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CHAPTER I

INTRODUCTION

The information and digital revolution that has taken place in the last half of 20th

century has changed the world around us. Integration of information processing with

physical processes has enabled the use of computing devices for purposes of controlling

modern systems ranging from toy robots to complex space crafts with minimal human

intervention. Such systems with one or more dedicated computing devices are called

embedded systems, while the processing of information integrated with physical processes

in these systems is called embedded computing. Pervasiveness of embedded computing

is evident by the fact that almost 95% of the microprocessors produced are utilized for

embedded computing tasks [63].

Formalizing methodologies for development of embedded systems is one of the most

formidable challenges faced by industry and academia today. Embedded systems are

required to meet multiple design objectives, while satisfying the requirements for system

performance and system reliability. Due to limitation of physical resources such as power

sources, traditional approach of maintaining exaggerated safety-margins in order to meet

the requirements is not acceptable in embedded systems design.

In order to address these challenges, a new system theory that provides a solid math-

ematical backbone for embedded system design is required. While traditional system

theory focused on behaviors of homogeneous idealized systems, the new theory needs

to address the inherent heterogeneity of embedded systems, which is present due to the

coupling of physical processes with the information world.

Hybrid system theory [46] is being developed to provide a mathematical foundation

for study of systems that contain both physical and computation processes. A typical

example of hybrid system is an embedded software system, which interacts with physical

environment using sensors and actuators. This new theory is a bridge between traditional
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control systems theory, which is inadequate for capturing computational aspects of em-

bedded system, and classical computer science theory, which is inadequate for capturing

the physical processes related to embedded systems.

Model-based design [61, 33, 65] provides a scalable methodology for system design

and analysis based on hybrid system theory in order to integrate efforts in system speci-

fication, design, synthesis, validation, verification and design evolution. In this approach,

mathematical foundation provided by hybrid system theory enables the encapsulation of

related aspects of embedded systems as models. Design complexity is handled by sup-

porting the manipulation and integration of models with manageable complexity during

different design phases. Model transformation techniques are useful in refining the model

for design evolution by either adding the implementation details for system generation, or

abstracting away the implementation details for managing complexity. Moreover, model

transformation techniques provide capability to infer analytical models from design mod-

els that can be used as input to tools that perform validation and verification.

In this thesis, we describe the use of model based approach for system design, valida-

tion and verification. Currently, we have developed a platform for formalizing the design

and analysis of models for hybrid systems. In the future, we will expand the scope of

this platform and develop a chain of integrated tool suites that can be used for system

development from system design to system generation.

The rest of this chapter will proceed as follows: first, an introduction to model driven

system development will be given; then, a review on hybrid systems will be provided; the

last three sections will describe the scope of this thesis, which is to provide a platform

and modeling language for designing and analyzing hybrid system models.

Model Driven System Development

In [56], the act of modeling has been described as, “representing a system formally

in order to describe and analyze the working of some relevant portions of the concerned

system”. A model could be mathematical, in which case it can be viewed as assertions

about properties of the system such as its functionality and physical appearance. Such
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mathematical models are often found in many disciplines such as control engineering

[52] where the functionality of a plant is described using ordinary differential equations

(ODE). A model can also be descriptive [35], in which case it defines a formal compu-

tation procedure to emulate certain behaviors of a system. Descriptive models should

be machine readable in order to enable the use of various algorithms to ascertain the

expected behavior of system in response to environmental stimuli. This is necessary be-

cause models of complex systems might not be tractable for a human being to analyze.

A model can also be generative, in which case it possesses enough information to be able

to automatically generate the actual system.

An approach to system design and analysis is to use model driven system develop-

ment [33] for using models in all stages of system development from design and analysis

to production. In this approach, models are used to formally encapsulate the necessary

information of the system and perform analysis or even design changes before actual im-

plementation. The advantage of using models is that (i) models allow system perspectives

at varying level of details in order to provide a less complex view of the whole design; (ii)

models enable formalization of correct methods, which when reused, guarantee that the

system would meet the design specifications; (iii) models enable use of formal validation

and verification techniques.

In model driven system development, models are used as input and output in all

stages of system development from system specification to production. Multiple models

are used to encapsulate a particular design of system. Such models are also known as

design models. The task of analysis uses descriptive models which can be inferred from the

design models in order to ascertain if a certain design meets the specification. Thereafter,

the design of a system can be successively refined in order to assure that corresponding

system would have the desired functionality. Model transformation rules ensure that

analysis models can be translated to design models and vice-versa. After refining the

design, if the models are machine readable, by providing correct transformation rules,

models can be transformed into executable artifacts that can be deployed for production
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of actual system. One such model driven system development methodology is Model

Integrated Computing (MIC) [65, 41].

MIC brings in key concept of domain modeling to the paradigm of model driven

system development. It has been argued that no single modeling language can be used

to describe all kinds of models[41]. Rather, systems should be modeled using modeling

languages tailored to the needs of a particular domain. A key capability supported by MIC

is the definition and implementation of domain-specific modeling languages (DSMLs).

Crucial to the success of DSMLs is metamodeling and auto-generation. A metamodel

defines the elements of a DSML, which is tailored to a particular domain. The modeling

language which is used to construct metamodels is known as metamodeling language.

Auto-generation involves automatically synthesizing useful artifacts from models, thereby

relieving DSML users from the specifics of the artifacts themselves, including their format,

syntax, or semantics.

The Generic Modeling Environment (GME) [45] is a design tool suite which provides

an end-end solution for building and deploying MIC applications. It provides graphical

modeling environment for specifying the metamodels and consequently domain specific

models. Graphical modeling has been preferred over text based models since pictures

provide intuitive management of information. Moreover, graphical modeling allows use

of hierarchy to encapsulate information for abstraction. The metamodels in GME are

specified using a metamodeling language called MetaGME. GME has built-in mechanism

to implement tools for transforming metamodels to modeling language, analyzing models

or using models to generate actual implementation of the system.

Object of Study: Hybrid Systems

Hybrid systems are heterogeneous systems that include continuous-time components

interacting with discrete components. Such systems include embedded systems with soft-

ware and hardware components executing in discrete time steps and physical environment

executing in continuous time. A typical example of a hybrid system is the transmission

system of an automotive. In the transmission systems, each gear shift marks a change in
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continuous dynamics of the automotive engine. The change in continuous dynamics af-

fects the speed and torque ratio in the engine. Thus each gear position can be considered

as a mode of operation in which different continuous dynamics of engine are applicable.

Modeling and study of continuous systems and discrete systems have been developed

as two separate cultures, control engineering, and computer engineering. Hybrid systems

lie on the boundary of these two cultures. Traditionally, ordinary differential equations

(ODEs) models (see [57]) have been extensively used to study continuous dynamical

systems since they can model rich non-linear phenomenon. On the other hand, discrete

modeling structures such as Finite State Machine (FSM) [35] have been used to study the

discrete systems. In order to analyze systems with tightly coupled discrete and continuous

components, a model representation is required which cancombine the two paradigms.

Timed automaton [6] is a model which combines the discrete modeling structure of

finite state machine with simple continuous dynamics. It allows the study the temporal

properties of systems. Timed automaton has been proved to be very effective in modeling

a large range of phenomena in diverse domains such as systems with real-time constraints

[18], scheduling in manufacturing systems [1].

Hybrid automaton [36] is another model, which combines the discrete modeling struc-

ture of finite state machine with complicated continuous dynamics modeled as ODE.

These models have been used by control engineers to model the environments they want

to control along with the discrete components. Use of these models has been demon-

strated in various applications such as coordinating robot systems [7], automobiles [12]

and aircrafts [70].

Hybrid automaton and timed automaton are used to perform validation of a design of

hybrid systems. Simulation is the most widespread validation technique used. A number

of software tools provide simulation of hybrid systems, including Charon [5], HyVisual

[17], Modelica [68], and Simulink/Stateflow1. However, one shortcoming of simulation

methods is that they examine only one possible system behavior at a time. They cannot

be used to check if all the possible system behaviors satisfy certain property.

1Simulink and Stateflow are registered trademarks of Mathworks corporation
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An alternative form of more rigorous validation is verification. Formal verification

refers to methods for determining whether or not some given properties (specifications)

are true for a given model of dynamic system. Verification of discrete-state systems has

gained industrial importance, especially in the area of hardware design and communica-

tion protocols [23]. Extending these techniques to continuous systems and thus hybrid

systems has been a challenge. Apart from validation, hybrid automaton and timed au-

tomaton are also used for synthesis of useful design parameters for refining the design so

that it meets certain functional requirements.

In general, there are two approaches to formal verification: theorem proving and model

checking. In the former, a specification for a system model is either inferred or contra-

dicted using a set of logical deductions, whereas in the latter approach, various states of

the systems are explored to arrive at the set of states which satisfies the specification. The

attraction of theorem proving approach is that it is not restricted to finite state systems.

However, theorem proving usually requires human intervention. In contrast, algorithms

exist and have been implemented for model checking techniques. In these techniques,

concept of reachable set that formalizes all possible system behaviors for a given set of

system states, is used. For certain class of hybrid systems [38], the state space can be

reduced to an equivalent finite bisimulation, which can be explored for verifying certain

properties. However, in other classes direct exploration of infinite state space is per-

formed by using symbolic representation of continuous sets. In [39], the former approach

has been categorized as reductionist, while the latter has been termed as symbolic.

Need for a New Design and Analysis Language for Hybrid Systems

In symbolic method based approach, only for certain classes of dynamical systems as

discussed in [4], continuous state sets can be exactly represented. In most cases, com-

putation methods have to be used for representing state sets. Boolean operations on

continuous state sets depend heavily on the geometry chosen to represent the contin-

uous state sets. Since, for most hybrid systems, computation of exact reachable set is

undecidable, various methods [51, 10, 20, 73, 37, 14] have to be employed for computing
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approximation of reachable sets. Equipped with representation of continuous state sets,

Boolean operations on state sets, and approximate reachable set, a number of algorithms

can be developed for model checking the hybrid automaton.

Various computation tools have been developed for specific analysis needs and have

specific computation capabilities. For a class of linear hybrid systems, Checkmate [20]

is used for verification. It represents continuous state sets [64] as flow pipes, and ap-

proximates reachable sets by using numerical integration and polyhedral approximation.

Checkmate then converts the hybrid automaton model into a polyhedral-invariant hybrid

automaton for purposes of model checking. Another tool for linear hybrid systems is d/dt

[10], which represents continuous state sets as union on convex polyhedron and then uses

numerical integration methods for computing reachable sets. Unlike Checkmate, d/dt

performs model checking directly on the hybrid automaton model by using reachable

sets. For non-linear systems, Level Set method [53], applied in Level Set toolbox [51],

might be used. This method represents continuous state sets using a higher dimensional

implicit level set function. Level Set method computes the evolution of a continuous

set governed by an ordinary differential equation as the interface evolution problem by

solving the associated partial differential equation.

Currently, due to diversity in representation of continuous state sets and methods

for computing reachable sets in the computation tools, use of algorithms for purpose of

analyzing models of hybrid systems has been seriously constrained. However, we feel that

algorithm design should be made at an abstract level which hides the possible continuous

state sets representation and methods for computing the reachable sets. In fact, for

designing analysis algorithm, only the mathematical definition of reachability operations

and Boolean state set operation is required. Moreover, some of the tools lack the support

data structures such as multidimensional lists needed for algorithmically exploring the

hybrid state space.

For this purpose, we want to enable a computation platform which allows the design

of analysis algorithms as models that can abstract away the implementation details. Use

of models, when coupled with model transformation techniques, will enable adoption of
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various computation methods for set representation and computation of reachable sets.

This would be necessary in order to implement the analysis algorithms. In order to

adopt the computation methods we want to enrich the existing computation tools with

support structures, and use them as computation kernels for implementing the algorithms

designed at the abstract level.

