
WiNeSim: A Wireless Network Simulation Tool

Matthew Emerson
Institute for Software Integrated

Systems
Vanderbilt University
Nashville, TN, 37203

mjemerson@isis.vanderbilt.edu

Janos Mathe
Institute for Software Integrated

Systems
Vanderbilt University
Nashville, TN, 37203

jmathe@isis.vanderbilt.edu

Sean Duncavage
Institute for Software Integrated

Systems
Vanderbilt University
Nashville, TN, 37203

sduncavage@isis.vanderbilt.edu

Abstract

We provide an overview of WiNeSim, a highly extensible wire-
less network modeling and simulation tool with a network attack-
modeling component. WiNeSim provides a high-level graphical
modeling interface for the rapid declarative specification of network
configurations, including the selection of node hardware, MAC pro-
tocols, and routing protocols. Furthermore, it enables users to spec-
ify certain network nodes to act as “smart” attackers who adapt their
behavior and attack styles based on perceived network conditions in
accordance with user-specified algorithms given as timed automata.
WiNeSim is designed to easily integrate new network protocols and
attack styles.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: Simulation—
General

General Terms

Wireless networking, Simulation, Security

Keywords

Domain-Specific Modeling, Model-Integrated Computing

1 Introduction

Security is an ever-growing concern in the arena of wireless net-
working, especially for embedded wireless sensor networks with
limited resources available for implementing security measures.
The typical approaches for the analysis of wireless networks and
protocols are simulation-based, with the expectation that high-
fidelity protocol and system models can yield insights into network
performance and security. These simulations may be used to gather
relative performance metrics for specific algorithms, or explore the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

performance of an algorithm relative to network topology or node
characteristics (computing power or mobility). They may even ex-
amine the effects of malicious attacks or node failures. Network
simulation frameworks such as ns2 [ns2], or OMNeT++ [IKH+]
can aid in the implementation of simulations; however, there are
few widely-available libraries or modules capturing network proto-
cols, hardware platforms, and network attack styles. Consequently,
these simulation efforts largely represent a tremendous duplication
of work. Because of the significant amount of time that must be
expended to continually re-develop such basic simulation modules,
network simulations are often limited to the examination of point
scenarios, for example the process and effects of a single attack or
style of attack against a particular network configuration.

There is a great need in the wireless networking arena for a way to
rapidly define and examine more complex, dynamic network attack
scenarios. It would be especially useful to be able to capture the
behavior of “smart” attackers who carry out a well-developed plan
of attack based on known network vulnerabilities, alter or tailor the
attack plan based on detectable dynamic network conditions, and
even coordinate with other attackers. But more than the attacker
behavior must be specified; the network characteristics such as the
details of the node hardware, the protocols used, and the messag-
ing patterns still need to be captured too. However, the thought
of capturing such a large number of details in source code using
a framework such as OMNeT++ is not the most appealing. Com-
pletely hand-coding a simulation of the above-described level of
complexity to examine a single networking scenario may produce a
buggy, brittle, tightly-coupled end result that is difficult to maintain
and reuse. This is especially true if the researcher is not already
intimately familiar with ns2 or OMNeT++.

It would be useful to have a higher-level interface for harnessing the
power of network simulation frameworks without being exposed to
all of their complexity. Given the proper level of abstraction, the
definition of complex network scenarios can be rapid and simple.
Model Integrated Computing (MIC) is a powerful model-based ap-
proach which advocates the use of graphical domain-specific mod-
eling languages for the design and analysis of complex systems.
DSMLs are tailored to the concepts, relationships, needs, and con-
straints of their particular system domains. Past efforts in the Model
Integrated Computing initiative have focused on the generation of
custom simulations from domain-specific models of embedded sys-
tems. Specifically, [LDNA03] describes the MILAN framework.
MILAN is a single unified domain-specific modeling environment
for capturing a broad category of embedded systems, and input to
multiple simulators can be generated from a MILAN embedded
system model. MILAN facilitates the rapid evaluation of perfor-
mance characteristics such as power use, latency, and throughput;



however, because it abstracts away many of the implementation
details of modeled systems, it is easier and more rapid to capture
an embedded system using MILAN than than a lower-level design
tool.

