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Abstract Designing autonomic fault responses is diffi-
cult, particularly in large-scale systems, as there is no
single ‘perfect’ fault mitigation response to a given fail-
ure. The design of appropriate mitigation actions depend
upon the goals and state of the application and envi-
ronment. Strict time deadlines in real-time systems fur-
ther exacerbate this problem. Any autonomic behavior
in such systems must not only be functionally correct
but should also conform to properties of liveness, safety
and bounded time responsiveness. This paper details a
real-time fault-tolerant framework, which uses a reflex
and healing architecture to provide fault mitigation ca-
pabilities for large-scale real-time systems. At the heart
of this architecture is a real-time reflex engine, which
has a state-based failure management logic that can re-
spond to both event- and time-based triggers. We also
present a semantic domain for verifying properties of sys-
tems, which use this framework of real-time reflex en-
gines. Lastly, a case study, which examines the details of
such an approach, is presented.

Keywords Autonomic computing · Fault tolerance ·
Fault mitigation · Real time systems · Reflex · Healing ·
Model checking · Timed automaton

1 Introduction and Problem Motivation

The increased influence of smaller, more powerful and
more ubiquitous computers in human lives demands a
higher degree of reliability from these systems. They are
expected to consistently produce correct outputs with
very small tolerance for errors. However, as computing
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technology grows more prominent, the complexity of sys-
tem design is on the rise. In order to increase reuse
and reduce cost, designers are leveraging composition of
smaller systems to construct a larger system, which not
only increases complexity but also stresses the design
process, which makes it difficult to achieve high relia-
bility. Therefore, it is imperative to accept that failures
can and will occur, even in meticulously designed sys-
tems, and take steps to study the effect of these failures
and design proper measures to counter those failures.

Detection and mitigation of faults in large-scale sys-
tems with hundreds of components is a crucial and chal-
lenging task. Even though the correct operation depends
on individual components as well as their interactions, it
is necessary that the systems do not suffer a catastrophe
every time a subcomponent misbehaves. Most practical
systems have to employ some kind of fault detection, the
simplest of which can be a threshold sensor and alarm
for every critical aspect of the system. In past decades,
the problem of fault diagnosis has received considerable
attention in literature and a number of schemes based
on fault trees [38], quantitative analytical model-based
methods [28; 10], expert systems [29; 10], and model-
based reasoning systems [17; 21] have been proposed for
both continuous systems [12], as well as discrete event
systems [20; 33; 1; 22].

While fault diagnosis is certainly a key aspect of the
problem, fault mitigation is another crucial problem that
deserves added attention. Arguably, one method of fault
mitigation is to let humans in the loop to take decision.
Alternatively, a component of the computer-based sys-
tem can itself take fault mitigation decisions. The for-
mer technique is useful in systems, which do not necessi-
tate quick reactions. However, in most critical systems,
where fault mitigation tends to require time-bounded re-
sponses, the latency in decision due to human involve-
ment in the control loop is unacceptable. For example,
any human mitigation decision in interplanetary space
exploration systems has to travel the vast distances of
space between the earth-based station and the space-
craft, which may lead to a situation where it is impossi-
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ble to correct for a fault before it becomes threatening
to the system [37]. In such and similar critical systems,
the only option is to let the computer-based system work
autonomously and take the fault mitigation decisions it-
self.

This drives the need for autonomic computing to ad-
dress the needs of system reliability. Such self-managing
systems should be also self-aware, self-configuring, self-
healing, and self-protecting [35; 36; 27]. A motivation
for this paradigm comes from biological systems which
employ a reflex and healing strategy to mitigate local
faults quickly yet still allow a hierarchy of decentralized
“managers” to be responsible for healing of widespread
faults.

Our previous work in large scale autonomic comput-
ing yielded a Reflex and Healing (RH) framework pre-
sented in [34; 26; 39], which employs a hierarchical net-
work of decentralized fault management entities, called
reflex engines. These reflex engines are instantiated as
state machines, which change state and initiate reflex-
ive mitigation actions upon occurrence of certain fault
events. Other researchers have also proposed to equip
systems with decentralized self-management algorithms
[31], and an alternative technique has also been devel-
oped that consists of a hierarchy of managing entities
placed in the system with control decisions being made
based on partial knowledge of the system [11].

In order to apply the aforementioned techniques to
systems, which are real-time in nature, additional consid-
erations are required. The addition of time deadlines ex-
acerbate the problems associated with self-management.
Under such conditions, one has to not only be concerned
about the correctness of a given self-management task;
one must also ensure that a task finishes before certain
deadlines expire [6]. Fault mitigation tasks, which lead
to missed deadlines, are, therefore, considered faulty in
hard real-time systems.

Even in systems that are not real-time (and hence
do not have specific task deadlines), conditions might
require that a fault mitigation is completed within a cer-
tain boundary from the time of the fault occurrence.
Such requirements of time-bounded responses are true
for almost all systems that require a fault-tolerant frame-
work.

In such a context, any autonomic computing tech-
nique used must respect time constraints. Moreover, in
order to ensure correct operation, the autonomic system
must conform to the following properties:

1. Liveness: If the system was deadlock free, the addi-
tion of autonomic behaviors shall not lead to a dead-
lock in the system.

2. Safety: The system shall meet all of its deadlines and
never operate in unsafe modes.

3. Bounded Time Responsiveness: In the case of faults,
the designed fault mitigation action shall be executed
within a specified time bound.

It is necessary to check that the system and its corre-
sponding fault tolerance framework conform to the prop-
erties mentioned above. However, an initial investigation
revealed that the previous RH framework was unsuitable
for verifying these properties. This is because the frame-
work lacks the formalism required for modeling the pas-
sage of time. In addition, the previous RH framework
also lacks formalism that can allow arbitration between
several eligible fault mitigation strategies.

In this paper, we extend the results presented in [9]
and detail work toward a verifiable fault tolerant frame-
work for real-time systems. This framework uses a reflex
and healing architecture in order to provide fault mitiga-
tion capabilities. At the heart of this architecture is a new
real-time reflex engine, which implements a state-based
failure management logic that can respond to both event-
and time-based triggers. Furthermore, this work elabo-
rates our existing model with concepts of schedulers that
can arbitrate between several eligible mitigation strate-
gies, which can be shown to respond to failure events
within a given time limit. With the additional help of
a case study, we show how one can now use the seman-
tics of timed automata [3; 15] to analyze the real-time
properties of the framework using UPPAAL [5], a model
checking tool for networks of timed automatons.

2 Fault Diagnosis and Mitigation

Fig. 1 Usual approach to fault diagnosis and mitigation.

Figure 1 depicts a general approach of model-based
fault diagnosis and mitigation. The system model is an
abstraction of the plant and is used to estimate the cur-
rent system state and output using prediction. If the
predicted data and measured sensor data differ, the dis-
crepancies are identified to form a symptom set that can
be used to generate hypotheses about the faults. The
problem solver uses these hypotheses to generate fault
mitigation actions, which provide correctional input to
the plant.

