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I. INTRODUCTION

Component-based software engineering (CBSE) has been
accepted as a standard practice to develop robust, modular and
maintainable software stacks for embedded systems [1]. The
guiding principles of CBSE are interfaces with well defined
execution models [2], compositional semantics [3] and model
driven analysis [4]. In the past, our group has developed
several such frameworks, including ARINC-653 component
model [5], [6], which combines the principle of spatial and
temporal partitioning with the interaction patterns derived from
the CORBA Component Model (CCM) [7]. DREMS (Dis-
tributed Real-Time Embedded Managed Systems) component
model [8] extended ACM to networked cyber-physical systems
that can be used by several concurrent users, by allowing
configurable real-time scheduling policies in addition to con-
figurable secure information flow policies. A key theme across
both ACM and DREMS work was a single threaded execution
model for components, which helped avoid synchronization
primitives that often lead to non-analyzable code and can cause
run-time deadlocks and race conditions [9].

Recently, we have been studying the application of these
methods for developing software for smart grid [10] using
a platform called Resilient Information Architecture Platform
for Smart Grid (RIAPS). Traditional power grids utilize a
centralized model with large central power generation cen-
ters supplying power to customers [11] via transmission and
distribution systems, where centralized stations handle the
monitoring and control of predominately mechanical controls
based on limited and time delayed data from remote devices.
Power generally flows in only one direction. However, the
smart grid of the future needs to fully manage the two-way
flow of electricity and information [11]. One way to achieve
this is to transform power grids into open application platforms
where deployed physical devices, system infrastructure, and
third party applications conform to industry standards and
protocols, such as those being developed by IEEE and IEC
[12].

An open application platform distributes the intelligence
and control capability to local endpoints (or nodes) reduc-
ing total network traffic, improving speed of local actions
by avoiding latency, and improving reliability by reducing
dependencies on numerous devices and communication in-
terfaces [12]. The platform must be multi-tasking and able
to host multiple applications running simultaneously. Given
such a system, the core functions of power grid control sys-

tems include grid state determination, low level control, fault
intelligence and reconfiguration, outage intelligence, power
quality measurement, remote asset monitoring, configuration
management, power and energy management (including local
distributed energy resources, such as wind, solar and energy
storage) can be eventually distributed [13]. However, making
this move requires extensive regression testing of systems to
prove out new technologies, such as phasor measurement units
(PMU) [11]. Additionally, as the complexity of the systems
increase with the inclusion of new functionality (especially at
the distribution and consumer levels), hidden coupling issues
becomes a challenge with possible N-way interactions known
and not known by device and application developers [13].
Therefore, it is very important to provide core abstractions that
ensure uniform operational semantics across such interactions.
In this paper, we describe the pattern for abstracting device
interactions we have developed for the RIAPS platform. We
provide evaluation of the use of this pattern in the context of
a microgrid control application we have developed. However,
first we provide a brief overview of RIAPS.

II. THE RESILIENT INFORMATION ARCHITECTURE
PLATFORM FOR SMART GRID

Fig. 1. RIAPS System Architecture Overview

RIAPS is an open application platform that distributes the
intelligence and control capability to local endpoints reducing
total network traffic, improving speed of local actions by
avoiding latency, and improving reliability by reducing depen-
dencies on numerous devices and communication interfaces.
The platform is multi-tasking and able to host multiple appli-
cations running simultaneously. The key concept is to provide
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Fig. 2. Architecture of a RIAPS actor realizing phase/frequency regulation. The Actors receive sensor information about the microgrid simulated in a real-time
simulator (Opal-RT). The control actions are then streamed back via custome device interfaces back to the Opal-RT. This hardware integrated simulation
continues at 20Hz.

a “middleware” that enables each agent to communicate with
others and focuses on specific grid issues, such as state
estimation, remedial action schemes, and load shedding.

Figure 1 presents an overview of the middleware services
provided by RIAPS to power systems application running
on each remote node. The services include the Application
Manager (that enables remote installation and management
of the applications), the Distributed Coordination Manager
(that implements fault-tolerant distributed service like leader
election, consensus, coordinated actions, etc.), the Discov-
ery Manager (which determines available connections among
components on the same node or other operating nodes), the
Time Manager (that provides high-precision timing and time
synchronization services), the Resource Manager (monitors
computing resources to ensure components and Platform Man-
agers are able to run concurrently), the Fault Manager (that
provides node-level fault management services), the Device
Manager (that supports access to and management of attached
input/output devices), the Security Manager (that handles
authentication and manages keys and digital signatures), the
Log Manager (that serves as a single entry point to all log
activity on a node) and the Persistence Manager (that provides
non-volatile data storage facility).