Motivated by the above issues and continuing in the tradition of
MILAN, we propose a new tool for wireless network simulation,
WiNeSim. WiNeSim includes a domain-specific modeling lan-
guage for capturing simulation scenarios for wireless embedded
systems, including security attack scenarios. WiNeSim models
translate into executable OMNeT++ simulations, but users are not
exposed to the full functionality of OMNeT++ when modeling with
WiNeSim. This allows users to rapidly evolve simulation exper-
iments that focus on a few key aspects of wireless network de-
sign: MAC and routing protocol selection, network topology, and
attacker behavior. Like MILAN models, WiNeSim models will en-
force correctness-by-construction. In this way, WiNeSim can build
upon an existing network simulation framework to take a step to-
ward easing the analysis of new protocols, network configurations,
attack patterns, and security defense measures. The WiNeSim tool
chain is designed to be highly modular and can easily be extended to
support additional node types, protocols, and network attack styles.
WiNeSim is currently a work-in-progress.

2 WiNeSim Design

This section describes WiNeSim’s modeling interface and the
toolchain that enables the simulation of WiNeSim models.
WiNeSim itself consists of a graphical modeling language, a set of
pre-implemented OMNeT++ components, and a code-generating
model interpreter that builds up simulation configurations and OM-
NeT++ modules implementing network attacker behavior from the
WiNeSim models. WiNeSim builds on previous work in network
simulaion, most notably the OMNeT++ simulation framework and
the SENSIM platform, a set of OMNeT++ interfaces for simulat-
ing sensor networks [MES+05][SEN]. The overall structure of the
WiNeSim toolchain is given in Figure 1

Figure 1. WiNeSim Toolchain

2.1 Modeling with WiNeSim

WiNeSim includes a high-level modeling interface implemented as
a domain-specific modeling language for the Generic Modeling En-
vironment [LMB+01], the graphical MIC modeling platform. This
language consists of a number of intuitive entities and relationships.
The abstract syntax for the WiNeSim modeling langauge is speci-
fied in GME using a graphical UML metamodel (Figure 2). A sim-
ple example WiNeSim model is given in Figure 3, and the WiNeSim
modeling constructs are described below:

• Nodes capture various classes of embedded hardware plat-
forms. In simulation, the differences between various node

types manifests at the physical layer in terms of available
computational, radio, and energy resources. Nodes also have
physical coordinates for determining network reachability,
and are refined in a scenario to capture the networking pro-
tocols, messaging patterns, and network attacks manifested
by the node. It is possible to extend the the analysis capa-
bilities of WiNeSim by adding additional node types to the
modeling language. In figure 3, baseStation is a node of the
generic BaseStation class. All BaseStation-class Nodes share
a common set values for various physical properties, includ-
ing CPU and radio power ratings, radio radius, the amount of
energy consumed by the radio while transmitting, receiving,
or idle, and the battery capacity.

• Wireless Channels represent logically discrete communica-
tion channels in the shared media used for wireless communi-
cation. All of the Nodes connected to a Wireless Channel ob-
ject may communicate using that channel if they are in range
of one another. Communications through different wireless
channels do not interfere with one another. The delay and er-
ror rate due to physical disruptions associated with particular
channel are included as parameters.

• MAC and Network Layers are used to configure the protocol
stack of the Node which contains them. Each node must con-
tain one and only one MAC Layer object as well as one and
only one Network Layer object. The analysis capabilities of
WiNeSim can be extended by adding new MAC and Network
layer configuration options.