Scope of The Thesis

In the Embedded Computing Software Laboratory (ECSL) at Vanderbilt University,

we have developed a metamodel based modeling language, Hybrid System Analysis and

Design Language (HADL) [28], using the MIC paradigm offered by GME. Use of meta-

model allows formal specification of all the concepts and notions needed to design hybrid

system models and analyze them, such as reachable set operations and Boolean set op-

erations (such as union and intersection). HADL is designed based on the mathematical

definitions of these operations and is designed to ensure that there exists a correspondence

between the semantics of computation kernels and the semantics of HADL. Therefore,

one can use the semantics of HADL to anchor the semantics of these kernels, which is

referred to as semantic anchoring in [19]. Because of this feature, we can design analysis

algorithms by using the mathematical semantics of these operations instead of consider-

ing the detailed implementation of continuous state sets and the corresponding reachable

set operations. Furthermore, HADL enriches the functions of its computation kernels

by providing constructs and operations more than these computation kernels, such as

multidimensional list and its corresponding operations. Currently we have enriched the

computation tools d/dt and Level Set toolbox and use them as computation kernels.

Figure 1, which is derived from the MIC multigraph architecture [66], depicts how MIC

approach is applied to encapsulate HADL and automate the design and implementation

process. This architecture has three model development stages, namely meta-model, do-

main specific models and the executable artifacts. The first level is the meta-programming

interface, which is used to define the meta-model of HADL. This meta-model is based

upon abstract entities found in the symbolic method based computation tools and is
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Figure 1: Creation of the ReachLab platform using MIC multigraph architecture.

later implemented as the domain specific modeling language, HADL, using the meta-

translation facility provided by GME. Model-Integrated Program Synthesis (MIPS) en-

vironment [67] is the second level and provides tools to build and modify system models

and the analysis algorithms using HADL. This level also supports construction of trans-

lators to automatically translate the algorithm models into implementation. The last

level is the different applications (implementations) that can be generated by translators

from these models. Environment evolution refers to modification of HADL meta-model

to update features. The models of algorithms can also be refined to evolve the analysis

application.

Using HADL, we have developed a computation platform called ReachLab for pro-

viding a graphical environment to analyze and design hybrid systems using models. This

platform currently supports design of hybrid systems using a hybrid automaton model.

In future, it can be expanded to other models as well. In this platform, (i) analysis algo-

rithms are modeled in order to specify how the state space of the system model should be

explored for performing analysis; (ii) concerns of design and implementation of analysis

algorithms are separated by making use of a modeling language which provides abstrac-

tion from the implementation details; (iii) use of models automate the analysis process
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Figure 2: Various stages of use of models in ReachLab Architecture

by automatically generating implementation in order to compute results. In ReachLab,

on one hand, the models of analysis algorithms are abstract and therefore the design

of algorithms can be made independent of implementation details. On the other hand,

translators are provided to automatically generate implementations from the models for

computing analysis results based on computation kernels. Multiple computation kernels,

which are based on specific computation tools such as d/dt and the Level Set toolbox,

have been enriched to support numerous algorithms designed in ReachLab, in order to

enable hybrid state space exploration.

ReachLab has three distinct levels of model development stage. Figure 2 illustrates

these levels and different models that may exist. At the top level (M3) lies the MetaGME

model which specifies the metamodeling language of HADL. In the next lower level (M2)

lies the metamodel of HADL. Using this metamodel, an analysis algorithm is modeled

which is used to analyze hybrid automaton based model of a system in the second level

(M1). In the lowest level lies any particular implementation generated by using the

models of analysis algorithm and system. This job is done using translators.
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Thesis Outline

We provide an overview of hybrid automaton model in Chapter II. In the same chapter

we would give an overview and classification of different computation tools developed for

analysis of models of hybrid systems. We will introduce our domain specific modeling

language in chapter III. In chapter IV, we will focus on the computation platform called

ReachLab, which implements this language and provides various model translators using

the facilities provided by GME. These translators are used to automatically generate

model implementations for various computation kernels. In the same chapter we describe

various enrichments that we made to d/dt and Level Set toolbox. Chapter V provides

some case studies in order to illustrate the usefulness of ReachLab. We conclude with

our comments for future works in chapter VI.
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CHAPTER II

HYBRID SYSTEMS

Hybrid systems are dynamical systems that involve the interaction of different types

of dynamics. The interaction of continuous and discrete dynamics have been of particular

interest due to large number of engineering applications such as electrical circuits [59, 47],

mechanical systems [54, 42], biological systems [3] and embedded computation [8, 58].

By their nature, these systems have both discrete and continuous state variables. While

discrete states can change value only through discrete jumps, continuous states change

values by “flowing” in continuous time according to a differential equation. A hybrid

system has both of these dynamics.

Figure 3: A model for thermostat

Consider a thermostat used to control the temperature of a room. Suppose it has to

switch the heater off or on, if the current value of room temperature rises above 80 or falls

below 70. Such a system can be studied by using a continuous state variable, θ ∈ X ⊆ R,

in order to track the current value of room temperature. X here denotes the analysis set,

which restricts the possible value of room temperature. For this example let us consider

X = [68, 82]. Since the system will behave differently when the heater is on, as to when

it is off, we can use two ordinary differential equations to model system behavior.
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θ̇ =




−θ + 100 if the heater is on

−θ if the heater is off

For such systems it is customary to depict them as a graph with each vertex denoting

one possible mode of continuous evolution. The edges are associated with the condi-

tions for switching between these two modes. Figure 3 gives a visual description of the

thermostat in this form.
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Figure 4: A possible trajectory of the thermostat

Note that this system has two discrete modes of operation and a continuous state

variable. Thus this system can be considered as a hybrid system. To formally analyze

these systems, models such as hybrid automaton [36, 48] and timed automaton [6] have

been proposed. In this thesis, we are particularly interested in the hybrid automaton

model of hybrid systems.
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Hybrid Automaton

Hybrid automaton is a mathematical model used to formally encapsulate the behavior

of hybrid systems with tightly coupled discrete and continuous components. In [48], the

mathematical definition of a hybrid automaton has been given as follows:-

Definition 1 Hybrid automaton is a collection H = (Q,X, f, Init,D,E, G,R) where

Q = {q1, . . . , qN} is a set of discrete states; X ⊆ Rn is the continuous state space;

Init ⊆ Q × X is a set of possible initial states; f : Q → (X → Rn) assigns to every

discrete state a time invariant Lipschitz continuous vector field on X; D : Q → 2X assigns

each q ∈ Q a domain. D is sometimes also known as the invariant set; E ⊆ Q × Q is

a collection of discrete transitions; G : E → 2X assigns each e = (q, q′) ∈ E a guard;

R : E ×X → 2X defines a reset relation.

In this thesis, we shall use the notation fqi
to indicate the vector field associated with

a discrete state qi ∈ Q. We will use the notation Dqi
to denote the domain of a discrete

state qi ∈ Q. We shall use the notation Gq′q′′ to indicate the guard on the edge between

discrete state q′, q′′ ∈ Q. We will use the notation R(q′, q′′, x) or Rq′q′′(x) for the reset

map between discrete states q′, q′′ ∈ Q for a continuous state x ∈ X.

It is customary to draw a hybrid automaton as a directed graph as shown in Figure

3. Each vertex of the graph denotes a discrete state. The directed edges of the graph

represent the edge of hybrid automaton. An edge is associated with the guard condition

and reset map. Each vertex is associated with the corresponding vector field and domain.

Referring back to the thermostat example presented in the previous section, the hybrid

automaton can be described as: Q = {q1, q2}; Continuous state: θ ∈ X ⊆ R, X = [68, 82].

Init = {q1, q2} × X ; fq1(θ) = −θ + 100, fq2(θ) = −θ; Dq1 = {θ ∈ R | θ ≤ 82} and

Dq2 = {θ ∈ R | θ ≥ 68} ; E = {(q1, q2), (q2, q1)} ; Gq1q2 = {θ ∈ R | θ ≥ 80} and

Gq2q1 = {θ ∈ R | θ ≤ 70} ; The reset relation for both edges is an identity map.

The two discrete states represent the modes of operation “heater on” and “heater off”.

The analysis set for continuous state space is restricted to the region θ ≤ 82 ∧ θ ≥ 68.

When the heater is on, heat is pumped into the room, and the dynamics of continuous
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state variable θ is given by θ̇ = −θ + 100. When the heater is off, heat dissipation

happens at a rate of θ̇ = −θ. Considering that the room temperature can have any value

between 68, and 82, and that the heater can be either off or on at that time, the set

of all possible initial states is same as the complete state space of the system. There

are two possible transitions for thermostat: from discrete state heater on to discrete

state heater off (q1, q2), and from discrete state heater off to discrete state heater on

(q2, q1). The guards represent the requirement that heater should be switched on when

the temperature falls below 70 and should be switched off when the temperature rises

above 80.

Execution of Hybrid Automaton

Hybrid automaton has two types of possible state evolutions: discrete and continuous.

Before describing the discrete evolution we must understand the concept of continuous

evolution.

In general, for the continuous evolution during a time interval I = [0, T ], it is required

that the discrete state remains unchanged during the interval. Let us suppose hybrid

automaton is in a discrete state q′ during the whole time interval I. Then the evolution

of hybrid automaton during that interval is given by the flow of continuous variables

under the influence of vector field fq′ . Starting from xs ∈ X at t = 0, the continuous

state would be specified by the solution of ordinary differential equation (ODE) ẋ(t) =

fq′(x(t)), x(0) = xs, t ≥ 0. We assume the vector field to satisfy Lipschitz condition [32]

over the entire continuous space X. Then a solution in the sense of caratheodary means

a continuous differential function of time x(t) satisfying

x(t) = xs +

∫ t

0

f(x(τ))dτ (1)

The continuous state of the system at time t′ ∈ I, starting from xs at t=0 given by x(t′)

is called the flow and is denoted by φ(t′, xs). It is assumed that this flow is well-defined in

the domain associated with discrete state q′. The flow satisfies the following conditions:
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∀xs ∈ Xs ∀t, t′ ≥ 0 such that

a. φ(0, xs) = xs init. condition

b. φ̇(t, xs) = f(φ(t, xs)) differential eqn.

c. φ(t′, φ(t, xs)) = φ(t′ + t, xs) semi− group

d. φ−1(−t, xs) = φ(t, xs) inverse

(2)

For continuous evolution to be part of a legitimate execution the flow should always be

inside the domain associated by discrete state q′ i.e. Given a time interval I during which

the hybrid automaton evolves due to continuous evolution starting from any continuous

state xs ∈ X, (∀t ∈ I)(φ(t, xs) ∈ Dq′) .

Discrete evolution of hybrid automaton happens from a discrete state q′ ∈ Q to

another discrete state q′′ ∈ Q via an edge (q′, q′′) ∈ E at any time t, if φ(t, xs) ∈ Gq′q′′ .

After a discrete transition occurs, the continuous state of the system is reset according

to the corresponding reset map R(q′, q′′, φ(t, xs)).

For more details on semantics and execution of hybrid automaton readers may refer

to [48, 36].

Issues Related to Hybrid Systems

The effort in study of hybrid systems [36] can be categorized in the following sub

areas:

• Formal verification of safety properties aims at certifying that for a given set of

possible system states, the hybrid system would never exhibit an unsafe behavior.

• Synthesis of design parameters for designing controllers which would govern the

operation of the hybrid system.

A key concept required in answering both of the above problems is reachable set.

Reachability is a fundamental concept in the study of hybrid systems. In general, a state

(q
′
, x

′
) ∈ Q ×X of a hybrid automaton is said to be reachable if the hybrid automaton
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Figure 5: This figure shows backward and forward reachable set for a hybrid automaton
while its discrete mode remains unchanged. The arrows show a constant vector field in
the x direction.

can move along one of its possible executions and find its way to that particular state.

A set of such states which can be reached by the hybrid automaton are called reachable

sets. Using reachable sets, problem of verification can be specified as

Problem 1 (Verification) Given an initial set of states for the hybrid automaton,

would any finite execution of the hybrid automaton starting from one of the initial states

ever reach somewhere inside the bad set.

Figure 5 illustrates the notion of forward and backward reachable sets. The vector

field for this example can be understood as a constant field of magnitude 1 in the x

direction. The starting set is an ellipse on origin as shown in the figure. The light gray

region shows the forward reachable set which can be reached in a time interval of 3

seconds. The dark gray region illustrates the backward reachable set for a time interval

of 3 seconds.