A. The RIAPS Component and Actor Model

A RIAPS component is a reusable unit of software that
implements a set of operations for manipulating its state, and
ports through which it communicates and interacts with other
components. The operation of a component is analogous to a
typical computer process in the sense that each component
is limited to a single thread of computation. This thread
is managed by a trigger method which is provided by the
developer of the component. The trigger method monitors the
state of the component and launches operations when 1) the
state of the ports change, 2) a timer expires, or 3) an operation
is completed. These operations implement the application logic
of the component. The ports on the component are deter-
mined by the desired communication patterns which include
asynchronous request/response, synchronous client/server, and
publish/subscribe. The components on a particular compute
node are managed by actors. An actor provides its components
with the run-time code as well as the interfaces necessary to
access platform services. Additionally the actor provides the
capabilities to control and configure its components remotely.

One of the unique capabilities of RIAPS is the ability to
interact with low-level devices like Modbus [14] and IEEE

C37.118.2 synchrophasor data transfer protocol [15] as if
they were part of yet another component, which allows other
component developers to use message-driven interaction pat-
terns uniformly. For example, consider the application shown
in Figure 2. It implements a a microgrid synchronization
algorithm described in [16]. The application has two actors.
The first one is called C37receiver and it is deployed to
the relay RIAPS node. C37receiver only has one component
called C37device which abstracts the communication with an
external device – the point of common coupling (PCC) relay
using IEEE C37.118.2 synchrophasor data transfer protocol.
The PCC relay constantly measures the voltage magnitude,
frequency and phase difference between the main grid and
microgrid. The measurement data along with the relay status
are sent to the relay RIAPS node (an embedded computer)
using C37 messages via the RIAPS device interface.

III. THE RIAPS DEVICE INTERFACE SERVICE
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Fig. 3. Example of RIAPS Device Layers

RIAPS nodes vary in the type and number of hardware
devices that are available for interactions based on the expected
utilization of the node and the specific power system equip-
ment connected to it. This configuration changes over time as
systems are upgraded and re-purposed to meet the needs of
the specific locations where they are installed. While devices
might be available to a node, applications running at any
specific time may only utilize a subset of the device capability
available. There may also be more hardware capability avail-
able than the system resources can support simultaneously.
Therefore, device interactions change over time and may be
added and removed when needed.

Thus, RIAPS applications never interact with the power
system devices directly, rather they interact via the Device
Interface Service, which implements device-specific RIAPS



components (that are hosted in a Device Communication
Actor, detailed below). The application components communi-
cate with these component using the standard RIAPS interac-
tion patterns: publish/subscribe and synchronous/asynchronous
method invocation. In other words, the Device Interface
Service encapsulates the power system devices into RIAPS
components. The specific ports and interfaces implemented
by these Device I/O Components (DIOC) are specific to
the connected power system device, the lower-level protocol
used, and the physical link used. This architecture ensures
encapsulation of I/O devices so that application components
can (a) access them using a unified interface and (b) the timing
of interactions with the devices is highly accurate. To achieve
these goals, the device components contains all the necessary
drivers, resource arbitration methods, and a real-time scheduler
for timed control actions. It is tightly integrated with the Time-
synchronization Service [17] for executing device interactions
on a globally synchronized timescale.

Example Device Configuration: Figure 3 shows an ex-
ample of a possible RIAPS node configuration where there
are different combinations of physical I/O connections and
software protocols used to reach the power system devices.
Each unique combination of a physical I/O connection and
software protocol is a device connection point. The physical
I/O hardware interface can support various industrial standards
such as RS-232, RS-485, TCP/IP on Ethernet, I2C, or a
simple GPIO. The low-level data communication can support
various software protocols, such as Modbus, DNP3 and IEEE
61850. Multiple power devices can be physically connected
to the same physical I/O hardware interface, for example an
Ethernet connection running a Modbus software protocol could
communication with a Phasor Measurement Unit (PMU), a
Digital Fault Recorder (DFR) or inverters communicating
using DNP3 on RS-485. Or a device connection could be
as simple as a load shedding relay attached to a GPIO pin
with no software protocol necessary. Since this configuration
is unique to each node, a power system engineer will need
to provide configuration information that identifies how the
system is physically connected and how each power system
device can be identified.