• Application Layers permit the user to characterize patterns
of message generation, include the rate of generation and the
message size. These factors are given using uniform distri-
bution curves. Like the MAC and Network Layer models,
Application Layers are sub-models of Nodes.

• Modes give the dynamic behavior of a node at the MAC
and Network protocol layers. Each MAC or Network layer
contains a timed automata with Modes as states, where each
Mode indicates either a step in a network attack or simply the
normal operation of the protocol. It is possible to extend the
the analysis capabilities of WiNeSim by adding new attack
types. Note that the automata do not specify the details of
the normal operation of the protocols or attack steps – rather,
single Modes are used to abstract entire protocols and attack
steps. In Figure 3, the MAC layer of the attackingSensor can
operate in normal, passive-listening, or MAC-flooding modes.

• Mode Transitions dictate the dynamic evolution of Node be-
havior during a simulation. Each transition can specify a time
constraint, a constraint based on the success or failure of the
current Mode, and a clock manipulation action. So, with
WiNeSim users can model attacker behavior that varies based
on timing and on the success or failure of previous attacks
In Figure 3, the operation of the MAC layer of the attack-
ingSensor changes dynamically at simulation run-time. The
attackingSensor executes the normal S-MAC protocol for the
first minute of simulation, then begins to try and determine
the largest recipient of messages on the network. This is an
instance of the Passive Listening attack. If it fails to find any
node within three minutes that leads significantly in messages
receives, it will continue to passivly listen. However, if it does
find a primary recipient, it will execute a MAC Flooding at-
tack versus that node for four minutes, then go back to pas-
sively listening. The attackingSensor’s attack behavior varies
as time passes and as it observes the network.



Figure 2. WiNeSim DSML Metamodel

2.2 OMNeT++ and WiNeSim

WiNeSim builds on our reimplementation of the SENSIM project.
SENSIM extended the standard OMNeT++ framework with addi-
tional capabilities for modeling wireless sensor networks. It pro-
vides base classes and inheritable interfaces for MAC protocols,
routing protocols, physical components (including CPU, radio, and
battery), and wireless channels. By extending these base classes,
it is possible to create executable simulations for wireless networks
involving different platform types using a highly modular approach.
Consequently, WiNeSim is designed to integrate pre-impelemented
modules written in C++ which extend the SENSIM framework. For
each MAC protocol, network protocol, and network attack style,
an appropriate SENSIM/OMNeT++ module must be implemented.
However, the WiNeSim Code Generator automatically generates
the code for network attacker behaviors and also generates config-
urations to parameterize the hardware of each simulated node with
the proper characteristics. The structure of the OMNeT++ simula-
tion code for each Node in the network is given in Figure 4. The
vertical arrows show the propagation of messages through the net-
work stack. The horizontal arrows show the request and manage-
ment of platform resources through a special module called the Co-
Ordinator. The CoOrdinator essentially plays the role of a simple
operating systems for managing the hardware resources of a Node
on behalf of the networking software and applications.

As stated, WiNeSim allows users to select from a list of network
attack primitives to build up complex attack behaviors and test net-
work performance under adverse conditions. Past efforts in the cat-
egorization of wireless attacks typically group them by the type of
property compromised: confidentiality, integrity, and availability
[Lou01]. An attack on confidentiality allows a malicious user ac-
cess to private information, such as the body of a text or a commu-
nication session. Integrity attacks weaken the ability of the network
to function appropriately and may result in slow response times
or other improper network operation. If availability is compro-

Figure 4. Code Structure for Each Wireless Node

mised, the node loses its ability to retain connectivity in the net-
work. WiNeSim takes a different approach to the categorization
of network attacks. In WiNeSim, we classify attacks according to
the layers of the network stack through which they operate. This
choice manifests itself in the way attacker behavior is modeled: the
attack primitives, such as Passive Listening and MAC Flooding, are
always scoped to a particular layer of the protocol stack. The cate-
gorization is an important design decision which is intended to sup-
port WiNeSim’s modularity and extensibility, and also to help us
decide which attacks are appropriate for analysis with WiNeSim.
Figure 5 summarizes the categorizations of some common attacks
[DS03][Lou01]. Note that these attacks are assumed to be perpe-
trated by trusted nodes within the network.