As we look more in detail at the problem of fault
diagnosis and mitigation, a number of questions arise.



3

What type of model should we use for the system? What
are the mechanics associated with the communication
between various components? What is the architecture
of this problem solver? Answers to these questions are
open ended, as there is no “one fits all” solution.

2.1 Large Scale Real Time Systems

Ther real-time embedded systems group (RTES) [2] is a
research collaboration of computer scientists, electrical
engineers and experimental physicists whose aim is to
provide new research in the areas of large-scale, fault-
tolerant, high-performance embedded systems. Research
efforts of the RTES group are focused on finding new
tools and techniques which strengthen the design and
development of large scale computation systems used for
online phenomena capture, signal processing and data
acquisition for high energy physics experiments.

High energy physics (HEP) experiment setups such
as the Compact Muon Solenoid (CMS) [13] at the Large
Hadron Collider (LHC) at CERN are multi-year, multi-
million dollar projects. The estimated particle interac-
tions in these experiments have a periodicity as high
as 25 ns, which results in aggregate data rates of sev-
eral terabytes/second with a petabyte/year in perma-
nent storage needs [13; 19]. It is estimated that an over-
whelmingly large percentage of the observed particle in-
teractions will not lead to new science in the areas of
high energy physics. Given the size and rate of the data
generated during an experiment run, it is infeasible to
record complete particle interaction data for a later ex-
amination. Therefore, massive real-time embedded sys-
tems must be used to execute data-reductive algorithms
called “filters”, which perform the necessary examina-
tion of the collected data to isolate and retain only the
observations of interesting phenomena.

Data acquisition and processing systems of high en-
ergy physics (HEP) experiments require high throughput
and low latency. These systems are typically composed
of thousands of data processing nodes, which incorpo-
rate various computational resources such as FPGAs,
DSPs, commodity PCs, high-bandwidth fiber and cop-
per interconnects. Given the long durations of typical
experiments, the failure of these systems are an expected
occurrence.

The high costs involved and the number of computing
nodes required makes it infeasible to use traditional re-
dundancy as the primary fault tolerance approach. Fur-
thermore, it is required that the implemented fault tol-
erance approach should be able to localize and isolate
faults and yet maintain some form of acceptable system
operation. The system must also possess capabilities to
run online recovery procedures, compensate by changing
system parameters such as thresholds, and prune out bad
computing nodes with minimum impact on system per-
formance. It should be noted that these problems are not

unique to the field of HEP but are also present in other
fields such as space systems (see [37]).

Like any model-based fault diagnosis and mitigation
approach, the first step is to choose a suitable model.
The choice of model has profound affect on simplicity of
implementation as well as guarantees that can be made
about the properties, which the system is required to
satisfy.

3 Abstracting Real-Time Systems as Discrete
Event Systems

The act of modeling has been described in [32] as, “rep-
resenting a system formally in order to describe and an-
alyze the working of some relevant portions of the con-
cerned system”. A widely used abstraction that is valid
for most embedded systems is a discrete event system
(DES) model.

A DES is a discrete state, event-driven system in
which the state evolution depends entirely on occurrence
of discrete events over time [7; 30]. The event driven
property implies that the state of the system changes
at discrete points in time which correspond to instanta-
neous occurrences of events.

In a DES framework, a description of an application’s
(plant) behavior is given in the form of a finite automa-
ton. Any behavior of the plant can be explained as an
execution of this automaton (i.e., a sequence of events).
These events can be either observable or unobservable.
The objective is to find a diagnoser that can detect the
occurrence of a fault event within a limited number of
steps of its occurrence using the observable events. Note
that our objective is not to solve this diagnosis problem,
rather we are concerned with the mitigation of faults.
For the diagnosis problem, readers can refer to [33].

Based on this discrete event model, we presented a
hierarchical reflex and healing (RH) framework in our
earlier papers [34; 26; 39] for providing fault mitiga-
tion capability in large-scale systems. In large-scale reflex
and healing systems, software applications use an event
based communication scheme. Each application gener-
ates a regular heartbeat, which informs an observer that
the application is alive. Moreover, each application has
a self-monitoring process and generates failure events in
case of any problem. Given the failure events, the task
of the framework is to contain faults, correlate diagno-
sis from different regions, and decide on an appropriate
mitigation strategy.

3.1 The Reflex and Healing Architecture Using a
Discrete Event Model

As shown in Figure 2, the RH framework employs a hi-
erarchical network of fault management entities, called
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Fig. 2 Hierarchical fault management scheme in reflex and healing architecture. The reflex actions are user defined FSM.
Communication between managers themselves and to/from the plant is via predefined events.

reflex engines, whose sole purpose is to implement fast
reflexive fault-mitigating actions.

Reflex engines are customized software processes that
perform monitoring and execute fault mitigation actions.
It is possible to configure a reflex engine using an external
source by programming their state machine. As seen in
Figure 2, a reflex engine consumes input event (e.g., fault
events) and produces output events (e.g., mitigation ac-
tions). Upon occurrence of a certain class of fault events,
a reflex engine, which is specifically listening for that
event, performs fault mitigation by changing its state
and executing a set of actions upon the transition.

In order to manage scalability, all reflex engines are
divided into logical hierarchical levels called zones. Each
of these zones contains a manager whose area of observa-
tion, is limited to that particular zone. There are three
main categories of managers, which are:

1. Local Manager: These managers are nearest to the
main applications. They are usually responsible for
managing one user process, as shown in Figure 2.

2. Regional Manager: These managers supervise and
communicate with a number of subordinate man-
agers which are in their area of observation. A re-
gional manager has a wider area of observation and
can correlate diagnosis to ascertain if a problem is
common to a number of user applications and take
coordinated mitigation action. Note that there can
be a number of regional levels.

3. Global Manager: This manager lies at the top of hi-
erarchy. It coordinates regions and performs any re-
quired optimization of the system. This process is
usually referred to as healing. For more detail on the

complicated process of healing readers can refer to
[24; 25].

These reflex engines operate concurrently with user
applications. The state machine based failure manage-
ment logic in each reflex engine responds to faults as
they are observed. To minimize fault propagation, intra-
level communication between reflex engines is forbidden.

There are definite advantages in following a rigid hi-
erarchical structure with strict communication protocols
in place. First, fault reaction time improves because the
mitigation decisions are made closer to the fault source.
Secondly, scalability improves because new fault man-
agers can be added easily to a zone without disrupt-
ing other zones. Lastly, chances for the propagation of
faults from one user application to another application
are greatly reduced.

The development of the framework to date lacks the
details necessary to make real-time guarantees. This is
because the discrete event-based model used does not
capture time. Hence, one cannot analyze any real-time
property such as bounded time response. Moreover, this
model does not specify how the operating system under
the reflex engine affects its execution sequence. In ad-
dition, the state machines can be non-deterministic due
to the runtime and the state machine definition. Specifi-
cally, if a reflex engine has more than one fault strategy
enabled, which one is executed? For these scenarios, we
need to incorporate the notion of a scheduler, which is
necessary when a reflex engine has to choose between
various triggered events in order to process them in a
consistent fashion.