In order to use algorithmic methods for model checking the hybrid automaton using

concepts of reachable sets one requires various approximations for representing continuous

state sets.
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Representation of Continuous State Sets

Only for certain classes of continuous dynamical systems as discussed in [4, 44], con-

tinuous state sets can be exactly represented and manipulated and the algorithms can be

performed at symbolic level. In most cases, computational methods have to be used for

representing and manipulating continuous state sets. Due to finite precision in represen-

tation and computation, only approximate results can be obtained.

There are a number of approaches to represent state sets and perform computations

for more expressive continuous dynamics, for example, polygonal projections [34], flow-

pipes [21, 64], ellipsoids [15, 43], griddy polyhedra [11], level sets [51].

In [34, 21, 64, 15, 43], an interface, which is the boundary of a state set, is tracked by

interface elements and the evolution problem is formulated in a Lagrangian framework. A

Lagrangian method provides a numerical scheme based on a parameterized description of

the moving interface, and since the method follows a local representation of the interface

rather than using a global one, it can suffer from numerical instability and topological

limitations.

In [51, 11], the representations and operations of state sets are performed in an Eu-

lerian framework, that is, one in which the underlying coordinate system remains fixed.

This framework makes set operations and more advanced constructive solid geometry

operations straightforward to apply.

Reachability Operations

In order to automate the analysis of hybrid automaton model using the reachable set

let us try to define some basic reachability operations. Using these reachability operators

we would be able to write several algorithms for performing analysis of hybrid automaton.

We reviewed in previous sections that a hybrid automaton has two types of evolutions,

discrete and continuous. Therefore, one can classify the predecessors and successors sets

as either discrete or continuous.
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Definition 2 (Continuous successor and predecessor set) Continuous successor

set, PostcI(q, P ) : 2X → 2X , where q ∈ Q and P ⊆ X is a collection of states in X, and

each state can be reached by a state in a P following the dynamics of discrete mode q in

some time set specified by the interval I ⊂ R+. This can be expressed as:

PostcI(q, P ) = {(q, x′)|∃x′ ∈ X ∃y ∈ P ∃t ∈ I s.t. y = φ(t, x′)} (3)

One can define continuous predecessor set, in a fashion similar to continuous successor

set. Continuous Predecessor set PrecI(q, P ) : 2X → 2X is given by

PrecI(q, P ) = {(q, x′)|∃x′ ∈ X ∃y ∈ P ∃t ∈ I s.t. x′ = φ(t, y)} (4)

Usually the time interval I is bounded i.e. I = [0, T ]. Then the continuous successor

(predecessor) set is called bounded continuous successor (predecessor) set. For bounded

continuous successor (predecessor) set, Postc[0 T ] (Prec[0 T ]), we would use the notation

PostcT (PrecT ) through out this thesis.

During continuous evolution in a time interval I = [0, T ], there may exist some state

constraints that the continuous state variables have to satisfy. These, constraints specify

the continuous set ψ ⊆ X, in which the continuous state of the system must operate

for all time. In typical hybrid automaton this constraint set is same as the domain of

discrete state active during that time interval.

Definition 3 (Constrained continuous successor and predecessor set) Con-

strained continuous successor set is represented by cPostcI : (q, P ) : 2X → 2X where q ∈ Q

and P ⊆ X is a collection of states in X. Given a constraint set ψ ⊆ X, constrained

continuous successor set is given by the equation

cPostcI(q, P ) = {(q, x′)|∃x′ ∈ X ∃y ∈ P ∃t ∈ I s.t. y = φ(t, x′)∧ ∀τ ∈ [0, t] φ(τ, x′) ∈ ψ}
(5)
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One can define constrained continuous predecessor set, cPrecI(q, P ) : 2X → 2X , in a

similar fashion.

cPrecI(q, P ) = {(q, x′)|∃x′ ∈ X ∃y ∈ P ∃t ∈ I s.t. x′ = φ(t, y) ∧ ∀τ ∈ [0, t] φ(τ, y) ∈ ψ}
(6)

Usually the time interval I is bounded i.e. I = [0, T ], hence bounded time constrained

successor (predecessor) can be denoted by cPostcT (cPrecT ).

Definition 4 (Discrete successor sets) Discrete successor sets, Postd : Q → 2Q, for

a state qi ∈ Q is given by Postd(qi) = {q ∈ Q | ∃e ∈ E s.t. e = (qi, q)}.

Definition 5 (Discrete predecessor sets) Discrete predecessor sets, Pred : Q → 2Q,

for a state qi ∈ Q is given by Pred(qi) = {q ∈ Q | ∃e ∈ E s.t. e = (q, qi)}.

Once we know the discrete successor set of a discrete state, one can use the intersection

operation to check if the corresponding guard condition is satisfied. If the guard condition

if satisfied then the execution of automaton would continue with continuous evolution

with the initial continuous state for new discrete mode being computed by the reset map.

We have implemented the algorithm for computing the reachable set using these basic

reachability operator and we will present it later in a case study.

Computation of Reachable Sets

Equipped with these reachable operators one can ask questions like whether the hybrid

automaton would ever have an execution which would lead it to some unsafe operating

states. Backward reachability based operators can be used to rule out a set of initial con-

ditions which might make the hybrid automaton operate in unsafe states. However, the

most formidable problem in analysis of hybrid automaton models is the actual computa-

tion of these reachable sets. For most of the systems the hybrid state space in infinite,

therefore potentially the true reachable set would also be infinite. This makes the problem

difficult [4].
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A formidable research initiative in this area has been dedicated for developing methods

to get some reasonable approximate estimate of the reachable set. This has lead to

a variety of algorithmic methods for verification [4, 13, 34, 11] and controller synthesis

[72, 26, 9]. These different methods have been implemented in various computational tools

such as UPPAAL [14], HyTech [37], or KRONOS [73], d/dt [10] , Level Set toolbox [51],

Checkmate [20]. Most of these approaches can be classified into two groups, reductionist

approach and symbolic approach [39]. The reductionist approach attempts to solve the

problem by dividing the infinite state space into equivalent regions which are finite in

nature and then perform analysis on those equivalent regions. The symbolic approach

attempts to use various geometric approximations to represent continuous sets and then

rely on exploring the whole state space by algorithmic methods.

Reductionist methods have been employed in tools such as UPPAL, HyTech and

KRONOS. However, these tools are unsuitable for systems with complex continuous

dynamics. On the other hand symbolic methods based tools such as Level Set tool

box and d/dt have their own representations for continuous state sets and their own

implementation of the reachability operations discussed in the previous section. Each

of these tools has been defined specifically for certain analysis purposes and does not

provide flexibility for designing generic algorithms that can be used for a number of

analysis purposes. Moreover, they sometimes lack certain operations needed for writing

certain analysis algorithms. For example, both Level Set toolbox and d/dt lacks support

for discrete successor and predecessor operations as defined in previous section.

We chose the computation tools d/dt and Level Set toolbox to form computation

kernels for our architecture because both of them use an Eulerian framework for operation

on state sets. This framework makes set operations and more advanced constructive solid

geometry operations straightforward to apply. Due to the use of grids, the analysis space

is divided into finite number of divisions and hence the algorithms are guaranteed to

terminate.

Next two sections will illustrate different implementations of d/dt and Level set tool-

box of the same continuous successor operation.

21



Introduction to d/dt

d/dt [27, 10] can perform verification or synthesis for a class of hybrid systems that

have affine continuous dynamics of the form f(x) = Ax + Bu, x ⊆ Rn, where u ∈ Rn

is uncertain, bounded input ranging inside a convex polyhedron, A is a n × n matrix

and B is a n × 1 matrix . Unlike the conventional approaches which attempt to find

exact solutions and are thus limited by undecidability of most non-trivial systems, d/dt

attempts to compute the reachable set as an over- or under-approximation of the exact

reachable set. Usually in verification analysis over-approximation is used and in synthesis

applications under-approximation is used.

d/dt represents continuous sets as convex polyhedra and makes use of the premise

that convex sets maintain convexity under affine transformations. Therefore, if the vector

field is affine (which is always the case for systems which can be analyzed using d/dt) an

initial convex set will have a forward reachable set which is also convex in nature. Note

that this notion of using polyhedral representation for interface evolution is a Lagrangian

approach. Since the initial set is represented as union of convex polyhedron in d/dt its

reachable set also forms a union of convex polyhedron. In order to effectively manipulate

these unions of convex polyhedron d/dt approximates them as orthogonal polyhedra

[16] which are represented by using a grid structure over the analysis space. Thus the

continuous sets in d/dt are represented and manipulated in an Eulerian framework.

In order to compute the reachable sets for a time range [0, T ] , d/dt uses an iterative

algorithm which computes the reachable set for a maximal time range [0, ∆t] (∆t > 0)

for N = T/∆t steps. The procedure to compute reachable set for a maximal time range

[0, ∆t] as illustrated by Figure 6 can be summarized as follows:-

1. Starting from the initial set F , compute the reachable set after the exact time ∆t.

Since the convex set maintains convexity, this reachable set would be given by the

line segment shown by Postc∆t(F ) in the figure.

2. In order to approximate the whole reachable region (set) in the time range [0, ∆t],

d/dt forms a convex hull on the initial set F and the set Postc∆t(F ).
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Figure 6: Reachable Set Computation in d/dt. From top left to right: first figure shows
the initial continuous set F. Second figure shows computation of successor set starting
from convex set F in a single time step ∆t. The next figures show the convex hull
operation and the bloat operation. Last figure shows the griddy transformation to convert
the convex set into union of orthogonal polyhedron.

3. In order to ensure an over- or under- approximation a bloat operator is used. Con-

sider a convex polyhedron C specified by the intersection of several half spaces.

This can be understood as shifting each of the half spaces by some real number d.

It has been shown in [27] that a positive (negative) real number d can be chosen

such that the approximate reachable set is always a superset (subset) of the exact

reachable set to provide over (under) approximation.

4. This whole procedure is repeated for N = T/∆t steps. The reachable set of each

step is stored as union of an orthogonal polyhedron by using a grid formed over the

analysis space.

5. At the end of the procedure the union of orthogonal polyhedron is returned as an

approximation of the reachable set for the time range [0, T ].
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In principle, to compute bounded time constrained continuous successors subject to

the constraints of a domain D can be performed by d/dt. However, currently it only im-

plements an algorithm which gives an under-approximation of the constrained reachable

set since it stops the algorithm iteration as soon as in any step the reachable set after

the exact time ∆t does not remain completely inside the domain D.

The computation methods implemented in d/dt are faster than those implemented

in Level Set. Therefore, for linear systems d/dt is used. However, it is unable to handle

separation and merging of continuous state sets. For such scenarios level set toolbox has

to be used.

Introduction to Level Set Toolbox

The Level Set toolbox [51] is based on the level set methods developed by Oshley

and Sethian [53, 60]. This toolbox can be used for both linear and nonlinear continuous

dynamical systems.

It has distinct advantages because it can implicitly handle state constraints and can

be applied to both linear and non-linear continuous dynamical systems. This method

uses an Eulerian framework by dividing the whole analysis space into grids. Rather

than an explicit representation in terms of edges or faces, in the level set methods the

continuous set P ⊆ X ⊆ Rn, is implicitly represented as an interface by a level set

function Φ : Rn × R→ R. At any time t, the current boundary of reachable set is given

as the set {x ∈ Rn| Φ(x, t) = 0}.
The initial continuous set, say Xs provides the initial value condition for level set

methods i.e.

(∀ x ∈ Xs)(Φ(x, 0) = 0). (7)

Consider a continuous state, as shown in Figure 7, which is evolving under the influ-

ence of a time invariant vector field f : Rn → Rn. At any time t the solution of equation

Φ(x, t) = 0 gives the boundary of reachable set at that instant.
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Figure 7: This figure illustrates the representation of continuous set using an implicit
level function. At any time t, the solution of equation Φ(x, t) = 0 provides the boundary
of reachable set after exact time t.

Partially differentiating Φ(x, t) = 0 with respect to t, we arrive at the following

equation

∂Φ(x, t)

∂t
+∇Φ(x, t) · ∂x

∂t
= 0 (8)

However, since ∂x
∂t

= f(x) we can rewrite the above equation as

∂Φ(x, t)

∂t
+∇Φ(x, t) · f(x) = 0 (9)

Equations 9, along with the initial value equation 7, are the level set equations given

by Osher and Sethian. The term ∇Φ(x, t) · f(x), in equation 9 is the Hamiltonian,

H(x,∇φ).