In order to implement a network attack primitive, an appropriate
variation of one or more of the normal protocol layer modules must
be implemented to carry out the attack. For example, a node using a



Figure 3. WiNeSim Example Model

Black Hole attack really only manifests that behavior at the routing
layer – the MAC and physical layers behave normally. So, we must
implement “Black Hole versions” of each implemented networking
protocol in order to fully support that style of attack. Then, whether
the user wants to create a node that routes data using Directed Dif-
fusion, GEAR, or some other routing protocol, a Black Hole variant
will be available if the user wants the node to exhibit that style of
attack as part of its dynamic behavior.

Because the primitive modules (protocol layers, network channels,
attack styles, and hardware components) are pre-implemented, the
task of the WiNeSim domain-specific modeling language is to cap-
ture the configurations that organize these modules into simula-
tions. First the nodes should be configured with protocols that
capture their behavior, then the nodes and wireless channels may
be composed into full network configurations. Because the proto-
cols and primitive attack steps are captured in independent modules,
they can be freely combined in a plug-and-play manner by users to
explore different network set-ups.

2.3 The Code Generator

A key part of the WiNeSim toolchain is the model interpreter that
generates OMNeT++ NED files, INI files, and network attacker be-
havior from WiNeSim graphical models. NED files capture the
network composition and topology for a simulation. In terms of
WiNeSim, this means that NED files describe the nodes, the pro-
tocols they use, the attack styles they exhibit, and the connectivity
of nodes through wireless channels. The purpose of NED files is to
organize both the pre-implemented and code-generated SENSIM-
based OMNeT++ modules into node types and build communica-
tion paths between them. The OMNeT++ core then takes the NED
file and the modules that implement the protocols, attacks, and node
behaviors and integrates them into an executable simulation (Figure
1). In all, the Code Generator produces one simulation INI file, one
NED file for the top-level scenario, a NED file for each node type,
A NED file, source file, and header file for each MAC and routing

layer type, and a NED file for each MAC and routing mode (proto-
col or attack style). The header and source files for the modes must
be pre-implemented.

Figure 6 shows the NED file code-generated for the MAC layer
of the attackingSensor. Here, the submodules which correspond
to the different MAC layer modes. Figures 7 and 8 show respec-
tively the automatically-generated header and source files for the
C++ class that implements the OMNeT++ module referenced in the
NED file. The timed automata captured in the example model has
been transformed into C++ code that switches the module provid-
ing the module providing the MAC layer implementation according
to the conditions specified in the mode transitions in the model. The
start, stop, and processMessage methods belong to the WiNeSim-
LayerImpl interface. start and stop are used to govern the activity
of implementations which operate continuously, such as the module
for MAC flooding. processMessage is used to have a layer manip-
ulate a network packet.

3 Extending WiNeSim

WiNeSim was designed with extensibility in mind, in no small part
because it natively includes only a very limited set of protocols,
attacks, and node types. Adding support for a new MAC protocol
(for example) consists of only four steps:

1. Define a new modeling object in the WiNeSim language to
represent the protocol. This is easily done by subtyping the
abstract MACLayer class in the WiNeSim GME metamodel
(Figure 2).

2. Re-interpret the WiNeSim GME metamodel to obtain an up-
dated WiNeSim graphical modeling environment including
the new protocol. This is an automatic process that takes ap-
proximately ten seconds.

3. Extend the WiNeSimLayerImpl C++ class provided by the
our reimplementation of the SENSIM framework with an im-



Figure 5. Categorizations of Network Attacks

plementation of the MAC protocol, making sure to conform
to a simple set of naming conventions assumed by the Code
Generator.