First, we need to extend the model for real-time sys-
tems to capture notion of time. Then we need to aug-
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ment the existing RH framework with components that
can describe the execution behavior of a reflex engine
in detail. Finally, we need to provide exact semantics to
this new model using a real-time model of computation,
which allows for formal analysis of time based properties
outlined in Sect. 1.

4 Abstracting Real-Time Systems As Timed
Automatons

A fault-tolerant framework that is capable of providing
time guarantees and detecting time anomalies requires a
model, which can capture the notion of continuous time.
Classically, the timed automaton (TA) model [3; 15] has
been used for abstracting time-based behaviors of sys-
tems which are influenced by time. This approach has
been used to solve scheduling problems [18; 23] by mod-
eling real-time tasks and scheduling algorithms as vari-
ants of timed automatons and performing reachability
analysis on the equivalent region graph automaton [3].

A timed automaton consists of a finite set of states
called locations and a finite set of real-valued clocks. It is
assumed that time passes at a uniform rate for each clock
in the automaton. Transitions between locations are trig-
gered by the satisfaction of associated clock constraints
known as guards. During a transition, a clock is allowed
to be reset to zero. These transitions are assumed instan-
taneous. At any time, the value of each clock is equal to
the time passed since the last reset of that clock. In or-
der to make the timed automaton urgent, locations are
also associated with clock constraints called invariants,
which must be satisfied for a timed automaton to re-
main inside a location. If there is no enabled transition
out of a location whose invariant has been violated, the
timed automaton is said to be blocked. Formally, a timed
automaton can be defined as follows:

Definition 1 (Timed Automaton) A timed automa-
ton is a 6-tuple TA=< Σ,S, S0, X, I, T > such that

* Σ is a finite set of alphabets, which the TA can ac-
cept.

* S is a finite set of locations.
* S0 ⊆ S is a set of initial locations.
* X is a finite set of clocks.
* I : S → C (X) is a mapping called location invariant.

C (X) is the set of clock constraints over X defined
in BNF grammar by α ::= x ≺ c|¬α|α ∧ α, where
x ∈ X is a clock, α ∈ C (X), ≺∈ {<,≤}, and c is a
rational number.

* T ⊆ S ×Σ × C (X)× 2X × S is a set of transitions.
The 5-tuple < s, σ, ψ, λ, s′ > corresponds to a tran-
sition from location s to s′ via an alphabet σ, a clock
constraint ψ specifies when the transition will be en-
abled and λ ⊆ X is the set of clocks whose value will
be reset to 0.

Fig. 3 A timed automaton model of a behavior of traffic
light.

It is customary to draw a timed automaton model
as a directed graph with nodes, drawn as circles or el-
lipses, which represent locations and edges, which repre-
sent transitions. Initial locations are marked using con-
centric ellipses or circles. Figure 3 shows a timed automa-
ton model of a traffic light. This automaton has three
locations and one clock variable. The model periodically
circulates between red, yellow, and green location at a
time gap of 5, 1, and 5 units, respectively.

The state of a timed automaton is a pair of the cur-
rent evaluation of clock variables and the current loca-
tion, Q = (s, v), where s ∈ S and v : X → R+ is
the clock value map, assigning each clock a positive real
value. At any time, all clocks increase with a uniform unit
rate, which, along with events, enable transitions from
one state of the timed automaton to another. Since there
are an infinite number of possible clock evaluations, the
state space of a timed automaton is infinite. The transi-
tion graph over this state space, A =< Σ,Q,Q0, R >, is
used to describe the semantics associated with a timed
automaton model. The initial state of A, Q0 is given by
{(q, v)|q ∈ S0 ∧ ∀x ∈ X(v(x) = 0)}.

The transition relation R is composed of two types
of transitions: delay transitions caused by the passage of
time, and action transitions, which lead to a change in
location of a timed automaton. Before proceeding fur-
ther with transitions, it is necessary to first define some
notation.

Let us define v + d to be a clock assignment map,
which increases the value of each clock x ∈ X to v(x) +
d. For λ ⊆ X we introduce v[λ := 0] to be the clock
assignment that maps each clock y ∈ λ to 0, but keeps
the value of all clocks x ∈ X − λ same. Using these
notations, we can define delay and action transitions as
follows:

* Delay Transitions refer to passage of time while stay-
ing in the same location. They are written as (s, v) d→
(s, v + d). The necessary condition is v ∈ I(s) and
v + d ∈ I(s)

* Action Transitions refer to occurrences of a transi-
tion from the set T . Therefore for any transition <

s, σ, ψ, λ, s′ >, we can write (s, v) σ→ (s′, v[λ := 0]),
given that v[λ := 0] ∈ I(s′) and v ∈ ψ.

Usually, a system is composed of several sub-systems,
each of which can be modeled as a timed automaton.
Therefore, for modeling of the complete system, we will
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have to consider the parallel composition of a network of
timed automatons [5; 8; 40].

A network of timed automatons is a parallel compo-
sition of several timed automatons [8]. Each timed au-
tomaton can synchronize with any other timed automa-
ton by using input events and output actions. For this
purpose, we assume the alphabet set Σ to consist of sym-
bols for input events denoted by σ? and output actions
σ! and internal events τ .

Apart from the synchronizing events, tools like UP-
PAAL [5] and KRONOS [40] have introduced concepts
of integer variables and arrays of integers, which can be
shared between different timed automatons. Moreover,
UPPAAL has introduced some additional notions in or-
der to make modeling as timed automaton simpler [4].
Some of the notable additions that we will later use are:

* Committed Locations: The semantics of a committed
location is that if any timed automaton of the net-
work is in a committed location it is assumed that
time cannot pass. In such a case, the only possible
transition for the whole network is the one that goes
out of the committed locations.

* Urgent Channels: A usual synchronized action tran-
sition can be ignored if any other transition is pos-
sible. However, if the synchronized event is urgent,
then the transition becomes compulsory.

Fig. 4 A network of two timed automatons.

The semantics of network-timed automatons are also
given in terms of transition graphs. A state of a network
is defined as a pair (s, v), where s denotes a vector of all
the current locations of the network, one for each timed
automaton, and v is the clock assignment map for all the
clocks of the network. The rules for delay transitions are
the same as those for a single timed automaton. However,
the action transitions are composed of internal actions
and external actions.

An internal action transition is a transition, which
happens in any one timed automaton of the network,
independent of other timed automatons. On the other
hand, an external action transition is a synchronous tran-
sition between two timed automatons. For such a transi-
tion, one timed automaton produces an output event on
its transition leading to a change in its location (denoted
as a!), while the other timed automaton consumes that

event (denoted as a?) and takes the transitions leading
to a change in its location. An external action transition
cannot happen if any of the timed automatons cannot
synchronize. Figure 4 shows model of a scheduler execut-
ing in parallel to a task. The scheduler enables the task
6 time units after it enters the idle location. The two au-
tomatons synchronize using start and finish event/action
pair.

