the process
of semantic mapping will relate those operations to a specific implementation
method based on the concerned computation kernel. This algorithm can be used
to verify if the system would ever execute into some desired state. In order
to perform verification, the algorithm systematically explore the hybrid state
space and check if the forward reachable set overlaps with the desired set. The
main concern with this type of algorithms is termination. But if we perform the
computation in an Eulerian framework (one in which the underlying coordinate
system is fixed) within a bounded continuous state space, the algorithms will



terminate due to the fact that the partition of state space has finite number of
representative elements.

4.1 Design Steps

To analyze the safety property of the hybrid automaton model in Fig.5(b) by
using the forward reachability algorithm, we need to design its hybrid automata
model in the system aspect and design the algorithm in the programming aspect.
The data used in both of the system model and the algorithm are defined in the
data aspect. The entire process can be summarized into three steps:

Fig. 6. Hybrid automaton model for the corresponding plant in the system aspect,
forward reachability analysis algorithm model in the programming aspect, and data
used in the data aspect of ReachLab.

1. Obtaining system model and algorithm specification:
Fig.5(b) and Table 3 provide the hybrid automaton and analysis algorithm
specifications for this example.

2. Design phase:
– Design of the system model: A hybrid automaton is drawn in the system

aspect with discrete transitions connecting discrete modes, as in Fig.6.
– Design of the analysis algorithm: The analysis algorithm, which is hi-

erarchical in nature, is modeled in the programming aspect by using
ReachLab library elements. Fig.6 also gives part of the algorithm model
for the algorithm given in Table 3, and the data required by both the
hybrid automaton and the algorithm model.

– Specification of computation parameters: Input parameters to the algo-
rithm and the computation kernels have to be specified before transla-
tion, such as the bounded time (T ) for cPostcT operator, the analysis
region, and how the analysis region is partitioned into finite number of
representative elements.

3. Implementation phase:
Translators are used to convert the designed models into implementation for



a certain computation kernel. For this example, we translate the system and
algorithm model into the d/dt implementation. Fig.7 shows the computa-
tion result. This result can be used to examine system behaviors, such as
approaching the origin while evolving. It can also be used to verify system
stability properties by testing intersection between the reachable set and the
desired set.

Fig. 7. The reachable set computed by using d/dt kernel. The white box is the initial
set, [-2.5,-1.5]x[-0.5, 0.5]. Each sub-figure denotes the reachable set in the corresponding
discrete mode. Eventually, the reachable set will reach the origin. The analysis region
is [−3, 3]× [−3, 3], the size of a representative elements in each dimension is 0.001, and
the bounded time T is 5 seconds. Time taken for execution: 180 minutes on Pentium
IV 2.59 GHz machine with 2 GB RAM.

5 Conclusion

In this paper, we presented the computation platform called ReachLab for en-
abling automatic analysis of embedded software systems modeled as hybrid au-
tomata. It implements the meta-model based language HADL whose abstract en-
tities allow users to model their algorithms and the system in an implementation
independent manner. These models are then translated to implementations for
different computation kernels. Translation is performed by using model traversal
and sematic mapping. Currently, d/dt kernel and Level Set kernel are supported
by ReachLab. In the future, we will expand this platform to other computation
kernels for more effective and efficient computation. In order to model networked
hybrid automata, shared variable could be introduced to ReachLab for specify-
ing communication protocols between hybrid automata. We are also interested
in expanding the capabilities of HADL to capture a larger class of embedded
software systems so that more sophisticated system features can be described.

6 Acknowledgments

This work is supported by NSF’s Faculty Early Career Development (CAREER)
Program, Award No. 0448234, and Department of EECS, Vanderbilt University.



References

1. T. Henzinger. The theory of hybrid automata. In Proceedings of the 11th Annual

IEEE Symposium on Logic in Computer Science, (1996), pp. 278–292.
2. R. Alur, D. L. Dill. A theory of timed automata. Theoretical Computer Science

126, (1994), pp. 183–235.
3. T.A. Henzinger, R. Majumdar. A classification of symbolic transition sys-

tems. In Proceedings of the 17th International Conference on Theoretical Aspects

of Computer Science (2000), pp. 13–34.
4. I. Mitchell, J. A. Templeton. A toolbox of Hamilton-Jacobi solvers for analysis

of nondeterministic continuous and hybrid systems. In Hybrid Systems: Computa-

tion and Control, (2005), pp. 480–494.
5. E. Asarin, T. Dang, O. Maler. The d/dt tool for verification of hybrid sys-

tems. In Computer Aided Verification, (2002), vol. 2404 of LNCS, Springer-Verlag,
pp. 365–370.

6. G. Karsai, A. Agrawal, A. Ledeczi. A metamodel-driven MDA process and
its tools. Workshop in Software Model Engineering, (2003).

7. G. Karsai, J. Sztipanovits, A. Ledeczi, T. Bapty. Model-integrated devel-
opment of embedded software. In Proceedings of the IEEE , (2003), pp. 145–164.

8. A. Pinto, A. L. Sangiovanni-Vincentelli, L. P. Carloni, R. Passerone.

Interchange formats for hybrid systems: Review and proposal. In Hybrid Systems:

Computation and Control , (2005), pp. 526–541.
9. A. Ledeczi, M. Maroti, A. Bakay, et al. Generic modeling environment. In

International Workshop on Intelligent Signal Processing , (2001).
10. J. Sztipanovits, G Karsai, C. Biegl, T. Bapty, A. Ledeczi, D. Malloy.

Multigraph: an architecture for model-integrated computing. In Proceedings of

the 1st International Conference on Engineering of Complex Computer Systems,
(1995), pp. 361–368.

11. J. Sztipanovits, G. Karsai, H. Franke. Model-integrated program synthesis
environment. In Proceedings of the IEEE Symposium and Workshop on Engineer-

ing of Computer Based Systems, (1996), pp. 348–355.
12. T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein . Introduction to

Algorithms, Second Edition, (2001), The MIT PRESS.
13. J. Lygeros. Lecture Notes on Hybrid Systems. Cambridge, 2003.
14. S. Osher, R. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces.

Springer, 2003.
15. A.Rantzer, M. Johansson. Piecewise linear quadratic optimal control. In IEEE

Transactions on Automatic Control , (2000), pp. 629–637.
16. T Clark, A Evans, S Kent, and P Sammut. The mmf approach to engineering

object-oriented design languages. In Workshop on Language Descriptions, Tools

and Applications.LDTA, Genova, Italy, 2001. Available via http://www.puml.org.
17. Kai Chen, Janos Sztipanovits, and Sandeep Neema. Toward a semantic anchoring

infrastructure for domain-specific modeling languages. Fifth International Confer-
ence on Embedded Software (EMSOFT05), Jersey City, New Jersey, September
2005. (Accepted for publication).

18. et a.l, R. S. C. Object Constraint Language Specification ver 1.1, Sept 1997.