4. Create a NED file for the simple module that corresponds to
the MAC protocol implementation, again following a set of
simple naming conventions.

So, in extending WiNeSim a developer could concentrate primarily
on the implementation of their protocol for simulation purposes and
be assured that the module they create will “plug-and-play” with the
rest of the framework. Developers need not worry about altering the
WiNeSim Code Generator or any of the source code files included
with WiNeSim.

3.1 Conclusion and Future Goals

WiNeSim is a promising solution for wireless network modeling
and simulation. It offers users an intuitive, high-level interface for
building simulatable wireless network models consisting of multi-
ple node hardware types and utilizing multiple routing and MAC
protocols. Furthermore, it includes a capability for rapidly build-
ing in complex dynamic network attacks to test protocol and net-
work security versus “smart” attackers. WiNeSim encourages the
development of modular, independent protocol and network attack
simulation implementations which can be reused and composed to
rapidly test new protocols.

WiNeSim is currently a work-in-progress. Predictably, the piece
most lacking is a significant useful number of protocol implemen-
tations and network attack styles that can be incorporated into the
framework. Currently we have completed the graphical WiNeSim
modeling environment, the code generator which produces OM-
NeT++ NED files as well as C++ header and source files for the

Figure 6. attackingSensor MAC Layer NED File

Figure 7. attackingSensor MAC Layer Header File



Figure 8. attackingSensor MAC Layer Source File

layer-specific timed automata. We have also completed much of
the generic configurable node and network structures, including the
battery, CPU, coordinator, physical layer, application layer, and
wireless channel implementations (see Figure 4). The scope of
WiNeSim may be increased in the future; for example, the dy-
namic network node behavior modeling capability could be taken
much further. In addition to enabling the modeling “smart” attack-
ers, we could support the dynamic modeling of “smart” defenders,
who work to detect and circumvent network attacks. It would also
be useful to provide a much wider set of network properties the
user can work with when defining the mode transition guards to al-
low even more complex behavioral modeling. We also plan to add
multiple options for node mobility into WiNeSim.

4 Additional Authors

Additional authors: Janos Sztipanovits (Institute for Software Inte-
grated Systems, email: sztipaj@isis.vanderbilt.edu).

5 References

[DS03] Welch D. and Lathrop S. Wireless security threat tax-
onomy. In Information Assurance Workshop, 2003.
IEEE Systems, Man and Cybernetics Society, pages
76–83, June 2003.

[IKH+] S. Imre, Cs. Keszei, D. Holls, P. Barta, and Cs. Kujbus.
Simulation environment for ad-hoc networks in om-
net++. Available from: http://www.omnetpp.org/
links.php.

[LDNA03] Akos Ledeczi, James Davis, Sandeep Neema, and
Aditya Agrawal. Modeling methodology for integrated
simulation of embedded systems. ACM Trans. Model.
Comput. Simul., 13(1):82–103, 2003.

[LMB+01] A. Ledeczi, M. Maroti, A. Bakay, G. Karsai, J. Gar-
rett, C. Thomason IV, G. Nordstrom, J. Sprinkle, and
P. Volgyesi. The generic modeling environment. In
Workshop on Intelligent Signal Processing, Budapest,
Hungary, May 2001.

[Lou01] Daniel Lowry Lough. A taxonomy of computer attacks
with applications to wireless networks. PhD thesis,
2001. Chairman-Nathaniel J. Davis, IV.

[MES+05] C. Mallanda, S. Else, A. Suri, V. Kunchkarra, S.S.
Iyengar, R. Kannan, , and A. Durresi. Simulating wire-
less sensor networks with omnet++. IEEE Computer,
2005.

[ns2] ns2. Available from: http://www.isi.edu/nsnam/
ns/.

[SEN] SENSIM. Available from: http://bit.csc.lsu.
edu/sensor_web/sensim.html.