Fig. 5 The previous reflex engine has been augmented to al-
low analysis within the semantic domain of networks of timed
automatons.

The next section details the real-time reflex and heal-
ing framework. Fig 5 illustrates the approach at a high
level. The first major addition in the new framework was
the concept of timers, which generate timeout events af-
ter a set period. This timer, when used in parallel with
an event-based reflex engine, enables the reflex engine to
mitigate time-based faults. Then, by using the network
of timed automatons as a semantic domain for the real-
time reflex and healing framework, we are able to use
timed automaton model checkers for verifying real-time
properties.

5 The Real-Time Reflex and Healing
Framework

A real-time reflex and healing framework has a hierarchi-
cal structure identical to that, which is described in Sect.
3.1. However, each manager model is now more capable
than a simple event-based state machine.

In order to provide an overview of the workings of the
real-time reflex engine we need to explore the notion of
execution threads. For the moment, let us assume that
each manager runs on a dedicated node, which has some
kind of an operating system. The reflex engine will use
the threads leased from the operating system. It is ideal
if this operating system is a real-time operating system;
this abstraction, however, will work even with non real-
time operating systems, though in such cases any real-
time guarantee will depend upon the assumption that
no RH task will be delayed for an arbitrarily long time.
It should be noted that this thread abstraction would
still hold true if more than one manager is installed on
a node.
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Fig. 6 A computing node in the real time reflex and healing
framework.

Fig 6 describes the basic structure inside a managing
node. The lowest layer is the operating system sched-
uler. There can be multiple fault mitigation strategies
(state machines) running on that node. In an ideal situa-
tion, the operating system is able to provide an execution
thread to each of the strategies. If there are only a lim-
ited number of threads, then the reflex-engine scheduler
is needed. A reflex-engine scheduler has a fixed number
of threads that it can lease from the operating system to
then schedule the different mitigation strategies. A buffer
provides temporary storage of input fault events that the
reflex engine scheduler schedules with the corresponding
mitigation strategy. Finally, a number of high-priority
timers measure the time lapsed for the mitigation strat-
egy.

We can now detail these components and describe
their semantics using a model of networked timed au-
tomatons.

5.1 Real-time Fault Mitigation Strategies and Timer
Tasks

A real-time reflex engine uses fault mitigation strategies
as reflexes. Formally, we can define a strategy as:

Definition 2 (Fault mitigation strategy) A fault
mitigation strategy used in a real time reflex engine is
state machine based failure management logic, S =<
Q, q,Enable, Zi, Zτ+ ,T , R, Zo >, where

* Q is the set of all possible states.
* q ∈ Q is the initial state.
* Enable ∈ {True, False} is a Boolean flag used to

enable or disable a strategy.
* Zi is the set of all possible external events (input)

to which the strategy is subscribed. Every strategy
has two special events start ∈ Zi and finish ∈ Zo,
which are used to communicate with the scheduler.

* Zτ+ is the set of all events generated due to passage
of time.

* T ∈ Q × (Zi ∪ Zτ+) × Q is the set of all possible
transitions that can change the state of the strategy
due to passage of time or arrival of an input event.

* Zo is the set of all possible output events and miti-
gation actions generated by the strategy. For sake of

brevity, one can abstract the mitigation action as an
event.

* R : T → Zo is the reflex action map which generates
an output event every time a transition is taken.

The time-based events associated with any strategy
can be divided into two groups, internal and external. In-
ternal time-based events are generated while the strategy
is executing on a thread. If the strategy needs to mea-
sure time across two instances of execution, it can start
a timer task, which shall generate the time-based event
after the required passage of time. Thus, fault mitigation
strategies use timer tasks to measure time for them and
generate an event that wakes them up.

Definition 3 (Timer task) A timer is a task that ex-
ecutes non-preemptively until completion. This task gen-
erates a timeout event that is subscribed to by the corre-
sponding fault mitigation strategy. We call the execution
time duration of the timer as the lifetime of the timer.

These strategies and timer tasks have a one-to-one
mapping with a corresponding timed automaton model.
For the purposes of analysis, we restrict this lifetime of
the timer to the set of dense but countable positive ra-
tional numbers. This is necessary because we wish to use
the timed automaton model to govern the semantics of
a timer task.

5.1.1 Timer timed automaton

Fig. 7 Timer timed automaton.

A timer task is mapped to a timed automaton, which
has two locations, idle, busy and a single clock variable x.
We call this timed automaton a timer timed automaton.
The transition from idle to busy is guarded by a synchro-
nized event measure?, which allows the timer to start
working. The invariant associated with busy is given by
x ≤ γ, where γ ∈ Q+ is the time interval which has to
be measured for the requesting strategy. The transition
from busy to idle is guarded by constraint x = γ. Upon
this transition from busy to idle, the timer generates an
output action timeout!, which is an input event for the
requesting strategy. Figure 7 shows this model.

5.1.2 Strategy Timed Automaton Model

Consider any strategy of a reflex engine modeled as de-
scribed in Sect. 5.1. We can formulate an equivalent
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Fig. 8 An example strategy and its corresponding timed au-
tomaton.

timed automaton model TA=< Σ,S, S0, X, I, T > in
the following way:

* States of the strategy Q are mapped to locations of
the timed automaton model. Furthermore, two new
locations {Enabled,Disabled} are added to model
the cases when a strategy is enabled or disabled.
Only when the strategy is enabled can it be trig-
gered by the presence of events in the buffer and
dispatched to a thread by the scheduler. Thus S =
Q ∪ {Enabled,Disabled}.

* Initial location of the timed automaton, S0 is de-
rived from the initial states of the strategy plus the
new locations {Enabled,Disabled}. Thus S0 ∈ q ∪
{Enabled,Disabled}.

* In order to measure the time spent by the strategy
in each of its locations we use a clock variable x ∈
X. This clock is used to generate internal time-based
events while the strategy is executing.

* All invariants and guards to TA are specified by a
time specification used for the generation of internal
time-based events that can trigger a transition.

* Output actions of the timed automaton are the same
as the set Zo and are all written with a suffix of ‘!’.
The input events are same as the set Zi ∪ Zτ+ and
are written with a suffix of ‘?’. Therefore, Σ = Zi ∪
Zτ+ ∪ Zo.

* Transitions T of the timed automaton are a union
of transitions of the strategy i.e., T and transitions
due toDisabled and Enabled locations. To model the
ability of disabling the strategy in any of its states,
we specify transitions from all locations of the timed
automaton to the Disabled location. Moreover, one
transition fromDisabled to Enabled location is spec-
ified to model the enabling of the strategy. Lastly, a
transition is added from Enabled location to the ini-
tial state q of the strategy.

* The reflex action map R of the strategy is created by
mapping the output events Zo to the corresponding
transition of the timed automaton as output actions.