A. Architecture

The Device Management Actor (DMA) is in charge of
servicing the device connection requests from the application
actors, tracking the health of the power system devices, and
stopping device communications when connected applications
terminate. Device Communication Actors (DCA) are created
for each device connection point available within the RIAPS
node. Power system engineers will create Device Configura-
tion Metadata (DCM) to describe how the specific node hard-
ware is configured: what concrete power system devices are
connected to this node, how they are configured, etc. Using this
configuration metadata, each DCA will register itself with the
DMA to inform it which power system devices are available
through its device connection point. Upon registration, each
DCA is initialized on demand.

Application actors are deployed together with Device Inter-
face Metadata (DIM) that is created by a system manager
(a power system engineer) to identify the specific power
system devices that the application will be utilizing. A RIAPS
application is designed and developed with the assumption of
specific types of power system devices, but when it is deployed
it has to connect to specific instances of those devices. This
binding between the abstract and the concrete device(s) is
represented in the DIM and it is part of the configuration files
deployed with the application. Note that the implementation
of the DIOC-s are not part of the application - they reside in
the DCA-s, and the application components are bound to these
DIOC-s at run-time.

Application actors send the DMA a connection request
to link with the power system devices. If a DCA with
the requested power system device is available (registered),
the DMA provides connection information to the application
actor so that it can start communicating with the appropriate
DCA directly. The setting up of the connection between the
application actor’s components the the DIOC-s of the DCA(s)
are facilitated through the RIAPS Broker Service (just like
connections between any other RIAPS components) [10].
Each DCA reports when hardware errors occur to allow the
DMA to monitor the health of the device connections. If
a device becomes unavailable due to hardware failures, the
DMA informs the attached application actor that the device
disconnected. If all application actors connected with a power
system device are removed from the node, the DMA will tell
the DCA to stop all device communications for that specific
device.

Once the connection has been established between an appli-
cation actor and the appropriate DCA, direct communication
will occur between application actors and DCA to manage
the real-time data access. Specific device type API-s will be
defined by power system device classes. These device type
classes will identify the actions and configuration available for
the specified device. These device specific API-s will be based
on the power system device type and capability level, and will
be determined in the future as equipment capability is added to
the RIAPS platform. For instance, application actors can listen
for desired sensor data or command actuation of a connected
device. Some actuation commands can include a request to
provide a notification back to the application actor after future
scheduled actuation has completed. These notifications could
be a published message by the appropriate DCA.

The DCA translates to and from the appropriate physical
and software protocol combination for the application actors
and, if needed, add timestamps to the power device data
based on the global time provided by the time-synchronization
service. For periodic actions or scheduled outputs, each DCA
manages the real-time scheduling needs for the devices associ-
ated with their specific device connection point by requesting
global time information and scheduling sleep times when
needed. Overall, this architecture can support the following
interaction patterns between the physical power system device
and application actors.



• Sporadic input: When the sensory I/O device generates
a new sample, it is time-stamped (possibly by the device
itself or with global time from the Time Synchronization
Service) and this sample is sent to interested applica-
tion(s) through published messages. Another option is
that the data is stored in a queue of samples or as a single
sample (with ‘most-recent-overrides’ semantics), and the
application will query this from the service.

• Periodic input: When a periodic sensor is capable of pro-
ducing a stream of data, then the device interface service
is commanded to ‘turn on the data pump’ (meaning that
the continuous streaming is enabled for that sensor). It is
assumed that the sensor pushes samples into the Device
Interface Service that timestamps and then distributes it
to interested applications.

• Sporadic output: An application calls the service to
generate an output for an actuator. The transfer takes
places as fast as possible. The caller application may or
may not wait for the transfer to complete. In the latter
case, the application actor may have registered a request
to receive notification about the success of the transfer,
asynchronously.