Level set toolbox provides numerical schemes for solving the partial differential equa-

tion (PDE) given in equation 9. The advantage of this methods is that it can implicitly

handles constraints such that continuous state set should always remain in the inter-

face described by the level set function ψ(x), by solving the PDE subject to constraints

Φ(x, t) ≤ ψ(x).
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Unlike d/dt, the Level Set toolbox does not provide options to compute under (over)

approximate results. However, the viscosity solution of the PDE would reach the exact

boundary of reachable set as the grid resolution is increased. Because of the Eulerian

framework, union (intersection) operations between two continuous sets can be easily

implemented in the Level Set toolbox by taking the max (min) value of the corresponding

level set function at each grid point.

Since the reachable set is represented as a higher dimensional function, topological

changes in the curve of continuous state sets such as separation and merging are handled

implicitly.

However, the disadvantage of level set methods is the time taken for computation.

Moreover, even though the method can be applied to systems with higher dimension, the

computation requirements restrict analysis of system with higher dimensions.

Summary

In this chapter we reviewed some of the computational methods implemented in dif-

ferent analysis tools which are used for hybrid automaton based models. There are vast

differences in the approximation methods of these tools. However, they all have the

common background which is provided by the theory of hybrid automaton.

Currently, due to such diversity in computation tools and methods, the use of algo-

rithms for the purpose of analyzing models of hybrid systems has been seriously con-

strained. Moreover, some of the tools lack the support data structures such as multidi-

mensional lists needed for algorithmically exploring the hybrid state space. For example,

both d/dt and Level Set toolbox do not provide a framework for expanding the discrete

structure of a hybrid model using a tree.

An approach is to use the common semantics of execution and analysis of hybrid

automaton to unify these tools. This has been the front goal of the interchange formats

such as HSIF [62]. However, that initiative had its own problem. There was a partial

interchangeability between tools such as Checkmate [20] , Charon [5], and HyVisual [46].

However, overall research community was convinced that HSIF cannot support each and
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every tool. Currently, other research groups such as the Hyper group1 are working toward

development of a standard package which will allow the model of hybrid automaton to be

shared between various computational tools. However, these initiatives are not related to

interchangeability of the analysis algorithms implemented in different tools and are more

focused on the interchangeability of the hybrid system specification.

We want to use a model based approach and create a platform to abstract the dif-

ferent implementation details and allow design and analysis of hybrid automaton models

with only the mathematical definition of operations in mind. In nutshell our goal can

be summarized as (i) separate the concern of algorithm design for analysis of hybrid au-

tomaton model from any specific computation implementation; (ii) allow specification of

analysis algorithms using models in order to automate the analysis process by automati-

cally generating implementation and hence computation results using model translators.

(iii) separate the specification of algorithm from the concerned hybrid automaton model

so that the algorithm can be reused for other hybrid automaton models as well; (iv)

enrich the computation tools so that they can be used as computation kernels in order

to provide implementation to any generic analysis algorithm; (v) be able to construct

a library of analysis algorithms which can be used at various times to perform related

analysis purpose.

1http://chess.eecs.berkeley.edu/hyper/
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CHAPTER III

HYBRID SYSTEM ANALYSIS AND DESIGN LANGUAGE

In order to provide a platform for enabling effective design and analysis of models of

hybrid systems, Model Integrated Computing (MIC) [40, 41] approach is ideal. MIC is

based on models and automatic generation of useful artifacts. It introduces modeling lan-

guages tailored to a particular domain to allow representation of relevant information for

the systems as models which can later be used to predict the system behavior. In MIC,

metamodels are used for formally specifying these domain specific modeling languages

(DSML). In MIC, several tools and technologies for model transformation such as GReAT

[2] and Builder Object Network [30] allow automatic generation of useful information for

a different or same semantic domain. Consider the possibility of a domain specific mod-

eling language which relates the concepts such as reachable set operations, Boolean set

operations at a level which is impartial to any specific implementation strategy. Such

language would provide an ideal setup for modeling analysis algorithms without the im-

plementation concerns. By using model transformation technology one can automatically

adopt any particular implementation for the models designed in that language.

A tool suite that supports this approach and provides a reusable framework for

constructing metamodels and deploying DSMLs is the Generic Modeling Environment

(GME) [45, 30]. Using the metamodeling environment provided in GME, we created

a modeling language Hybrid System Analysis and Design Language. Use of metamodel

allows formal specification of all the concepts and notions needed to design hybrid system

models and analyze them, such as reachable set operations and Boolean set operations

(such as union and intersection).

ReachLab is a platform which implements this language and provides the necessary

translators. This platform is designed in such a way that the concerns of design and im-

plementation of analysis algorithms are separated. On one hand, the models of analysis

algorithms are abstract and therefore the design of algorithms can be made independent
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of implementation details. On the other hand, translators are provided to automatically

generate implementations from the models for computing analysis results based on com-

putation kernels. Multiple computation kernels, which are based on specific computation

tools such as d/dt and the Level Set toolbox have been enriched to support numerous

algorithms designed in ReachLab, in order to enable hybrid state space exploration.

Domain Specific Modeling Language (DSML)

Domain specific modeling languages have been formalized as a five tuple of concrete

syntax (C), abstract syntax (A), semantic domain (S), semantic mapping (MS) and

syntactic mapping (MC) [22].

L =< C, A, S,MS,MC >

Concrete syntax (C) defines the notation ( textual or graphical ) used to express the

models. Abstract syntax (A) specifies all the syntactical elements of the language. It

also includes the so called static semantics, which determines the integrity constraints to

ensure the correctness of sentences of the language. Semantic domains (S) is defined by

formalism which provides meaning to a correct sentence in the language. The mapping

MS : A → S relates every element of abstract syntax to a specific meaning in the semantic

domain. Model translators are used for this semantic mapping. The mapping MC : A →
C assigns a notational construct to every elements of abstract syntax. The specification of

abstract syntax as a meta-model requires meta-language to express concepts, associations

and integrity constraints.

It can be noted that actually the meta-language is itself a DSML and is specifically

used for constructing other languages. A very popular meta language for specifying DSML

is provided by the GME. Its meta-language is based on Unified Modeling Language (UML)

[25] and has been enriched with specific stereotypes and relations to allow the specification

of abstract syntax of a DSML. In GME, the integrity constraints are specified using the
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Table 1: Syntactical elements of HADL
Aspect Model of Syntactical Elements
Data Data Primitive data types: integer, float, Boolean;

Data structure: multi-dimensional list.
System Hybrid Discrete mode, associated with invariant;

automaton Discrete transition, associated with guard and reset;
Continuous set and initial continuous set;
Analysis set, as a specialization of continuous set;
Computation parameters.

Programming

Control Routine, hierarchical in nature;
flow Looping: “while” loop;

Branching: “if-then-else”;
Operators Primitive data operations: +,−, ∗;

Logical operations: equal, less than, and, or, not;
Multi-dimensional list operations: new, delete, ap-
pend, element;
Reachable set operations: discrete successor and pre-
decessor, (constraint) continuous successor and pre-
decessor in a single step (in bounded time), reset,
projection, visualization;
Boolean set operations: intersection, union, comple-
ment.

Object Constraint Language (OCL) [31]. For more detail on GME and its meta-language

reader can refer to [45].

Description of HADL

The objective of HADL is to separate the concerns of designing and implementing

analysis algorithm for hybrid systems. Currently, the language only supports hybrid

automaton based models. Any analysis algorithm implemented for a system model will

always have three different components: data, control flow i.e. programming logic and

the system model. HADL has three different aspects called system aspect, data aspect

and programming aspect in order to separately specify the three different components of

analysis algorithm. By separating these components HADL allows the reuse of algorithm

for different systems.

Table 1 lists all the different syntactical elements which forms the abstract syntax of

HADL. These provide the elements which can be used for modeling a system as hybrid
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automaton. The operators and control flow can be used to model algorithms for ana-

lyzing those hybrid automaton models. Notice the clear separation of data, system and

programming components. These are the three aspects of HADL. These aspects have a

weak coupling between them. For example, there are operations which perform the reach-

ability analysis on the models in the system aspect. Furthermore, data defined in data

aspect is used in system and programming aspect. To allow this interaction, HADL uses

references 1 [45] to provide weak coupling between the elements from different aspects.

Figure 8: Each point in the space is the design of an algorithm along with the system
model. MS1 , MS2 , MS3 are semantic mappings to semantic domains S1, S2, S3 of three
different analysis tools. Movement along the Lprogram axis signifies the collection of algo-
rithms which can be used for the same system model. The direction of Lsystem represents
the models which can be analyzed using the same algorithm.

The semantic domain of HADL is the mathematical definition of its constituents. It

does not directly deal with the implementation details. However, its semantics allows the

designer to take important design decisions by formally defining the expected result of

the analysis algorithms. The actual computation of the analysis algorithm is provided

by the computation tools which have their own semantics. By finding a correspondence

between the elements of HADL and those in the computation kernel or providing the

kernel with an implementation for HADL element , one can anchor the semantics of the

kernel to that of HADL. This concept is similar to the concept of semantic anchoring

introduced in [19].

Due to the separation of concerns, abstract syntax of HADL can be written as a three

tuple A =< Ldata, Lsystem, Lprogram >. Let Si be the semantic domain of any computation

1References are parts that are similar in concept to pointers found in various programming languages.
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Figure 9: This figure shows the metamodel designed in MetaGME language for data
aspect of HADL. Discrete mode, guard set, continuous set all are types of sets. This
relation is represented via inheritance.

kernel to which the HADL semantics are anchored. Model translators can be used to

provide the semantic mapping Msi
: Ldata × Lsystem × Lprogram → Si. This semantic

mapping Msi
= Mssi

◦Ms, where Ms is the mapping to the semantic domain of HADL

and Mssi
is the semantic mapping from semantics of HADL to that of the computation

kernel. Hence, a translator is required for each computation kernel. Figure 8 shows the

semantic mapping to different domains and illustrates the idea of reuse of an algorithm

for different models.

In the next three sub sections we will describe the abstract syntax and semantics of

the modeling components found in these three aspects.

Syntax and Semantics of Data Aspect

For any algorithm we need notions of simple data types such as integers, Boolean,

and floats to enable the representation and manipulation of information. In analysis

algorithms related to hybrid automaton we also need data structures which can represent

tree-like structures. These tree-like structures are very useful in unfurling the hybrid
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state space in order to explore if the reachable set would ever reach certain bad state.

Furthermore, there is a need to be able to specify the discrete modes, continuous sets,

guard sets, invariants, analysis set and resets used to specify a hybrid automaton.

Figure 9 shows the metamodel of HADL’s data aspect. Along with the basic primitive

data type, it also provides multidimensional lists called RAE List. These lists are used

for constructing algorithms which might need to maintain a list of objects. This class

diagram has been built using the inheritance and association concepts and it represents

the different data types found in the analysis tools. For example, a set can be of different

types. It can be Discrete mode, used to model any discrete state (q ∈ Q) of the hybrid

automaton, or it can be Continuous set, used to represent regions of continuous state

space. An Analysis set is used for representing the continuous state space (X ⊆ Rn)

of the hybrid automaton. Guard set is used to represent the guard conditions which

are either specified as half spaces (inequalities) or regions of continuous state space.

Invariants are used to represent the domain associated with a discrete mode. These

constructs are very generic in nature and can have different implementations based on

chosen computation kernel. Reset is used to represent the reset map associated with an

edge of hybrid automaton. These types can be summarized as

• Numeric Data: Integer, Float, Boolean, and Constant

• Sets : Discrete mode, Continuous set, Guard set, Analysis Set, and Invariant

• Reset

• Lists : Multidimensional list of either numeric or set data types

Continuous sets, Guard, Analysis set and Invariant all have a filename attribute.

These points to an external file which can describe the continuous state space by using

inequalities or specifying the vertices of a polyhedra. These files are provided in order to

accommodate different representation of continuous state space in different computation

kernels. Similarly, a vector field can be associated with a discrete mode using an external

file. Each discrete mode also has an attribute which provides a distinct location id for

identification purposes.
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Figure 10: This figure shows the metamodel for system aspect of HADL.

Data variables provided in HADL and used in analysis algorithms are strong-typed

i.e. there is no rule specified for automatic casting of data. Currently, only global scoping

is supported. However, in the future, it will allow local scoping as well.