Figure 8 shows an example of a strategy which has
two states nominal and faulty and its corresponding
timed automaton model. Note the extra states and tran-
sitions added in the timed automaton model. The events

d, e are used by the supervisory reflex engine to disable
or enable the strategy.

5.2 Buffer

A buffer is a FIFO, which provides an interface for events
that are coming into a reflex engine. Since a reflex en-
gine has a number of strategies that might be more than
the number of available threads, the scheduler has to
arbitrate as to which strategy should execute. For this
purpose, the scheduler can sort the buffer and allow ex-
ecution of only those strategies that have a subscribed
event at the front of the buffer.

There are several issues associated with a buffer that
affect the correct operation of the RH framework. If the
buffer is not of adequate size and the incoming rate of
events is greater than the rate at which they are be-
ing processed, the buffer might drop some events. Such
mishaps will directly affect the safety property of the
real-time framework.

5.2.1 Buffer Timed Automaton Model

Fig. 9 Buffer timed automaton listening to two different
events. More events can be added to the model by creating
new self-transitions. The event, dequeue, is used to pop the
event from the front of the queue.

Buffer timed automatons have an associated shared
array of integers, called a queue. In order to identify
events in the model, we map them to the domain of pos-
itive integers. The Buffer TA (see Figure 9) has only one
location and no clocks. It uses an internal integer vari-
able, Top, to keep track of the queue size. An event is
added to the queue by using a self-transition that also
increments Top. A maximum queue size is set to drop
events if the queue becomes full, however, such a situa-
tion is undesirable.

5.3 Scheduler

Scheduler is an important component of a real-time re-
flex engine. Based on the number of threads available
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from the main operating system, the scheduler governs
and arbitrates the execution of timer tasks and strate-
gies. It picks up the input events from the buffer and then
executes a number of strategies, which in turn will per-
form the required mitigation actions and generate some
output events. We say that a strategy is triggered when
the event to which it is subscribed is present in the buffer.
It can be defined as follows:

Definition 4 (Scheduler) A scheduler, S, maps the
input events in the buffer to the corresponding strategies.
It uses an arbitration scheme to sort the buffer based on
the priority of the notification events. It then executes a
maximum m (number of threads leased from the operat-
ing system) strategies based on m number of events from
the head of the buffer. A number of priority schemes can
be used with the notification event. The simples being
equal priorities. In such a case, the scheduler will never
sort the buffer and always pick m events from the head
of the buffer.

5.3.1 Scheduler timed automaton model

Fig. 10 A scheduler timed automaton, which has only one
thread. The select state is the one in which the scheduling
decision is made.

The semantics of a real-time reflex engine scheduler
is a network of m timed automatons, m is the number
of available threads. Each of these individual timed au-
tomatons is identical to the one illustrated in Figure 10.
Working in parallel, one of these timed automatons keeps
control of execution on one of the threads available to the
scheduler. The number of threads that are available for
the strategies is equal to the number of threads leased
from the operating system minus the number of threads
for the timers (timers are non-preemptive and must have
a thread for their executions).

These timed automatons start from the idle location.
When the buffer is non-empty, the location changes to
select, which implements the scheduling policy by sort-
ing the queue with a given priority associated with the
incoming events. It then pops the event from the top
of queue, transitions to the corresponding strategy loca-
tion and passes the thread of execution to the strategy

by using the start event. When the strategy finishes ex-
ecution, it generates a finished event that returns the
timed automaton to the idle state.

With all its subcomponents defined, we can now re-
view the operation of a real-time reflex engine.

5.4 Real-Time Reflex Engine

Fig. 11 An overview of a real-time reflex engine

A Real-time Reflex Engine (RTRE), as shown in Fig-
ure 11, is comprised of multiple fault-mitigation strate-
gies that take action in the presence of certain input
events, which signify a fault condition. New strategies
can be added to a real time reflex engine by an upper
level external reflex engine or by direct human interven-
tion. Moreover, a supervisory higher-level reflex engine
can enable or disable a strategy. Formally, a RTRE can
be defined as:

Definition 5 (Real-time reflex engine) A real time
reflex engine is a tuple Er = < S, B, S , S ′, Zi, Zo >,
where S is the scheduler , B is a buffer, S is a parallel
composition of all the enabled strategies. S ′ is the set
of disabled strategies, Zi is the set of all the possible
inputs to a reflex engine and Zo is the set of all the
possible outputs generated by the reflex engine.

All possible communication in and out of a RTRE is
carried out through event sets Zi,Zo. These event sets
are a union of corresponding input and output event sets
of all strategies implemented by that engine. In a multi-
level hierarchy as the one motivated in [26], some events
are reserved for communication between reflex engines
that have a manager/subordinate relationship.

Since a reflex engine is a parallel composition of its
subcomponents, its timed automaton is also a paral-
lel composition of the component’s timed automatons.
Hence, we can consider a real-time reflex engine to be a
network of timed automatons. In the same spirit, we can
consider a number of reflex engines in a framework to be
a larger network of timed automatons.
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Fig. 12 Overview of the chain of operations inside a computing node, which has a real time reflex engine.

5.5 Sequence of Operations inside a Real-Time Reflex
Engine

Figure 12 illustrates the operation inside a computing
node, which houses a RTRE. Once it is operational, the
scheduler leases a number of threads from the operating
system. The fault strategies then inform the scheduler
about their subscribed events through the publish sub-
scribe mechanism.

When a new event arrives in a buffer, it signals the
scheduler. If the buffer is full, then the event is dropped.
This is an undesirable condition, which necessitates prior
verification to check that such a situation will never arise.
Once there is an event in the buffer, the scheduler waits
for a thread to be available and then triggers the corre-
sponding strategy and transfers the thread to that strat-
egy. A strategy then takes the corresponding event and
transfers the output event onto the communication link.
If the strategy needs to measure time, it starts a timer
task, which is non-preemptive and runs until completion
or its termination, whichever happens first.

6 Analysis of Real-Time Reflex and Healing
Framework

In the last section, we detailed the mapping between a
real-time reflex and healing framework and a correspond-
ing network of timed automatons. Since we wish to ana-
lyze the network’s real-time properties, we can use timed
computation tree logic (TCTL) [16; 8; 4] to specify the
system properties. Then we can use model-checking tools
to check the veracity of these properties against the sys-
tem model. In general, these model-checking tools check
the following properties:

* Reachability: These sets of properties deal with the
possible satisfaction of a given state-based predicate
logic formula in a possible future state of the system.
For example, the TCTL formula E3φ is true if the
predicate logic formula φ is eventually satisfied on
any execution path of the system.

* Invariance: These sets of properties are also termed
as safety properties. As the name suggests, invari-
ance properties are supposed to be either true or false
throughout the execution lifetime of the system. For
example, the TCTL formula A2φ is true if the sys-
tem always satisfies the predicate logic formula φ. A
restrictive form of invariance property is sometimes
used to check if some logical formula is always true
on some execution path of the system. An example
of such a TCTL property is E2φ.