• Periodic output: An application commands the service
to set up a periodic actuator output activity and provides
an initial value to send. As a result, the service launches
a looping thread that reads the value to be sent from
a sample location, sends that value to the actuator, then
repeats this with a specific frequency. The application can
asynchronously update the sample location with a new
value - the updated value will be used starting from the
next transfer.

• Scheduled output: An application needs to execute
actuation commands at a specific point (or at periodically
scheduled specific points) of (physical) time. The appli-
cation commands the service to schedule the actuation
action and provides the data to be sent. The service
schedules this request and when the physical time arrives,
the request is executed. If the request is repeating, it is
rescheduled for the next run.

IV. CASE STUDY - THE C37 DEVICE WRAPPER AND THE
MICROGRID SYNCHRONIZATION APPLICATION

The RIAPS framework supports simplified bi-directional
C37.118.1 communication interfaces for integrating measure-
ment and control applications with industrial phasor measure-
ment units (PDU) and/or phasor data concentrators. This capa-
bility is provided by two device components in the framework,
acting as intelligent bridges and multiplexors between the
RIAPS pub/sub communication infrastructure and the external
C37 connections.

The C37Sender device component is used when the RIAPS
application acts as a PDU (see fig 2) and wants to provide
streaming synchrophasor frequency, rate of change of fre-
quency (ROCOF) and other status information for external
sinks. The component offers three subscribe ports for other
RIAPS components for (1) updating the PDU configuration
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Fig. 4. Time for RIAPS actor C37Receiver to receive and process the C37
message. The experiment contains 20000 data points. The mean value for
transmission and processing timeof C37 message is 4.5 ms and the std=1.27
ms. The Mean value of total execution of resynchronization component is
30.27 ms (run at 20Hz).

state, (2) updating the header/identification information and
(3) receiving measurement data. Only the last port is used
for continuous streaming. Due to current implementation-level
limitations, the data on these ports need to be encoded properly
as defined by the IEEE Std C37.118.1-2011 standard.

Internally, the device component uses a multithreaded server
pattern: one dedicated thread is listening on the PDU port -
in C37 the PDC initiates the TCP connection to the PDU -,
and each active PDU is handled by a dedicated, dynamically
spawned thread. Incoming RIAPS data is always broadcasted
to all connected PDCs using a simple message queue per PDC
thread. The RIAPS event handler, which cannot use blocking
primitives, append the data messages to these queues with
some capacity threshold, above which it drops the message
arriving from the RIAPS application. The C37Receiver com-
ponent is simpler, it can connect to one external PDU, only,
thus it relies on a single device thread for executing a blocking
read on the TCP socket. It provides three publish RIAPS ports
for other components with the same but reversed logic as
described above.

Fig 4 shows the timing of the C37 actor as measured during
an experiment with the resynchronizer application shown in
figure 2. The whole application runs at 20 Hz, receiving data
from a real-time simulation of a micro-grid that we have buit.
Details of the application logic and the simulator are available
in [16]. During each run, the data is received via C37 from the
real-time simulator, processed through other RIAPS actors and
then eventually sent back to the microgrid simulator for the
actuation. The stability of this application has already been
shown in prior work [16]. Here we show the timing of the
C37 device interface (fig 4) and the over all timing of the
resynchronization component (fig 2).

V. CONCLUSION

Component frameworks like RIAPS are going to increas-
ingly become mainline as we witness the large scale integra-
tion of cyber and physical aspects of our infrastructure, espe-
cially when it is distributed across large geographical areas.



These frameworks provide a “smart operating system”, which
allows us to go beyond the traditional SCADA frameworks
and disperse the “intelligence” throughout the infrastructure.
This paper briefly described the RIAPS framework and the
mechanisms required to ensure that the “app” developers can
correctly interact with the physical devices such as Phasor
Measurement Units. For this purpose, the device interface
provides publish-subscribe interfaces to the other components,
while internally encapsulates the logic required to realize
the sporadic input, periodic input, sporadic output, periodic
output, or scheduled output interaction patterns. We presented
a case study with respect to a C37 device used in a microgrid
resynchonizer application. Our ongoing work is continuing to
integrate other device interfaces, for example Modbus. We are
also working on developing a C and capnproto [18] based
device framework implementation that can achieve frequencies
higher than what was shown in this paper (20 Hz).
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