Syntax and Semantics of System Aspect

Figure 10 is the metamodel of system aspect. It is used to define a hybrid automaton

model using the discrete mode and continuous sets defined in data aspect. Currently,

only one hybrid automaton can be specified in the system aspect. However, due to the

nature of design, it can be easily scaled, while maintaining backward compatibility, to

allow a network of automata.

We defined the hybrid automaton in Chapter II. To specify the hybrid automaton

we need the collection H=(Q, X, f , Init, D, E, G, R). All the necessary recipe for

the hybrid automaton is defined in the data aspect by specifying the discrete modes Q,

guards G, Initial continuous set Init, Resets R. They are referred using references in

this aspect. The continuous space X is described by using the analysis set specified in

the system aspect. This also sets the dimension of continuous state of the system. Edges

between the discrete modes are represented by using the Edge connection. Invariants are

associated with each discrete mode to specify domain D. Vector field f is specified as an

ordinary differential equation written in an external text file whose name is provided as

an attribute to the discrete mode. Computation parameters are also specified as external
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file in order to specify computation kernel related settings. These settings can be either

the grid size used to form a mesh over the analysis space and the maximal time step ∆t

which is used by some d/dt in order to compute PostcT .

Figure 11: This figure shows an example model constructed in the system aspect. This
hybrid automaton has two discrete states.

Figure 11 illustrates the construction of a hybrid automaton of a thermostat (see

Figure 3). This is the same example which was presented in previous chapter. The con-

tinuous state space is modeled as the analysis set. Each discrete mode is associated with

a vector field, which is specified as an external file. The parameter x1 is the continuous

state variable. Parameters of the invariants are also described using similar external files.

Syntax and Semantics of Programming Aspect

Programming aspect is used to specify models of algorithms for analyzing hybrid

automaton modeled in system aspect. This aspect is composed of two types of entities:

Operators which provide atomic entities used for manipulating data and performing set

operations; Control flow components which are used to provide the algorithmic logic.

Control Flow Components

Figure 12 shows the metamodel of HADL’s programming constructs. All control flow

components are referred as control flow entities in HADL. This is shown by the abstract
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Figure 12: This figure shows the metamodel of HADL’s programming constructs. These
are very general algorithmic concepts and can be mapped to every target semantic do-
main. Routines are used to provide the hierarchical composition of algorithms.

base class. CFEntity (short form for control flow entity). This is done to preserve

common properties such as connection association between each control flow element.

As shown in Figure 13 CFEntity2CFEntityConn are connections between two CFEntity.

The direction of the connection represents flow of control through the algorithm. In some

aspects this idea is similar to that of a flow chart.

Figure 13: UML diagram of various types of connections possible between programming
blocks. These connections are used to represent the control flow through the algorithm.

Since algorithms can be hierarchical in nature, HADL uses hierarchical Routines to

encapsulate them. Each routine starts from a Start and end in a end. Statements inside a

function are modeled by Unit operations, which can contain data references and operators.

As the name suggests, unit operation blocks can perform only a single operation at a time.
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The interaction between the data and operators is modeled by using a data flow approach.

The operator and data connections shown in Figure 16 are used for this purpose. Loops

in an algorithm are modeled as WhileRoutine, which are a specialization of Routine .

To model the branching logic of a program, DecisionBlock are used. Both DecisionBlock

and WhileRoutine contain a ConditionBlock. ConditionBlocks are used to model Boolean

expressions. They can contain operations which result in a Boolean output. Execution

of WhileRoutine is terminated only when the value of the Boolean expression inside its

ConditionBlock is false. Its execution can also be interrupted by using a BreakExit block.

These constructs can be used to model many sophisticated programming logics. Figure

14 illustrates a simple design of control flow of an algorithm.

Figure 14: A simple algorithm designed using control flow components of HADL.

Operators

Figure 15 shows the class diagram of these operators. The operators are divided into

four main sub-classes. These are Numeric Operators, Boolean Operators, Set Operators,

and Data Structure Operators. Numeric operators are used to manipulate the numeric

data containers. Boolean operations are used on Boolean data in logical expressions.
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Figure 15: This figure shows the metamodel of operators provided in HADL for construct-
ing algorithms to enable the symbolic methods based analysis for hybrid automaton based
models of embedded software systems.

Furthermore, set membership predicates such as subset are provided as Boolean opera-

tions on state sets. The set manipulation operation such as union and intersection have

the usual semantics. The subset operator returns true if a given set is subset of other

set. SetEquality operator is used to check if two given sets either discrete or continuous

are exactly equal. SetMinus operator is used to compute the complement of a set with

respect to another set.

Previous chapter described bounded time continuous successors (predecessor) sets,

PostcT (PrecT ), bounded time constrained continuous successors (predecessor) sets,

cPostcT (cPrecT ) and discrete successor (predecessor) sets, Postd (Pred). In HADL one

can describe a maximal time step ∆t for computing the reachable sets using a specific

computation method, which could be used for performing exact or approximate compu-

tation. For some computation methods, if a required time step is larger than ∆t, the

solution quality at each step could deteriorate. For such methods the reachable set for

time interval [0, T ] would use N = T/∆T successive iterations in order to compute the

complete reachable set.
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Apart from the reachability operators, two important set operations are reset opera-

tions and projection operations. Reset operation is performed to compute the continuous

state after a transition has been taken. Projection operation is usually used for viewing

higher dimensional continuous sets by projecting on two a two or three dimensional space.

Definition 6 (Reset Operator) Given a continuous set P ⊆ X, a discrete transition

e ∈ E; the associated reset function maps P onto P ′, where P ′ = {p′ ∈ X | ∃p ∈
P s.t. p′ ∈ R(e, p)}.

Definition 7 (Projection Operator) Consider a set P ⊆ Rn, where n ∈ Z+, an

element p = [x1, . . . , xi, . . . , xn]T ∈ P , and an index array I = [λ1 . . . λk], where

k ∈ Z+, k < n, and λi 6= λj if i 6= j. Also λi ∈ Z+ ∧ λi < n. Then projection of P

using the index array I is given by P ′ = {y|y ∈ Rk ∧ ∃p ∈ P s.t. y = proj(p, I)} where

proj(p, I) = [xλ1 . . . xλk
]T ∈ Rk

The multidimensional list provided by HADL can be manipulated by using these

operators. We will explain the semantics of these operators with the help of an example

multidimensional list of n ∈ Z+ dimension. We will call this list as NDimList. This list

operates in a fashion similar to multidimensional arrays of many programming languages.

The only difference being that it does not have to be uniform across each dimension. For

example it can be a list of two dimensions with 10 elements in the first row and 20 elements

in the second row. To refer to any element inside this list we use a finite sequence of

integers as index. Let use define an index sequence I to be a finite sequence of positive

integers given as I =< λj >j=k
j=1, such that k ≤ n, and λj ⊆ Z+. Using this index we can

define the data structure operators.

Definition 8 (Delete) Given a list, NDimList of n dimensions and an index array

I =< λj >j=n
j=1 with the operation Delete(NDimList, I) deletes the λnth element of the

list by referring to the first n-1 dimensions using the indices λ1 . . . λn. If no index is

specified this operator deletes the contents of the whole list. This index referral scheme is

the same as used to refer to elements in a matrix.
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Figure 16: This figure shows various types of connections that are possible between
operators and data containers. Each connection signifies an association between its source
and destination. For example a connection going into an operator signifies the incoming
input, while the connection going out of an operator signifies the processed information
going out of the operator.

Definition 9 (Element) Given a list, NDimList of n dimensions and an index array

I =< λj >j=k
j=1, the operation Element(NDimList, I) gives a list of n− k − 1 dimensions

present at the λk position specified by the λ1 . . . λk indices in the first k dimensions.

Definition 10 (Size) Given a list, NDimList of n dimensions and an index array given

by I =< λj >j=k
j=1, the operation Size(NDimList, I) gives the number of elements of list

of n− k− 1 dimensions present at the λk position specified by the λ1 . . . λk indices in the

first k dimensions.

Definition 11 (Append) Given a list, NDimList of n dimensions and another list

MDimList of m dimensions s.t. m < n, the append operation takes in an index ar-

ray given by I =< λj >j=n−m−1
j=1 and appends the MDimList to NDimList at the λn−m−1

position specified by the λ1 . . . λk indices in the first n−m− 1 dimensions.

Figure 16 shows the various connections that can be used to associate operators. Each

operator can either be connected to other operator or to a data element. This connection

can either be outgoing or incoming (Op2OpConn, Op2DataConn, or Data2OpConn).

Depending upon its direction it represents input or output information. If there is more
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Figure 17: HADL’s operators can be used to form directed acyclic graphs. This example
is a model constructed for continuous backward reachable set computation from initial
continuous state X1 and discrete mode q1. The time for which the backward reachable
set should be computed is specified in the properties window.

than one input to an operator, sequence numbers are used to prioritize between different

inputs to the operator. Direct assignment between data variables is represented by a

direct connection between two data containers.

Figure 17 shows the use of operators in HADL. This figure illustrates bounded time

constrained backward reachability set computation. The time range for the constrained

predecessor operation is specified in the properties window. Operator library shows all

the operators that can be used for making models in HADL.

Individually these three different aspects represent the three different concerns in

analysis algorithm design. By choosing the elements from the language judiciously several

different compositions of data, program and system can be designed. OCL constraints

are used to ensure the correctness of this composition. Furthermore, because of the

separation of concerns, the algorithms and system models can be reused and a generic

library of algorithms can be created for future use.

Summary

In this chapter we described the metamodel of HADL, which allows the formal spec-

ification of the abstract syntax. We further described the semantics of these concepts
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though mathematics. Any analysis algorithm modeled in programming aspect in order

to analyze hybrid automaton modeled in system aspect is implementation independent.

However, to actually compute the analysis results we would have to use the semantic

domain of a particular computation kernel.

The separation of analysis algorithm into the three aspects helps to reuse an algorithm

for another system model. Therefore, useful algorithms can be modeled in HADL and

used as a generic library.

In order to automatically generate implementation from the models designed in HADL,

the models have to be traversed and transformed to refer to the corresponding entities in

the computation kernels. This process is completed using model translators equipped in

ReachLab.

Next chapter will describe the computation platform, ReachLab, which implements

HADL and provides model translators. In the same chapter we will also review the

algorithms used for transforming the models of algorithms in order to automatically

generate implementation. We would also describe some of the enrichments carried out

for d/dt and Level Set in order for them to be used as computation kernels in ReachLab.
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CHAPTER IV

COMPUTATION PLATFORM: REACHLAB

In this chapter we will describe the computation platform which has been developed

by utilizing the modeling language HADL. The architecture of ReachLab, as shown in

Figure 18, is designed to separate the concerns of algorithm design from implementa-

tion details. The model integrated program synthesis (MIPS) environment facilitated

by GME, provides support to build graphical algorithm and system models in Reach-

Lab. Different graphical model entities and components are connected according to the

rules specified by HADL meta-model. Therefore, models can be designed in ReachLab

graphically according to HADL specification.

Figure 18: The bottom layer of ReachLab architecture is comprised of different compu-
tation kernels. The middle layer is the implementation of HADL containing the library
shown toward right. The top layer contains the analysis application and the embedded
software system. Design is a process of modeling the system and the analysis algorithm
in ReachLab. Translation allows mapping from middle to bottom layer.

Besides model design, the other key process is the use of translators to automatically

translate the models into executable artifacts. This translation process requires map-

ping of the abstract entities into concrete implementations for the target domain of a
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computation kernel. In [41], the translation process has been summarized as a graph

transformation:

• Creation of “input graph” : The models with different interconnected components

are implicitly represented by a graph structure.

• Model traversal and Semantic mapping : The translation process requires creation

of a “target graph” (data structure for the executable artifact) from an “input

graph”. This requires the translator to visit various objects in the “input graph”,

recognize their patterns and calculate attributes of output objects in the “target

graph” using semantic mapping.

• Printing the product : In this step, the translator serializes the “target graph” to

generate executable artifacts pertaining to the related domain.

In ReachLab, the traversal process uses the data structures provided by GME to

store the “input graph” along with necessary information. These data structures are

very generic and remain the same for different translators. However, the data structures

used to store the “target graph” vary due to implementation differences among differ-

ent computation kernels. Once the process of traversal is completed semantic mapping

ensures that the implementation is generated from the models.