* Liveness: Liveness of a system means that it will
never deadlock, i.e. in all the states of the system ei-
ther there will be an enabled action transition and/or
time will be allowed to pass without violating any lo-
cation invariants. Liveness is also related to the sys-
tem responsiveness. For example, the TCTL formula
A2(ψ → A3φ) is true if a state of the system satis-
fying ψ always eventually leads to a state satisfying
φ.

It is possible to use these general classes of TCTL prop-
erties to map the real-time properties of a RH frame-
work to corresponding TCTL properties for the network
of timed automatons.

* Liveness of the RH architecture amounts to check-
ing if the system has any deadlocks. In UPPAAL
A2not deadlock is the specification for this property.

* Safety of the RH architecture requires a check for
any violation that might lead to not finishing a task
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on time. Safety violations also include checking for
queue overflow conditions. One way for checking a
safety property is to introduce an error location in
all time automatons and force a transition to this er-
ror location if the queue overflows or if a time dead-
line expires. Then the checking of the safety prop-
erty will amount to checking the reachability prop-
erty not E3 error.

* Bounded Response Properties can be formalized us-
ing the reachability property and liveness property.
Suppose we have to check if state = state1 happens
then state = state2 will happen within 5 time units.
In order to formulate this property, we augment the
time automaton with an additional clock called a for-
mula clock, say z, whereby we reset its value to 0 on
all the transitions leading to state1 and check if the
liveness property A2(state = state1 → A3state =
state1 ∧ z <= 5) is true or not.

In the next section, we will present a case study that
will help in clarifying the ideas introduced in this pa-
per so far. In this case study, we will use UPPAAL for
analysis purposes.

7 Case Study

Typical HEP data processing systems experience a va-
riety of both temporal and persistent faults. Persistent
faults are those in which software or hardware compo-
nents undergo terminal failure and need to be replaced.
Temporal faults, however, are sporadic in nature and are
not necessarily indicative of direct failure of the software
or hardware. One example of temporal faults is data
stream corruption.

Our approach toward designing tools and techniques
for advancing the capabilities of HEP data processing
systems has included the means for non-experts (physi-
cists and plant engineers) to easily design and deploy
fault mitigation behaviors, which are specific to their
domain of experience. Systems that provide this capabil-
ity have been shown to be beneficial for HEP computing
[14]. However, with this great benefit comes the risk that
non-expert users might create behaviors, which may, at
best, cause unexpected behavior or, at worst, be harmful
to the system.

The following case study presents a scenario in which
an existing system [2] is augmented with user-defined be-
haviors for recovering from temporal faults due to data
stream corruption. These behaviors are analyzed using
UPPAAL [4], a tool for verifying behavioral models ex-
pressed as timed automata.

7.1 Experiment Setup

The data rate at which physics events are generated in an
actual HEP experiment are on the order of several Tera

Byte per second [19]. Since only a few of these physics
events are of value to physicists, a number of filters are
used to examine the events to determine which should be
kept. Due to the nature of the environment, a number
of these physics events may become corrupted as they
flow through the system. This type of data corruption is
classified as a temporal fault; the system should detect
these corrupted physics events and ensure that the num-
ber of subsequently corrupted events is reduced. This is
done by reducing the intensity (also referred to as the
luminosity) at which the accelerator operates, thereby
reducing the number of physics events produced by the
experiment.

The architecture used in this case study is illustrated
in Figure 13. The sub-components of the reflex and heal-
ing architecture have been arranged in a hierarchical
fashion. The communication between the local managers,
filters, data source and the regional manager is strictly
event-based. For the sake of brevity, we have summarized
all these events in Table 1. We will now detail the models
of each of these components.

Fig. 13 The architectural setup for the case study. There are
two local managers, one data source, two filter applications
and one regional manager.

7.1.1 DataSource

A data source is used to mimic the physical data produc-
tion mechanism of a high-energy physics experiment by
generating simulated data for all the particle collisions
that would normally happen in the particle accelerator.
These data are referred to as physics events. The data
source is true to the behavior of the actual system in that
sets of physics events are generated at a fixed periodic
rate, with a variable number of events per set. A control
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Table 1 The detailed list of all the events being used in the
case study.

Event Name Relevance

GoodData The Data source produced a good
physics event.

BadData The Data source produced a bad/ cor-
rupt physics event.

GetData One of the filters is dequeuing the
event from filter buffer.

F1BadData Filter1 has detected a bad physics
event.

F2BadData Filter2 has detected a bad physics
event.

BufSchedLoc1 Scheduler of local manager 1 is de-
queuing the local buffer.

StaStra1Loc1 Instruction from local scheduler 1 to
start the first local strategy.

StopStra1Loc1 The local strategy 1 is signaling its
completion to its scheduler.

L1R1BadData Signal from local manager 1 to its re-
gional about a detection of bad data
by its Filter.

BufSchedLoc2 Scheduler of local manager 2 is de-
queuing the local buffer

StaStra1Loc2 Instruction from local scheduler 2 to
start the first local strategy.

StopStra1Loc2 The local strategy 2 is signaling its
completion to its scheduler.

L2R1BadData Signal from local manager 2 to its re-
gional about a detection of bad data
by its Filter

BufSchedReg1 Regional Scheduler is dequeuing the
regional buffer.

StaStra1Reg1 Instruction from regional scheduler to
start the first regional strategy

StopStra1Reg1 Signal from regional strategy to the
scheduler that it is relinquishing the
thread.

StaReg1Timer1 Signal from regional strategy to the
timer to start measuring time.

StopReg1Timer1 Signal to stop the timer, issued either
by the timer itself after the set time
has elapsed or by the regional strategy
if it not longer needs to measure time.

Reg1DataSource A mitigation instruction, in response
of the fault condition, from Regional
manager to the data source to change
its behavior.

parameter of the data source is exposed which allows the
number of physics events generated per unit time to be
varied.

Figure 14 is the timed automaton model constructed
in UPPAAL for the data source. Its initial state is Init.
In its normal model of operation, after every four time
units - measured by using the clock x - a variable number
of physics events are generated. There are two categories
of these physics events, good data and bad data (see
Table 1).

In case a temporal fault is detected such that the
number of bad data events generated has to be reduced,
the data source can be instructed by using the event
Reg1DataSource to change its luminosity and move to
the SecondInit location.

Fig. 14 The data source generates data every four time peri-
ods. The number of data events generated varies over periods.

7.1.2 FilterBuffer

Fig. 15 The filter buffer stores the generated data source
events.

A buffer is required to store the generated physics
event before they can be processed by a filter application.
As shown in Figure 15 the buffer uses two methods called
enqueue and dequeue to push and pop physics events into
the queue. The maximum size of the queue is modeled
by a fix integer constant (not shown in the figure). The
filter applications uses the get data event to access the
top of the queue.

It is evident that the overflowing of the queue is un-
desirable as it might lead to a loss of important physics
events. Therefore, one of the key properties that we will
analyze in this case study is to check if the buffer queue
overflows. This will be done by checking if the boolean
variable enqueueResult becomes false.