In order to make the semantic mapping to the computation kernels possible we need

to find a correspondence between the entities defined in HADL and those provided by the

computation kernels. Currently, we have implemented this mapping to two computation

kernels d/dt kernel and Level Set kernel. However, some of the features such as multidi-

mensional lists and support for discrete predecessor and successor sets were absent from

both d/dt and Level Set toolbox. Therefore, we had to enrich these tools and write our

own support functions for these routines.
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Computation Kernels

Both d/dt and Level Set toolbox implement basic forward and backward reachability

operators using different approximations. They also implement basic set manipulation

operations on state sets. These include HADL operators: intersection, union, subset, set

minus, and set equality. However, what these tools lacked were supporting structures for

defining and organizing the hybrid automaton as a graph. This graph structure is very

important to support HADL operations such as discrete predecessor and successor set

operations. They also lacked an organized way to implement multidimensional list data

structures for handling more complex reachability based algorithms. With the inputs

from the original authors of these tools we were able to augment these tools with these

additional facilities to form our computation kernels. In general, other analysis tools

which might have to be supported by ReachLab in future might require this additional

work as well. In this section, we will try to describe some of these additional support

structures in both d/dt and Level Set.

In d/dt, a discrete mode can be specified as an instance of a class1. To create a

hybrid automaton we used a graph like structure with nodes and edges. Each edge was

associated with properties such as the guard set and possible reset. We have called this

graph structure “Hybrid table” and it allows the specification of relations between two

different discrete modes as edges of the graph. The class definition for this structure is

provided in Table 2. This structure also provided operations such as discrete predecessor

and successor.

We will illustrate the use of this structure by considering a hybrid automaton with

two discrete modes q1 and q2. We will also assume that there are two possible edges, one

from q1 to q2, and the other in the reverse direction. Suppose two guards Guard1 and

Guard2 are associated with the two edges and the resets are Reset1 and Reset2. Then

to create the automaton using this structure we will have to take the following steps:

1A set, collection, group, or configuration containing members regarded as having certain attributes
or traits in common
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Table 2: Class definition for the Hybrid table in d/dt

struct nodeinfo
{
LOCATION discrete_state;
GRIDDY guard;
RESET reset;
};
//Hybrid Table class is based on the singleton pattern
class hybrid_table
{
typedef std::vector<nodeinfo> Pre_Post_List;
typedef std::vector<LOCATION> List_Of_Next_State;
typedef std::vector<GRIDDY> List_Of_Guards;
typedef std::vector<RESET> List_Of_Resets;
typedef std::map<int,Pre_Post_List> Adjacency_Map;
typedef std::map<int,LOCATION> DiscreteLocations;

public:
static hybrid_table* instance ();
~hybrid_table ();
int getNumberOfDiscreteLocations ();
bool addRelation(LOCATION from , LOCATION to, GRIDDY guard,RESET reset);

List_Of_Next_State pre_d (LOCATION current);
List_Of_Next_State post_d (LOCATION current);
List_Of_Next_State pre_d (LOCATION current,List_Of_Guards& lg);
List_Of_Next_State post_d (LOCATION current,List_Of_Guards& lg);
List_Of_Next_State pre_d (LOCATION current,List_Of_Guards& lg,
List_Of_Resets& lr);
List_Of_Next_State post_d (LOCATION current,List_Of_Guards& lg,
List_Of_Resets& lr);

private:
hybrid_table ();
static hybrid_table* pinstance_;
bool initialized_;
DiscreteLocations location_map;
Adjacency_Map pre_map;
Adjacency_Map post_map;
};

46



1. Instantiate the discrete modes, and the two guards, and the two reset. Note that

the instantiation of these objects is done using the definitions provided by d/dt.

Resets in d/dt have to be affine transformation (Y = AX + B) , where X ⊂ Rn is

the continuous set which is reset to the continuous set Y ⊂ Rn, A is a matrix of

size n × n, B is a column matrix of size n × 1. For resets we have defined a new

class structure called Reset.

2. Instantiate the hybrid table and add the two edges to the table by using the function

hybrid_table::instance->addRelation(q1,q2,Guard1,Reset1);

hybrid_table::instance->addRelation(q2,q1,Guard2,Reset2);

3. With this hybrid table set in the memory we can use its pred and postd functions

to find the discrete predecessor and successor sets. For example, upon calling the

pre d(q1) we will get q2 as output. These functions have been overloaded to also

return the list of corresponding guards and resets.

For the Level Set toolbox, which has been implemented in Matlab, we had to make a

similar structure. However, we will not describe that structure here because it is similar

to the structure made for d/dt.

In order to support the multidimensional list in d/dt we used the standard template

library vector container class provided in C++. A vector is a sequence that supports

random access to elements, constant time insertion and removal of elements at the end,

and linear time insertion and removal of elements at the beginning or in the middle. The

number of elements in a vector may vary dynamically; memory management is automatic.

By dynamically creating a vector of vectors and so on we can create the notion of a multi-

dimension list. For Level Set toolbox we created a linked list using pointers2.

2Though pointers are not implicit to Matlab, they are available as additional libraries from their
website.
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Model Traversal

As described in the introduction to this chapter, the translation process involves

model traversal, understanding the patterns and relations of the entities in the models

and then applying the semantic mapping to these patterns. For this purpose we use the

data structures provided by GME to capture the model as an input graph. These data

structures are very generic and do not change between the tools. Upon application of

semantic mapping, these input graphs get converted to target graphs which have different

data structures depending upon the chosen computation kernel. We will describe this

whole process in two steps of model traversal and semantic mapping.

Translators need to perform the traversal of all three aspects in order to understand

the patterns and collect all useful information. This traversal process is based on graph

search techniques such as depth first search [24]. The complete process can be broken

down into four sub-tasks reviewed below.

Traversal of Data Aspect: All the data are defined in one single data folder as

a list. Translator traverses this list in a linear fashion to collect all useful information

about the data elements.

Traversal of System Aspect: The hybrid automaton model specified in the system

aspect can be understood as a graph, in which the discrete modes are vertices and the

discrete transitions of hybrid automaton are the edges. The translators traverse this

graph by using depth first search starting from the initial discrete state to collect all

useful information.

Traversal of Control Flow of Algorithms: The traversal of programming aspect

is more complex. Every algorithm has a root routine which is the entry point to the

algorithm. Routines can be hierarchical and may contain other sub-routines as shown in

Figure 19.

The control flow inside each routine routes from a “start” to an “end” . However,

there might be other exit routes from a routine through “break-exit”, which is used in

the same way as the break in many programming languages. For example, the constraint
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Figure 19: Routines in HADL are hierarchical. Each routine contains a start and an end
node. The components of a routine can be visualized as a directed acyclic graph. Overall,
the complete hierarchy leads to a hierarchical graph;

continuous successor set operation in bounded time T , denoted as cPostcT , can be im-

plemented by iterating T/∆t times by using the bounded time constrained post operator

with time range set to [0, ∆t], cPostc∆t. As explained in an earlier chapter this is some-

times necessary because in some implementation methods the approximation quality of

reachable set would deteriorate if a larger time step is used. Therefore, the routine to

implement cPostcT can use the routine of cPostc∆t as its sub-routine. The language also

provides a specialization of routine called while routine for implementation of looping

constructs such as do-while which is traversed in the same manner as a routine.

The control flow inside a routine is sequential, however it can have multiple branches

due to decision blocks. Cycles in the control flow are disallowed to demote the use of

sudden jumps such as “goto”. Therefore, the control flow inside each routine is a directed

acyclic graph (DAG) [24] with its directed edges depicting the route of control flow and

each node depicting a block of algorithm. Since routines can contain other routines, the

overall control flow of the complete algorithm is a hierarchical DAG.

The translators traverse the graph structure of algorithms in a depth-first search

manner to extract information. In each routine, the traversal starts from “start” block
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Figure 20: The decision enclosure is sub-graph starting from a decision block and ending
at its corresponding joint node. A decision enclosure branches at the decision block and
merges back at the joint-node.

and follows the directed edges. If any of the traversed entity is hierarchical, translators

will traverse its subcomponents in a depth-first manner. Decision blocks are used inside

routines to design a logical branching in the control flow sequence. For each of these

blocks, the branching starts from itself, and finally merges at a joint-node. The sub-

graph enclosed by the decision block and the joint-node in the DAG is called a decision-

enclosure. This is illustrated by Figure 20. The traversal algorithm has to recognize

the “if true” and “if false” part of each decision block so that they can be mapped to

the corresponding decision logic in the implementation. This requires knowledge of its

decision-enclosure. Table 3 gives an algorithm based on breadth first search technique for

determining decision-enclosure of each decision block. This algorithm has a complexity

of O(n2), where n is the number of blocks in the DAG.

The key of this algorithm is to find the joint-node, and since a joint-node is where

all branches from the decision block merge, by using breath-first search and keeping all

branching paths from the decision block, the first block that belongs to every recorded

branching path is the joint-node.

Traversal of Operators: Operators are used for data manipulation. as shown in

Figure 21, Every assignment expression forms a tree structure, with the left-hand-side

data variable as the root of the tree. All data variables on the right-hand-size of the
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Table 3: Decision-Enclosure Algorithm
Input:

DecisionBlock = the starting node of the enclosure
Initialization:

InitPath := DecisionBlock

Paths := {InitPath}
Start:
While true do

For each path in Paths do
Fringe := the tail of path

Succ := successor nodes of Fringe

If Succ 6= φ then
Add Succ[0] to the fringe of path

Succ := Succ− Succ[0]
For each s in Succ do

path′ := path

Add s to the fringe of path′

Add path′ to Paths

End For
If ∃s ∈ Succ s.t. ∀p ∈ Paths, s ∈ p then

Return s as the joint-node
End If

End If
End For

End While

expression correspond to the leaves of this tree, and operators on the right-hand-side

correspond to the internal nodes of the tree. The expression can be formed by post-order

traversal [24].

The operators have different semantic meanings depending on the input data types.

And since HADL is “strong-typed”, the data types of the tree leaves, which are predefined,

Figure 21: Example of an operation tree. This operation tree represents x = (a+b)+(c∗d)
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will finally determine the input data type of the operator connected to the root data.

Therefore, it is important to propagate the data type information from leaves to the

root in a post-order manner [24]. For example, for the tree shown in Figure 21 the

traversal sequence would be a, b, +, c, d, ∗, +, x. Then we can map this operation tree to

its semantic which would be x = (a + b) + (c ∗ d).

Figure 22: Example showing mapping from a simple algorithm to the C++ code for
d/dt. Note that the data items are mapped to a corresponding data declaration list in
the codes. Each routine is mapped to a C++ function and is used as a function call.

Semantic Mapping

Since the semantics of a computation kernel are anchored to the semantics of HADL,

we can find a corresponding implementation for HADL constructs in the computation

kernel. These constructs include sequential programming features, Boolean operations

on state sets, as well as the reachable set operations. However, in some cases, the op-

erations, such as data structure manipulation operations, are not directly supported by
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the computation kernel and have to be specifically added to the computation kernel as

new functions. The process of associating the HADL constructs to its implementation in

computation kernel is akin to providing a meaning to them and is therefore referred to

as semantic mapping. For example, if we want to generate implementation for d/dt the

control flow inside a routine would be mapped to the sequential flow of logical commands

inside a C++ program. This is illustrate in the Figure 22 We would use “if-else-end”

to implement decision blocks and “while-end” to implement the looping constructs. The

Boolean operations on state sets and reachability operations can be mapped to their

corresponding implementation.

We will illustrate some of the aspects of the semantic mapping process by using

the example of Level Set kernel. Level Set kernel has been implemented as Matlab

functions. It supports all the basic data types in HADL except the multi-dimensional

list structure, which we have to specifically implement along with the relevant operations

in Matlab. The hybrid system specific data types such as discrete mode and continuous

set are mapped to Matlab struct and mesh on analysis space, respectively. This mesh

is an internal structure used by Level Set kernel. The control flow inside a routine is

mapped to the sequential flow of logical commands inside a function. We use “if-else-

end” statement in Matlab to implement branching and “while-end” statement in Matlab

to implement looping. Boolean operations on state sets and reachable set operations are

mapped to their corresponding implementation in Level Set kernel. However, for some

of the operations defined in HADL, there are no straight-forward mappings, therefore we

have to write specialized functions for them by using operations provided by the kernel.