7.1.3 Filter Applications: Filter1

The filter applications, filter1 and filter2, work concur-
rently to process the physics events present in the filter
buffer. Figure 16 illustrates the timed automaton model
for the first filter. After obtaining the data from the filter
buffer, a filter stores the physics event into a temporary
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Fig. 16 There are two filters in this setup. Both filters con-
sume the data from the filter buffer and detect whether it is
a good physics event or a bad physics event.

local variable and then executes the detection algorithm.
It has been assumed in the model that the filter takes
between [1, 2] time units in order to detect if the physics
event is good or bad. If the physics event is bad, the fil-
ter generates an event, F1BadData, to the buffer of its
local manager, and resumes work with the next physics
event.

Filter2 is identical in its model to filter1 except that
it generates ,F2BadData, and sends it to its local man-
ager, which is different from the first filter’s local man-
ager. Together, in the worst case, the filters can process
2 data events every 4 time units.

7.1.4 Local Managers: Local Manager 1

Recall that a local manager has a scheduler, a buffer,
and one or more strategies. This case study considers two
local managers. In this section, we will describe the first
local manager’s components. The second local manager
is identical to the first with the exception that it has its
own corresponding events as described in the Table 1.

7.1.5 Local Manager’s Buffer: BufferLocal1

The local manager’s buffer is used to store the events,
which are subscribed to by the manager’s strategy. The
model of a local manager’s buffer, illustrated in Figure
17, is similar to that of the filter buffer, with an en-
queue function call for each event that is being added.
The arguments passed to this function are the ID of the
event and number of strategy, which has subscribed to
the event. This buffer’s communicates with the sched-
uler, which pops the queue and executes the correspond-
ing strategy.

Fig. 17 The buffer of one of the local managers.

Fig. 18 The local scheduler dequeues the local buffer and
starts the appropriate strategy. This scheduler only has one
thread. Therefore, only one strategy can be executed at a
time.

7.1.6 Local Scheduler: SchedLocal1

In this case study, the scheduler only has one thread
on which it can execute a strategy. Figure 18 illustrates
the scheduler model. It uses the BufSchedLoc1 event
to obtain the current event from the queue and then
starts the strategy - in this case there is only one possible
strategy. It returns to its idle state in which the strategy
generates the StopStra1Loc1 event, signaling that the
strategy has finished its execution and has relinquished
the thread.

7.1.7 Local Strategy: Strategy1Local1

Temporal data corruption faults can arguably be miti-
gated at the local level as well as the regional level. How-
ever, we will show in the analysis that if one attempts
to detect and mitigate a temporal fault at a local level
there is a chance of missing a subsequent temporal fault.
It is due to this reason that we chose to implement the
mitigation strategy at the regional level. Therefore, the
local strategy has been reduced to simply notify its re-
gional manager whenever its filter reports a bad physics
event. Fig 19 illustrates this local strategy for the first
local manager. The model captures the possibility of a
worst-case delay of one time unit at the local strategy
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Fig. 19 The local strategy. The local scheduler starts this
strategy.

level before it can generate the L1R1BadData event to
notify the regional manager.

Additional local strategies can be added by including
an additional start strategy state to the local scheduler.

7.1.8 Regional Manager: Regional Manager 1

The components of a regional manager are identical to
a local manger, the only difference being its hierarchical
position. We will now describe these components.

7.1.9 Regional Buffer: BufferRegional1

Fig. 20 The regional buffer stores the events communicated
by its local managers.

Figure 20 illustrates the model for the regional buffer.
It stores the events communicated to it by the local man-
agers. In this case these events are L1R1BadData and
L2R2BadData. The former event signifies the detection
of a bad data by the first local manager, while the latter
is the signal from the second local manager.

7.1.10 Regional Scheduler: SchedRegional1

The regional scheduler, shown in Figure21, is identical in
its operation to the local schedulers. It has one thread at
its disposal, which it uses to execute a strategy depend-
ing upon the event popped from the regional buffer.

Fig. 21 The regional scheduler also works like the local
scheduler. It consumes events from the regional buffer and
starts the appropriate regional strategy.

7.1.11 Regional Strategy :Strategy1Regional1

Fig. 22 This regional strategy issues a mitigating action if
contiguous bad data events arrive before the timer event ar-
rives. This mitigating action changes the parameters of the
data source effectively reducing the number of physics events
generated per cycle.

The regional strategy, shown in Figure 22, detects a
region wide fault and then issues the mitigating action as
an event,Reg1DataSource. The fault is assumed to have
occurred if the regional manager receives two bad data
events in any particular order from its local managers
within a period of two time units.

As shown in the fig 22, this strategy starts its opera-
tion in the nominal state. When the scheduler wakes the
strategy, it moves to the fault received state and starts a
timer to measure two time units. After starting the timer,
the strategy moves to a waiting state and relinquishes
its thread back to the scheduler. It the timer sends a
StopReg1Timer1 event before the next start event from
the scheduler, the strategy resets and moves back to the
nominal mode of operation. However, if a second start
event from scheduler is received before the timer’s event,
the strategy moves to a faulty state. This is because two
bad physics events have been detected within two time
units of each other. Then the strategy issues a mitigation
action using the Reg1DataSource event to tell the data
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source to reduce its luminosity and hence reducing the
number of bad data being generated.

7.1.12 Regional Timer: RegionalT imer1

Fig. 23 This timer is used by the regional strategy as a
stopwatch set for a period of 2s to measure time elapsed be-
tween two bad data. It is necessary to use the timer because
the regional strategy relinquishes the thread between the two
contiguous arrivals of bad data.

Fig 23 describes the model of the non-preemptive
timer used in this case study. Once started by the re-
gional strategy, this timer generates a StopReg1Timer1
after two time units, unless it is stopped.

7.2 Simulation

Figure 24 details a simulation trace as obtained from
UPPAAL for the temporal data stream corruption fault
and the corresponding mitigation. In the figure, the time
line flows from the top to bottom.

The trace starts with the production of four physics
events in the sequence, GoodData, BadData, BadData,
and GoodData. These events are then enqueued into
the filter buffer. Then filter1 synchronizes with the fil-
ter buffer by using the GetData event - in this case
GoodData- and finally transitions to the Detecting lo-
cation. After a brief delay, filter2 also pops an event from
the filter buffer - BadData and moves to the Detecting
location. Once it completes the detection process, fil-
ter2 informs its local manager about the bad physics
event by using an F2BadData event and then it gets
another physics event. Since this next physics event is
also a corrupt, it again detects it and raises another
F2BadData event. Simultaneously, filter1 detects that
its physics event was good and transitions to Nominal
location and gets another physics event.

Once the second local buffer becomes nonempty, its
scheduler wakes up the local strategy, which raises the
L2R1BadData event and enqueues it into the regional
buffer. At this time, the regional scheduler dequeues its
buffer. It then starts the regional strategy. The regional
strategy moves to the faultReceived location and starts

the regional timer and proceeds to the waiting location.
When the second F2BadData event reaches the local
buffer, the local manager again raises an L2R1BadData
event, which causes the regional scheduler to start the
regional strategy again. At this time the regional strat-
egy is in the Waiting location and the regional timer
has not sent the StopReg1Timer1 event, yet. Thus, the
regional strategy moves to the Faulty location. Then
the strategy moves to the Mitigation location, issues a
Reg1DataSource event and causes the data source to
change its luminosity and hence reduces the number of
contiguous bad data events.

7.3 Analysis and Verification

In the subsequent subsections, we will present the prop-
erties, which we verified for this case study. For each
property, we will provide the following details:

* Specification: The formal specification of the prop-
erty in TCTL.

* Description: A textual explanation of the property.
* Result: The result of the verification process as ob-

tained with UPPAAL on a 3GHz computer with
1024MB RAM running Linux.

* Computation Time: Time required to compute the
results.

* Analysis: A textual explanation if the property is not
satisfied.

* Correction of Design: If applicable, we provide a cor-
rected design that will satisfy the concerned property.

7.3.1 Feasibility Analysis: Why not a Local Temporal
Fault Strategy?

One might argue why we need to implement a regional
strategy to mitigate the data stream corruption. Why
not use two local strategies, one for each local manager
instead?

As an experiment, we demoted the current regional
strategy and replaced the two local strategies with this
regional strategy. We then checked the setup against the
following property:

Specification:
A2(DataSource.two→A3( Strategy1Local1.Faulty ||
Strategy1Local2.Faulty))

Description:
The contiguous bad data fault occurs two BadData
events are pushed next to each other in the filter
buffer. This only happens when the Data Source is
in its location “two” (see Sect. 7.1.1). If we consider
that the current local strategies are replaced by the
current regional strategy (see Sects. 7.1.7 and 7.1.11),
then we can say that the fault will be detected when
either of the local manager is in its fault state. The
formal specification mentioned above checks for this
fact.
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Fig. 24 A simulation of a temporal fault and its mitigation is produced by UPPAAL.
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Result:
The result of verification stated that that this prop-
erty is not universally true.

Computation Time: 2 seconds.
Analysis:

The reason for this is because there can be a case
when two contiguous faults from the filter buffer can
be picked by different filters and hence can remain
undetected by their local manager.

Therefore, we decided to promote this strategy as a
regional strategy.

7.3.2 Regional Strategy Will Always Catch Data Fault

This analysis furthers the property check mentioned in
the previous section. The architectural setup detailed
previously describes the regional strategy. In order to
check if this strategy will always work, we checked the
following property:

Specification:
A2DataSource.two→A3 Strategy1Regional1.Faulty

Description:
This specification is similar to the one mentioned in
Sect. 7.3.1. It should be noted that the verification
of this property would not have been possible with-
out a timed automaton model. This is because the
definition of the fault requires a measure of time.

Result:
This property was universally true.

Computation Time: 2 seconds.
Analysis:

All contiguous bad physics events will be mitigated.

7.3.3 Liveness: Deadlock check

It is important to check that the designed system will
not end in deadlock. For this purpose, we verified the
model against the following property.

Specification:
A2 not deadlock

Description:
The system will never deadlock.

Result:
The result of this check was false.

Computation Time: 3− 4 seconds.
Analysis:

The UPPAAL verification engine generates a counter
example in the case where a property is deemed false.
Upon reviewing the counter example, we found the
problem. Currently, the data source can generate two
pairs of contiguous bad physics events before the first
one is detected by the regional strategy, which then
issues aReg1DataSource event to lower the luminos-
ity of the data source. The deadlock happens when

the regional manager detects the second pair of con-
tiguous bad data events and it again tries to syn-
chronize with the data source by using the event
Reg1DataSource. However, the data source, see Sect.
7.1.1, at this time is in the SeondInit location and
cannot synchronize the event from regional manager.

Correction of Design:
To correct the deadlock, we modified the regional
strategy to ignore the second bad data. The new
strategy is shown in Figure 25. Although this is modi-
fication is not complex, it still underscores the benefit
that the verification provides in correcting bad miti-
gation strategies.

Fig. 25 The regional strategy ignores the second false alarm
by transitioning to sleep state.

7.3.4 Safety: Buffer Queue Will Not Overflow

In Sect. 7.1.2 we had mentioned that it is imperative
that the filter buffer never overflows. This is necessary
to ensure that generated physics events are processed
and not lost. To ensure that this never happens we have
to verify the following property:

Specification:
A2 FilterBuffer.enqueueResult

Description:
In the filter buffer (Sect.7.1.2), the enqueue method
call is used to push the data event into the queue.
This method returns a boolean value stored in the
variable enqueueResult, which is set to true if the
action was successful. In the event of a buffer over-
flow, the return value is set to false. Hence, it is
sufficient in the formal specification to ensure that
enqueueResult is always true.

Result:
This property is satisfied.
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Computation Time: 4 seconds.
Analysis:

The buffer will never overflow.

7.4 Evaluation

In this case study, we verified a real-time reflex and heal-
ing setup with two local managers, and one regional man-
ager. Overall, there were 14 timed automaton models in
the network (see Figure 13), with five clock variables,
one for the data source, two for the two filters, two for
the two local strategies and one for the regional timer.
With this model, the property verification took 3s, on an
average.

It has been known that the model-checking tools for
timed automaton suffer from the state-explosion prob-
lem. Specifically, it has been experienced that the per-
formance of the verification algorithm degrades as the
size of the timed automaton network increases. With the
increasing number of clocks, the memory required to be
able to explore all possible regions of the region automa-
ton becomes extremely large. Therefore, a concern is how
will we be able to scale our verification technique to sys-
tems with hundreds or even thousands of processors.

It is evident that we cannot verify the whole system
model with several processors together. However, due to
our architecture, which forbids any communication be-
tween peer managers and only allows communication be-
tween a parent and child node (refer to Sect. 3.1), we can
abstract the system at any particular node by only using
its parent node and children node. It is our contention
that by using a bottom to top approach and performing
iterative verification checks for each level of hierarchy we
can guarantee that the full system model will also satisfy
the property. This is the basis for our future work.

8 Conclusion and Future Works

In this paper, we have shown that the real-time reflex
and healing framework is an autonomic, fault mitiga-
tion framework, which with the semantics of networked
timed automation can verify real-time properties of the
system. In particular, we have shown this to be useful
in determining the liveliness and safety of the system,
as well as the time-boundedness of the system’s mitiga-
tion responses. One can further conclude that in the area
of large scale computing systems, model-based analyses
such as these are necessary to ensure that non-expert
users do not introduce into system behaviors, which vi-
olate these properties.

As future work, we are investigating the possibility
of using a discrete time model, which will help in reduc-
ing the computational complexity of verifying increas-
ingly larger systems. This approach may lead to auto-
mated synthesis of new mitigation behaviors by consid-
ering the fault mitigation as a discreet timed supervisory

control problem. This would further serve to provide self-
managing systems, which are more robust, yet more eas-
ily augmented with new behavior.
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