One of the most important aspects of semantic mapping is to find a correspondence

for reachability operators in both d/dt and Level Set toolbox. For the discrete reacha-

bility operators we use the hybrid table described earlier in the chapter. By using this

table, one can create a hybrid automaton in both these tools and then use the discrete

reachability operators. However, the continuous reachability operators provided in these

computation kernels had to be repackaged into separate functions to provide a suitable
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Table 4: Continuous Successor Set in Bounded Time (Postc) Algorithm for d/dt
Input:

q, P , T , ∆t
Initialize:

N = T/∆t, count = 0, T emp = P
Start:

While count < N do
If Post∆t(q, Temp) ⊆ Temp Then

Return Temp
End If
Temp = Post∆t(q, Temp)
count + +

End While
Return Temp

End

Table 5: Continuous Successor Set in Bounded Time (Postc) Algorithm for Level Set
toolbox

Input:
q, P , T , ∆t

Initialize:
N = T/∆t, count = 0, Result = P, Temp = P

Start:
While count < N do

Temp = Postc∆t(q, Temp)
If Temp = Result Then

Return Result
End If
Result = Temp
count + +

End While
Return Result

End
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Table 6: Constrained Continuous Successor Set in Bounded Time (cPostc) Algorithm for
d/dt

Input:
q, P , T , ∆t
Constraint set Xψ; Domain of discrete mode q:D(q)

Initialize:
N = T/∆t, count = 0, T emp = P

Start:
While count < N do

If Post∆t(q, Temp) ⊆ Temp Then
Return Temp

End If
If ¬(Post∆t(q, Temp) ⊆ D(q) ∩Xψ) Then

Return Temp
End If
Temp = Post∆t(q, Temp)
count + +

End While
Return Temp

End

Input:
q, P , T , ∆t
Constraint set Xψ;Domain of discrete mode q:D(q)

Initialize:
N = T/∆t, count = 0, Result = P, Temp = P
While count < N do

Temp = Postc∆t(q, Temp)
Temp = max(Temp, Xψ ∩D(q))
If Temp = Result Then

Return Result
End If
Result = Temp
count + +

End While
Return Result

End

Table 7: Constrained Continuous Successor Set in Bounded Time (cPostc) Algorithm for
Level Set toolbox
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semantic mapping. We will try to illustrate this idea by using the continuous forward

reachability operators.

Both Level set and d/dt provide basic implementation of Continuous Successor Sets for

a maximal time range [0, ∆t]. If this range is too large it deteriorates the approximation

for reachable set. Therefore in order to approximate continuous successor sets for a larger

time range [0, T ] we have to use the algorithms described in tables 4 - 7. Note that all

these operators require the information about the discrete mode q, continuous set P ,

bounded time T , and the single time step ∆t.

Summary

In this chapter we presented a computation platform called ReachLab for enabling

automatic analysis of embedded software systems modeled as hybrid automata. It imple-

ments the meta-model based language HADL whose abstract entities allow users to model

their algorithms and the system in an implementation independent manner. These mod-

els are then translated to implementations for different computation kernels. Currently,

ReachLab supports d/dt and Level Set toolbox as its computation kernels.

We can summarize the advantages of using ReachLab to design analysis algorithms

instead of ad hoc implementation based on the chosen computation kernel as follows:

1. Since ReachLab implements HADL whose semantics are based on the mathematics

of hybrid system theory, it can be used to implement algorithms without demanding

the intimate knowledge of approximations and intricacies of different computation

methods.

2. Because of use of translators, a single ReachLab model can be very rapidly trans-

formed into multiple implementations for different computation kernels.

3. Because the semantics of this computation kernels are anchored to the semantics

of HADL one can be compare the results obtained from multiple implementations

of the same algorithm. This is important because in some situations the approxi-

mations of one computation kernel can be better than those of the others.
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However, there are certain difficulties in use of ReachLab with other computation

tools since they are usually not available in the form of a library which can be updated

to support all the entities of HADL. In cases of such computation tools only a subset of

HADL’s entities can be used in modeling.
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CHAPTER V

WORKING WITH REACHLAB

In this chapter, we will illustrate the design and implementation process for analysis

algorithms in ReachLab by designing a forward reachability analysis algorithm for the em-

bedded software system shown in Figure 23(a). We will then showcase some other results

obtained by designing algorithms in order to synthesize initial states for continuous-time

dynamical systems1 so that some temporal properties, such as safety and liveness proper-

ties, are satisfied. The initial sets produced by the algorithms are related to some classical

concepts for continuous dynamical systems, such as domains of attraction.

(a) (b)

Figure 23: (a) This figures shows an example of a simple embedded software system.
The plant on the bottom has four running modes with different continuous dynamics,
which are controlled by the software control task J1. Plant and the software control
task interact through the sampler and zero-order hold; (b) By considering the direct
interaction between the control task and the plant, we can model the system as a hybrid
automaton.

1Continuous-time dynamical systems can be modeled as a hybrid automaton with one discrete state
and no edges
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Figure 23(a) shows a plant with one continuous state x = [x1, x2]
T ∈ R2, which is

controlled by a software control task. Depending upon the current state of the plant, it

determines input u ∈ {σ1, σ2}. By considering the direct interaction between the control

task and the plant, we can model the system as a hybrid automaton as shown in Figure

23(b). Moreover, multiple tasks which share common resource with the control task,

the scheduler and the interface elements such as sampler and the zero order hold can be

modeled by a more complex hybrid automaton. The corresponding hybrid automaton

model can be implemented in the system aspect of ReachLab as shown in Figure 24

Figure 24: Hybrid automaton model shown in Figure 23(b) in the system aspect of
ReachLab.

It has been shown in [55] that this system is stable in the sense of Lyapunov[52]. Start-

ing from anywhere in the continuous state space, the continuous state of the automaton

moves toward the origin in a flower-like trajectory. For this system, we are interested in

computing forward reachable set using symbolic methods based algorithms, in order to

verify that starting from certain initial state, whether or not the system can eventually

enter some desired set.

Table 8 gives the specification of a generic forward reachability algorithm for hybrid

automaton. It uses the concepts of both discrete and continuous successor set and finds

the reachable set starting from a given initial set. This algorithm unfolds the hybrid

automaton into a tree like structure and explores it by using breadth first search. Ter-

mination of this algorithm is guaranteed because of the limit M on the depth of this
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Table 8: Algorithm for computing forward reachable set
Input:

HA, QS , XS , QF , XF , XB, where
QS is list of initial discrete modes, XS is list of initial continuous sets, QF is
list of final discrete modes, XF is list of final continuous sets, and XB is bad set.

Constant:
T as time limit for cPostcT , M as search depth limit

Initialization:
Reach = XS , List = {}, Successors = {}, R = φ, Queue = QS

Depth = 1, i = 0, j = 0
Start:

While ¬Empty(Queue) do
List = PopAll Queue

For i = 1 : Size(List) do
R = cPostcT (List(i), Reach(i))
Successors = Postd(List(i))
For j = 1 : (Size(Successors) do

If R ∩GuardList(i),Successors(j) 6= ∅
Then Push Successors(j) → Queue

Append R ∩GuardList(i),Successors(j) → Reach
End If

End For
End For
Depth = Depth + 1
If Depth > M Then

Stop
End If
Pop first Size(List) elements of Reach

End While

tree. The data structure Reach is used to store the reachable set. It can be noted that

this specification does not delve into the actual implementation method of reachable set

operations. However, the process of semantic mapping will relate those operations to a

specific implementation method based on the concerned computation kernel. This algo-

rithm can be used to verify if the system would ever execute into some desired state. In

order to perform verification, the algorithm systematically explores the hybrid state space

and check if the forward reachable set overlaps with the desired set. The main concern

with these types of algorithms is the termination of computation. But if we perform the

computation in an Eulerian framework (one in which the underlying coordinate system
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is fixed) within a bounded continuous state space, the algorithms will terminate due to

the fact that the partition of state space has finite number of representative elements.

Design Steps

To analyze the safety property of the hybrid automaton model in Figure 23(b) by

using the forward reachability algorithm, we need to design its hybrid automaton model

in the system aspect and design the algorithm in the programming aspect. The data used

in both of the system models and the algorithm models are defined in the data aspect.

The entire process can be summarized into three steps:

Figure 25: Hybrid automaton model for the corresponding plant in the system aspect,
forward reachability analysis algorithm model in the programming aspect, and data used
in the data aspect of ReachLab.

1. Obtaining system model and algorithm specification:

Figure 23(b) and Table 8 provide the hybrid automaton and analysis algorithm

specifications for this example.

2. Design phase:

• Design of the system model: A hybrid automaton is drawn in the system

aspect with discrete transitions connecting discrete modes, as in Figure 24.
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• Design of the analysis algorithm: The analysis algorithm, which is hierarchical

in nature, is modeled in the programming aspect by using ReachLab library

elements. Figure 25 also gives part of the algorithm model for the algorithm

given in Table 8, and the data required by both the hybrid automaton and the

algorithm model.

• Specification of computation parameters: Input parameters to the algorithm

and the computation kernels have to be specified before translation, such as

the bounded time (T ) for cPostcT operator, the analysis region, and how the

analysis region is partitioned into grids.

3. Implementation phase:

Translators are used to convert the designed models into implementation for a cer-

tain computation kernel. For this example, we translate the system and algorithm

model into the d/dt implementation. Figure 26 shows the computation result. This

result can be used to examine system behaviors, such as approaching the origin

while evolving. It can also be used to verify system stability properties by testing

intersection between the reachable set and the desired set.

Figure 26: This figure shows the reachable set computed by using d/dt kernel. The white
box is the initial set, [-2.5,-1.5]x[-0.5, 0.5]. Each subfigure denotes the reachable set in
the corresponding discrete mode. Eventually, the reachable set will reach the origin. The
analysis region is [−3, 3]× [−3, 3], the size of a representative elements in each dimension
is 0.001, and the bounded time T is 5 seconds. Time taken for execution: 180 minutes
on Pentium IV 2.59 GHz machine with 2 GB RAM.
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Example: Analyzing Continuous Dynamical Systems

Using a similar design and implementation strategy we have designed synthesis algo-

rithms synthesizing initial states for continuous dynamical systems so that some temporal

properties, such as safety and liveness properties, are satisfied.

We will consider a continuous dynamical system, Σc = (X,Xs, f), the state space

X ⊆ Rn, the state vector x ∈ X, the initial set Xs ⊆ X and the vector field f : X → Rn.

Such a system can be modeled as a hybrid automaton H = (Q,X, Init, f,D, E,G, R)

with Q = {qi}, a single discrete mode. Init = (qi, Xs). D is same as the analysis space

X. E, G, R are null sets.

Consider two kinds of temporal properties defined over the trajectory space of Σc:

2F and it’s dual 3F with F ⊆ X as defined in [69]. Given a set F ⊆ X and a

trajectory generated by Σc, 2F and 3F give True or False whether the trajectory

always stays inside F or eventually reaches F , respectively. Sometimes, 2F is referred to

safety property while 3F is referred to liveness property. They are formally defined as:

2F =





True if ∀t ≥ 0 x(t) ∈ F

False otherwise
(10)

3F =





True if ∃t ≥ 0 x(t) ∈ F

False otherwise.
(11)

2F can be derived by using 2F = ¬3F c where F c = X \ F . These temporal properties

are used in specifying verification and synthesis problem for transition systems, which

are generalizations of discrete systems, continuous systems as well as hybrid systems.

In a synthesis problem for Σc, we are interested in finding a collection of states,

denoted Fs, such that ∀xs ∈ Xs a temporary property Ω is True. The collection of

states that satisfies the temporary property is called the winning states[50, 49, 69]. In

the following, synthesis problems for Σc with respect to 2F and 3F are presented.

For these problems, we first derive a 3-algorithm for Σc. We can also derive a 2-

algorithm for Σc by utilizing the 3-algorithm, since we know that the 2 and 3 properties
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are related by 2F = ¬3F c where F c = X \F . The algorithms for solving these problems

are given by Tables 10 and 9 respectively.

Table 9: Algorithm : 3-Algorithm for Σc

Input: Σc = (X, Xs, f), D, F , T

Output: Fs

Start
P = F

R0 = ∅
Repeat k = 0, 1, 2, · · ·

Rk+1 = P ∪ cPrecT (Rk)
Until Rk+1 ⊆ Rk

Fs = Rk+1

End

Table 10: Algorithm: 2-Algorithm for Σc

Input: Σc = (X, Xs, f), D, F , T

Output: Fs

Start
P = X \ F

R0 = ∅
Repeat k = 0, 1, 2, · · ·

Rk+1 = P ∪ cPrecT (Rk)
Until Rk+1 ⊆ Rk

Fs = X \Rk+1

End

Figure 27 shows the design of 3-algorithm in ReachLab. This algorithm can be saved

as a template for future to be reused with a different system. By composing this algorithm

as a subroutine and giving it as input P = X \ F as shown in algorithm described in

Table 10 we can design the 2-Algorithm. The graphical design of this algorithm is

shown in Figure 28. In the next section we will show some computational results of

these algorithms by using some continuous dynamical systems with rich behavior. These

systems were modeled in ReachLab’s system aspect.
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Figure 27: The 3-algorithm designed in ReachLab. By changing the dynamics associ-
ated with the model of system in system aspect we can use this algorithm for different
continuous systems.

Figure 28: The 2-algorithm designed in ReachLab.
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Figure 29: Constrained bounded-time Forward reachable set of the Vanderpol Equation,
computed by the Level Set toolbox. The light gray box is the initial set F , the dark region
is the forward reachable set, and the black box is the complement of the constraint set
D.

Figure 29 shows the first example which uses the Vanderpol Equation [57] to demon-

strate how cPostcT is computed with the Level Set toolbox. The constraint D = X \ S,

where S is indicated as the black box in the figure that blocks the evolution of the reach-

able set. The reachable set is split into two parts but remains connected. The system

dynamics are defined by the ODE ẋ1 = x2, and ẋ2 = x2 · (1− x2
1)− x1. The analysis set

chosen was [−3, 3] × [−3, 3]. The initial set F = [−1.5,−0.5] × [−0.5, 0.5]. We chose a

grid size of 0.025 in either dimension to create the mesh as required by level set toolbox.

In order to compute the constrained continuous bounded time successor set used in this

algorithm we chose a time range of [0, 6.0] with a time step of [0, 0.01]. This computa-

tion took nearly 200 minutes on a Pentium IV 2.59GHz Windows machine with 512 MB

memory.

The second example, shows the application of 3-algorithm to a linear system in R2

with a stable focus. This example was first described in [57]. The system dynamics are

defined by the ODE ẋ1 = −x1 − 1.9x2, and ẋ2 = 1.9x1 − x2. Figure 30 and 31 shows

the results for this system using d/dt and Level Set toolbox. In both cases the algorithm

terminates after the reachable set grows outside the analysis set. In both, figures the

darker region gives the subset of the continuous state space from which it is possible

to reach somewhere inside the continuous set F , which contains the equilibrium point.
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Figure 30: 3-algorithm applied to a linear system with a stable focus, computed by d/dt.
For each figure in the series, the light gray box in the center is F , and the dark region is
the set that can be reached from F within time T . The solid curves are the trajectories
from the four corners of F .
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Figure 31: 3-algorithm applied to a linear system with a stable focus, computed by Level
Set toolbox. For each figure in the series, the light gray box in the center is F , and the
dark region is the set that can be reached from F within time T . The solid curves are
the trajectories from the four corners of F .
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Both computations used the same parameters. The analysis set chosen was [−1, 1] ×
[−1, 1]. The initial set F = [−0.1, 0.1]× [−0.1, 0.1]. We chose a grid size of 0.01 in either

dimension. In order to compute the constrained continuous bounded time successor set

used in this algorithm we chose a time range of [0, 4.5] with a time step of [0, 0.05]. This

computation took nearly 9 minutes on a Pentium IV 2.59GHz Windows machine with

512 MB memory for Level Set toolbox. The same computation took less than a minute

with d/dt kernel. This example illustrates the differences in implementation between the

two kernels. However, since the algorithm used was designed in HADL we were able to

compare the two results.
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Figure 32: (a)2-algorithm applied to the Vanderpol Equation, computed by the Level
Set toolbox. The light gray box is F , and the dark region is true for 2F . The solid
trajectory of the equation is always staying in F , and the dashed trajectory is not always
inside; (b)3-algorithm applied to the ODE, by negating the vector field of the Vanderpol
Equation. The light gray box is F , and the dark region is true for 3F , which gives an
estimate of the shape of the limit cycle.

The last example, shows the application of 2-algorithm to the Vanderpol equation

[57]. The dynamics of Vanderpol equation are same as the one in first example. This

system has the property that it has a limit cycle around the origin. Therefore if the

initial set lies inside the limit cycle the system will forever remain in a state which is
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inside the limit cycle. The computation result is shown in Figure 32(a). The sets F ,

Fs are indicated by the light gray region and the dark region, respectively. Trajectories

starting from any point inside the dark regions will always stay inside, which shows the

safety property of both systems are satisfied. These examples show how the positively

invariant sets can be approximated. The analysis set chosen was [−5, 5] × [−5, 5]. The

set F = [−3, 3] × [−3, 3]. We chose a grid size of 0.1 in either dimension to create the

mesh as required by level set toolbox. In order to compute the constrained continuous

bounded time successor set required for this algorithm we chose a time range of [0, 0.2]

with a time step of [0, 0.01]. It tools we took nearly 70 minutes on a Pentium IV 2.59GHz

Windows machine with 512 MB memory.

We can also use these algorithms to estimate the shape of the limit cycle. Take the

Vanderpol Equation as an example, it can be shown that there exist an attractive limit

cycle and an equilibrium point inside the limit cycle. As shown in Figure 32(b), by

negating the vector field of the Vanderpol Equation, the limit cycle becomes repulsive

instead of attractive. Then, by having the set F surrounding the equilibrium point we

can use our 3-algorithm to estimate the shape of the limit cycle, as the dark region shown

in the figure. The dynamics in this example is defined by the ODE ẋ1 = −x2, and ẋ2 =

−(x2 · (1 − x2
1) − x1). The analysis set chosen was [−5, 5] × [−5, 5]. The set F =

[−1, 1] × [−1, 1]. We chose a grid size of 0.1 in either dimension to create the mesh as

required by level set toolbox. In order to compute the constrained continuous bounded

time successor set required for this algorithm we chose a time range of [0, 0.1] with a time

step of [0, 0.01]. It tools we took nearly 60 minutes on a Pentium IV 2.59GHz Windows

machine with 512 MB memory.

Summary

In this chapter we used ReachLab to design algorithms for analyzing linear as well as

non linear time-invariant continuous dynamical systems. We also designed algorithm for

computation forward reachable set of a hybrid automaton. Due to use of ReachLab in

their design we were able to
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1. Reuse the algorithms to quickly and efficiently design other algorithms.

2. Reuse the algorithms for analyzing different systems by modifying the system as-

pect. If we had to design these algorithms in each of the computation kernels

separately without using ReachLab, it would have been a very cumbersome task.

3. Also, the design of these algorithms is independent of implementation. Therefore,

one can store them and apply them to a number of systems easily.

We used d/dt for some examples while we used Level set toolbox for computation in

other examples. In general one can choose either of them for their computation, provided

that the system has linear continuous dynamics. However, we usually choose d/dt if

we want faster computation for linear systems and use Level Set toolbox if we need to

analyze non-linear systems.
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CHAPTER VI

CONCLUSION

Model based approach for design and analysis of systems has made great advances in

the last decade. Model driven system development methodologies like model integrated

computing (MIC) allow integration and manipulation of models with manageable com-

plexity in various aspects of system design. For embedded systems, model based design

approach provides a scalable methodology for system design and analysis based on hy-

brid system theory in order to integrate efforts in system specification, design, synthesis,

validation, verification and design evolution.

Hybrid systems, with tightly coupled discrete and continuous components, are ana-

lyzed using mathematical model formulations like hybrid automaton. Various algorithmic

methods for formal verification and synthesis using hybrid automaton have been devel-

oped. These methods have been characterized as reductionist and symbolic methods. The

main advantage of reductionist methods is the guarantee of termination. However, for a

large class of hybrid systems, reductionist methods are unsuitable. Therefore, symbolic

methods have to be used for a large class of hybrid systems.

This thesis reviewed various methods for continuous state set representation and ap-

proximations for computation of reachable sets that has been implemented in various

symbolic method based computation tools. Each of these tools has been designed for

specific analysis purposes and can be used for only a class of hybrid systems. Analy-

sis algorithms developed using these tools are tightly coupled with the implementation

details.

MIC approach has been used in order to enable the design of algorithms for analysis

of hybrid automaton model such that the algorithms do not depend on any specific com-

putational methods. However, we enable adoption of any specific computation methods

for actual computation of results using the analysis algorithms. We also separated the
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algorithm logic from the concerned hybrid automaton model so that the algorithms can

be reused for other hybrid automaton model as well.

Our approach is enabled by a computation platform called ReachLab, which provides

a domain specific modeling language called Hybrid System Analysis and Design Lan-

guage (HADL). This language uses a metamodel to relate abstractions of notions such

as continuous state sets, operators for reachability computation, and Boolean operations

on state sets. Implementation independent semantics of HADL is provided through the

mathematical definitions of these abstractions. HADL provides multiple aspects to sep-

arate the concerns of analysis algorithms into programming logic, system models, and

related data.

In ReachLab, on one hand, the models of analysis algorithms are abstract and there-

fore the design of algorithms can be made independent of implementation details. On

the other hand, translators are provided to automatically generate implementations from

the models for computing analysis results based on computation kernels. We enriched

the capabilities of two computation tool d/dt and Level Set toolbox in order to use them

as computation kernels.

Using this platform, we have developed many algorithms such as the synthesis al-

gorithms for finding sets of initial states for the continuous dynamical systems so that

some temporal properties, such as safety and liveness properties, are satisfied. We have

also designed verification algorithms which can be used to check if the hybrid automaton

will ever reach certain unsafe region. This platform has also been used to design syn-

thesis algorithms for finding the execution sequence and switching surfaces for a DC-DC

converter.

Future Works

While working with the two computation kernels in our architecture, we realized that

even though the computation methods implemented in these tools are oblivious to higher

dimensions, the constraints posed by memory requirements and computing power restrict

their usage to systems with only three or maximum four dimensions. Considering that
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any practical system consists of several dimensions, this is a serious limitation. However,

because of the use of ReachLab we can still keep on developing algorithms for analyzing

these systems. In the future, we want to work at a more effective computation kernel

which will be used along with ReachLab for effective analysis of system with higher

dimensions.

Though currently, we only support a single hybrid automaton model, we would con-

sider allowing networked hybrid automaton so that more sophisticated systems can be

designed and analyzed. Use of shared memory for the communication between different

hybrid automata can be adopted as well. Currently, clocks and continuous variables are

modeled as continuous state variables in HADL which lead to an increase in continuous

space dimension, resulting in a greater computation cost. In the future, clocks with deter-

ministic rates will be supported as special variables decoupled from the continuous state

space. This will lower the number of dimensions of the continuous state space required

for analysis, so that existing tools can be used to handle analysis algorithms on more

complex systems.

We have already started forming our library of algorithms which can be used for

analyzing different hybrid automaton models in the future. We would want to augment

this library with even more algorithms, especially for automatically checking temporal

properties specified in temporal logic formulae such as in CTL and CTL* [29] for a hybrid

automaton.

Our vision is to form an integrated suite of tools which would be used in every step of

model based design of embedded systems. Currently, ReachLab enables the validation,

verification, and synthesis for hybrid system models. We want to integrate ReachLab

with Ptolemy II [71], which is a model based design tool for modeling, simulation and

design of real-time embedded systems. By using metamodel based languages and model

transformation tools like GReAT [2], we would be able to transform the Ptolemy II design

models into models which can be used in ReachLab for either verification or controller

synthesis. Moreover, we would want to augment this tool suite with code generation

capabilities for generating executable artifacts for final systems.

73



This thesis is only a part of our complete vision; however, this work has given great

insight into research which we need to do to achieve our vision of an integrated tool suite

for model driven system development.
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